1
|
Batheja A, Bayer-Vile J, Silverstein E, Couser N. Congenital Myasthenic Syndrome associated with acetylcholine receptor deficiency: case report and review of the literature. Ophthalmic Genet 2024; 45:481-487. [PMID: 38832364 DOI: 10.1080/13816810.2024.2352391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Congenital Myasthenic Syndromes are a diverse group of conditions with a broad array of genetic underpinnings and phenotypic presentations. Acetylcholine receptor deficiency is one form that usually involves pathogenic variants in the Cholinergic Receptor Nicotinic Epsilon Subunit (CHRNE) gene encoding the ɛ-subunit of the acetylcholine receptor. METHODS We report a case of a 4-year-old male with suspected Congenital Myasthenic Syndrome with Acetylcholine Receptor Deficiency who presented with ocular symptoms and generalized muscle weakness. We additionally summarize published findings regarding the genetic, phenotypic, and clinical considerations of Congenital Myasthenic Syndrome with Acetylcholine Receptor Deficiency. RESULTS Exome sequencing revealed biallelic variants in CHRNE gene with a pathogenic frameshift variant and a variant of uncertain significance. After suboptimal response to pyridostigmine and albuterol, the patient experienced benefit with 3,4-DAP. The most commonly reported clinical characteristics in the literature are ptosis, muscle fatigability or weakness, and ophthalmoplegia. CONCLUSION We present the case of a patient with biallelic variants in CHRNE gene including a variant of uncertain significance. Evaluation of variants of this gene, including the variant of uncertain significance identified in this case report, through further cases and studies may improve our understanding of Congenital Myasthenic Syndrome with Acetylcholine Receptor deficiency.
Collapse
Affiliation(s)
- Aashish Batheja
- School of Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Julie Bayer-Vile
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Evan Silverstein
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Natario Couser
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Hayashi M. Pathophysiology of Childhood-Onset Myasthenia: Abnormalities of Neuromuscular Junction and Autoimmunity and Its Background. PATHOPHYSIOLOGY 2023; 30:599-617. [PMID: 38133144 PMCID: PMC10747330 DOI: 10.3390/pathophysiology30040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
The pathophysiology of myasthenia gravis (MG) has been largely elucidated over the past half century, and treatment methods have advanced. However, the number of cases of childhood-onset MG is smaller than that of adult MG, and the treatment of childhood-onset MG has continued to be based on research in the adult field. Research on pathophysiology and treatment methods that account for the unique growth and development of children is now desired. According to an epidemiological survey conducted by the Ministry of Health, Labour and Welfare of Japan, the number of patients with MG by age of onset in Japan is high in early childhood. In recent years, MG has been reported from many countries around the world, but the pattern of the number of patients by age of onset differs between East Asia and Western Europe, confirming that the Japanese pattern is common in East Asia. Furthermore, there are racial differences in autoimmune MG and congenital myasthenic syndromes according to immunogenetic background, and their pathophysiology and relationships are gradually becoming clear. In addition, treatment options are also recognized in different regions of the world. In this review article, I will present recent findings focusing on the differences in pathophysiology.
Collapse
Affiliation(s)
- Masatoshi Hayashi
- Department of Pediatrics, Uwajima City Hospital, Uwajima 798-8510, Japan
| |
Collapse
|
3
|
Shen X, Nakata T, Mizuno S, Imoto I, Selcen D, Ohno K, Engel AG. Impaired gating of γ- and ε-AChR respectively causes Escobar syndrome and fast-channel myasthenia. Ann Clin Transl Neurol 2023; 10:732-743. [PMID: 36891870 PMCID: PMC10187723 DOI: 10.1002/acn3.51756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE To dissect the kinetic defects of acetylcholine receptor (AChR) γ subunit variant in an incomplete form of the Escobar syndrome without pterygium and compare it with those of a variant of corresponding residue in the AChR ε subunit in a congenital myasthenic syndrome (CMS). METHODS Whole exome sequencing, α-bungarotoxin binding assay, single channel patch-clamp recordings, and maximum likelihood analysis of channel kinetics. RESULTS We identified compound heterozygous variants in AChR γ and ε subunits in three Escobar syndrome (1-3) and three CMS patients (4-6), respectively. Each Escobar syndrome patient carries γP121R along with γV221Afs*44 in patients 1 and 2, and γY63* in patient 3. Three CMS patients share εP121T along with εR20W, εG-8R, and εY15H in patients 4, 5, and 6, respectively. Surface expressions of γP121R- and εP121T-AChR were 80% and 138% of the corresponding wild-type AChR, whereas εR20W, εG-8R, and εY15H reduced receptor expression to 27%, 35%, and 30% of wild-type εAChR, respectively. γV221Afs*44 and γY63* are null variants. Thus, γP121R and εP121T determine the phenotype. γP121R and εP121T shorten channel opening burst duration to 28% and 18% of corresponding wild-type AChR by reducing the channel gating equilibrium constant 44- and 63-fold, respectively. INTERPRETATION Similar impairment of channel gating efficiency of a corresponding P121 residue in the acetylcholine-binding site of the AChR γ and ε subunits causes Escobar syndrome without pterygium and fast-channel CMS, respectively, suggesting that therapy for the fast-channel CMS will benefit Escobar syndrome.
Collapse
Affiliation(s)
- Xin‐Ming Shen
- Department of Neurology and Neuromuscular Research LaboratoryMayo ClinicRochesterMinnesotaUSA
| | - Tomohiko Nakata
- Division of Neurogenetics, Center for Neurological Diseases and CancerNagoya University Graduate School of MedicineNagoyaJapan
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Seiji Mizuno
- Department of PediatricsCentral Hospital, Aichi Human Service CenterKasugaiJapan
| | - Issei Imoto
- Aichi Cancer Center Research InstituteNagoyaJapan
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research LaboratoryMayo ClinicRochesterMinnesotaUSA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and CancerNagoya University Graduate School of MedicineNagoyaJapan
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research LaboratoryMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
4
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
5
|
Kondo H, Tsuji Y, Lee T, Saito Y, Nishino I. Severe congenital myasthenic syndrome with novel variants in the CHRND gene. Pediatr Int 2022; 64:e15342. [PMID: 36370373 DOI: 10.1111/ped.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Hidehito Kondo
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto City, Japan
| | - Yukiko Tsuji
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
6
|
Huang K, Luo YB, Bi FF, Yang H. Pharmacological Strategy for Congenital Myasthenic Syndrome with CHRNE Mutations: A Meta-Analysis of Case Reports. Curr Neuropharmacol 2021; 19:718-729. [PMID: 32727330 PMCID: PMC8573743 DOI: 10.2174/1570159x18666200729092332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMSs) are a heterogeneous group of neuromuscular disorders. Mutations of the nicotinic acetylcholine receptor epsilon subunit gene (CHRNE) are the most common causes of these disorders. CMSs are gaining increasing recognition by clinicians. However, pharmacological treatment of CMS with CHRNE mutations has only been discussed in a small number of case reports. OBJECTIVE This study aims to determine how to choose an appropriate pharmacological strategy for CMS with CHRNE mutations. METHODS A meta-analysis was performed. PubMed, MEDLINE, Web of Science, and Cochrane Library databases were searched for studies published in English prior to June 1, 2020. The extracted data included clinical information, gene mutations, pharmacological treatment, and treatment effects. RESULTS A total of 48 studies and 208 CMS patients with CHRNE mutations were included in our meta-analysis. Ten different pharmacological strategies were used in these patients. Our research found that β2-adrenergic receptor agonists had the best treatment effect for CMS patients with CHRNE mutations, especially in patients with primary AChR deficiency. In addition, our analysis found no evidence that age at disease onset influences the treatment results. CONCLUSION This meta-analysis provides evidence that (1) β2-adrenergic receptor agonist therapy could be the first choice of pharmacological strategy for treating CMS with CHRNE mutations; (2) a single-drug-regime, rather than a combination therapy, should be the first choice of treatment; and (3) it is never too late to initiate pharmacological treatment.
Collapse
Affiliation(s)
- Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Congenital myasthenic syndromes in the Thai population: Clinical findings and novel mutations. Neuromuscul Disord 2020; 30:851-858. [PMID: 32978031 DOI: 10.1016/j.nmd.2020.08.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
Congenital myasthenic syndromes (CMS) comprise a heterogeneous group of genetic disorders of the neuromuscular junction. Next generation sequencing has been increasingly used for molecular diagnosis in CMS patients. This study aimed to identify the disease-causing variants in Thai patients. We recruited patients with a diagnosis of CMS based on clinical and electrophysiologic findings, and whole exome sequencing was performed. Thirteen patients aged from 2 to 54 years (median: 8 years) from 12 families were enrolled. Variants were identified in 9 of 13 patients (69%). Five novel variants and two previously reported variant were found in the COLQ, RAPSN and CHRND gene. The previously reported c.393+1G>A splice site variant in the COLQ gene was found in a majority of patients. Five patients harbor the homozygous splice site c.393+1G>A variant, and two patients carry compound heterozygous c.393+1G>A, c.718-1G>T, and c.393+1G>A, c.865G>T (p.Gly289Ter) variants. The novel variants were also found in RAPSN (p.Cys251del, p.Arg282Cys) and CHRND (p.Met481del). Molecular diagnosis in CMS patients can guide treatment decisions and may be life changing, especially in patients with COLQ mutations.
Collapse
|
8
|
Di L, Chen H, Lu Y, Selcen D, Engel AG, Da Y, Shen XM. Determinants of the repetitive-CMAP occurrence and therapy efficacy in slow-channel myasthenia. Neurology 2020; 95:e2781-e2793. [PMID: 32907971 DOI: 10.1212/wnl.0000000000010734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/22/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To find determinants of the occurrence of repetitive compound muscle action potential (R-CMAP) and to assess the efficacy of channel blocker therapy in slow-channel congenital myasthenic syndrome (SCCMS). METHODS Neurologic examination, EMG study, laboratory test, muscle biopsy, and next-generation and Sanger sequencing; literature review of reported patients with SCCMS, including EMG, kinetics of mutant acetylcholine receptors (AChRs), and response to therapy; and simulation of the decay phase of endplate potential (EPP) were performed. RESULTS Three newly characterized and 57 reported patients with SCCMS with mutations of AChR subunits were included. In patients with R-CMAP, the length of channel opening bursts of mutant AChR was increased 8.68 ± 2.82 (mean ± SD)-fold compared to wild-type; in patients without R-CMAP, the length was increased 3.84 ± 0.65-fold (95% confidence interval 3.18-6.50, p = 0.000014). The EPP amplitude after refractory period of action potential in muscle fiber is above the threshold in patients with R-CMAP but below the threshold in patients without R-CMAP. In patients with good results from channel blocker therapy, treatment was initiated 11.60 ± 5.17 years after onset of symptoms; in patients with no to moderate benefit from channel blocker therapy, treatment was initiated 30.70 ± 12.72 years after onset (95% confidence interval -28.57 to -9.63, p = 0.00089). CONCLUSIONS In SCCMS, the R-CMAP occurrence is related to the extent of prolongation of the opening episodes of mutant AChR channel. Channel blocker treatment is more effective the sooner it is started after the onset of symptoms. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that channel blocker therapy in patients with SCCMS improves symptoms.
Collapse
Affiliation(s)
- Li Di
- From the Department of Neurology (L.D., H.C., Y.L., Y.D.), Xuanwu Hospital, Capital Medical University, Beijing, China; and Department of Neurology and Neuromuscular Research Laboratory (L.D., D.S., A.G.E., X.-M.S.), Mayo Clinic, Rochester, MN
| | - Hai Chen
- From the Department of Neurology (L.D., H.C., Y.L., Y.D.), Xuanwu Hospital, Capital Medical University, Beijing, China; and Department of Neurology and Neuromuscular Research Laboratory (L.D., D.S., A.G.E., X.-M.S.), Mayo Clinic, Rochester, MN
| | - Yan Lu
- From the Department of Neurology (L.D., H.C., Y.L., Y.D.), Xuanwu Hospital, Capital Medical University, Beijing, China; and Department of Neurology and Neuromuscular Research Laboratory (L.D., D.S., A.G.E., X.-M.S.), Mayo Clinic, Rochester, MN
| | - Duygu Selcen
- From the Department of Neurology (L.D., H.C., Y.L., Y.D.), Xuanwu Hospital, Capital Medical University, Beijing, China; and Department of Neurology and Neuromuscular Research Laboratory (L.D., D.S., A.G.E., X.-M.S.), Mayo Clinic, Rochester, MN
| | - Andrew G Engel
- From the Department of Neurology (L.D., H.C., Y.L., Y.D.), Xuanwu Hospital, Capital Medical University, Beijing, China; and Department of Neurology and Neuromuscular Research Laboratory (L.D., D.S., A.G.E., X.-M.S.), Mayo Clinic, Rochester, MN
| | - Yuwei Da
- From the Department of Neurology (L.D., H.C., Y.L., Y.D.), Xuanwu Hospital, Capital Medical University, Beijing, China; and Department of Neurology and Neuromuscular Research Laboratory (L.D., D.S., A.G.E., X.-M.S.), Mayo Clinic, Rochester, MN.
| | - Xin-Ming Shen
- From the Department of Neurology (L.D., H.C., Y.L., Y.D.), Xuanwu Hospital, Capital Medical University, Beijing, China; and Department of Neurology and Neuromuscular Research Laboratory (L.D., D.S., A.G.E., X.-M.S.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
9
|
Al-Muhaizea MA, AlQuait L, AlRasheed A, AlHarbi S, Albader AA, AlMass R, Albakheet A, Alhumaidan A, AlRasheed MM, Colak D, Kaya N. Pyrostigmine therapy in a patient with VAMP1-related congenital myasthenic syndrome. Neuromuscul Disord 2020; 30:611-615. [DOI: 10.1016/j.nmd.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
|
10
|
Grajales-Reyes JG, García-González A, María-Ríos JC, Grajales-Reyes GE, Delgado-Vélez M, Báez-Pagán CA, Quesada O, Gómez CM, Lasalde-Dominicci JA. A Panel of Slow-Channel Syndrome Mice Reveals a Unique Locomotor Behavioral Signature. J Neuromuscul Dis 2019; 4:341-347. [PMID: 29036836 DOI: 10.3233/jnd-170226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Muscle nicotinic acetylcholine receptor (nAChR) mutations can lead to altered channel kinetics and neuromuscular junction degeneration, a neurodegenerative disorder collectively known as slow-channel syndrome (SCS). A multivariate analysis using running wheels was used to generate activity profiles for a variety of SCS models, uncovering unique locomotor patterns for the different nAChR mutants. Particularly, the αL251T and ɛL269F mutations exhibit decreased event distance, duration, and velocity over a period of 24 hours. Our approach suggests a robust relationship between the pathophysiology of SCS and locomotor activity.
Collapse
Affiliation(s)
- José G Grajales-Reyes
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | | | - José C María-Ríos
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Gary E Grajales-Reyes
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Manuel Delgado-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Carlos A Báez-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | | | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA.,Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| |
Collapse
|
11
|
Targeted therapies for congenital myasthenic syndromes: systematic review and steps towards a treatabolome. Emerg Top Life Sci 2019; 3:19-37. [PMID: 30931400 PMCID: PMC6436731 DOI: 10.1042/etls20180100] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent scientific advances, most rare genetic diseases — including most neuromuscular diseases — do not currently have curative gene-based therapies available. However, in some cases, such as vitamin, cofactor or enzyme deficiencies, channelopathies and disorders of the neuromuscular junction, a confirmed genetic diagnosis provides guidance on treatment, with drugs available that may significantly alter the disease course, improve functional ability and extend life expectancy. Nevertheless, many treatable patients remain undiagnosed or do not receive treatment even after genetic diagnosis. The growth of computer-aided genetic analysis systems that enable clinicians to diagnose their undiagnosed patients has not yet been matched by genetics-based decision-support systems for treatment guidance. Generating a ‘treatabolome’ of treatable variants and the evidence for the treatment has the potential to increase treatment rates for treatable conditions. Here, we use the congenital myasthenic syndromes (CMS), a group of clinically and genetically heterogeneous but frequently treatable neuromuscular conditions, to illustrate the steps in the creation of a treatabolome for rare inherited diseases. We perform a systematic review of the evidence for pharmacological treatment of each CMS type, gathering evidence from 207 studies of over 1000 patients and stratifying by genetic defect, as treatment varies depending on the underlying cause. We assess the strength and quality of the evidence and create a dataset that provides the foundation for a computer-aided system to enable clinicians to gain easier access to information about treatable variants and the evidence they need to consider.
Collapse
|
12
|
Finsterer J, Melichart-Kotig M, Woehrer A. Mitochondrial disorder mimicking rheumatoid disease. Z Rheumatol 2018; 78:875-880. [PMID: 30291434 DOI: 10.1007/s00393-018-0551-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Mitochondrial disorders (MIDs) may manifest phenotypically with a plethora of clinical features, but polyarthralgia and cutaneous lesions are still infrequently reported and recognized as phenotypic manifestations of a MID. CASE REPORT The patient is a 27-year-old Caucasian female with a history of preterm birth, symptomatic myopathy, and polyarthralgia since infancy, followed by multiple endocrinopathies including pituitary insufficiency, cardiac conduction defects, nephrolithiasis, aseptic chronic pancreatitis and sialadenitis, anemia, hyperlipidemia, and dysmorphic features. The patient reported to have profited from hydrocortisone and long-term chloroquine, but hardly from long-term immunosuppression with various immunosuppressants. The diagnosis MID was established upon the multiorgan nature of the disease, presence of core clinical features of a MID, and a muscle biopsy indicative of a mitochondrial defect. The family history was positive for mitochondrial features in the mother and grandmother from the mother's side. CONCLUSION Seronegative and non-destructive polyarthralgia and unexplained cutaneous features mimicking cutaneous lupus should be considered as a phenotypic feature of a multisystem MID (mitochondrial multiorgan disorder syndrome, MIMODS). Mitochondrial metabolic defects may trigger secondary immune reactions. Core clinical features of a non-specific MID with infantile onset include symptomatic myopathy, endocrine abnormalities, cardiac conduction defects, dysmorphism, hyperlipidemia, anemia, and nephrolithiasis.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Vienna, Austria. .,, Postfach 20, 1180, Vienna, Austria.
| | | | - Adelheid Woehrer
- Neurological Institute, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Durmus H, Shen XM, Serdaroglu-Oflazer P, Kara B, Parman-Gulsen Y, Ozdemir C, Brengman J, Deymeer F, Engel AG. Congenital myasthenic syndromes in Turkey: Clinical clues and prognosis with long term follow-up. Neuromuscul Disord 2018; 28:315-322. [PMID: 29395675 PMCID: PMC5924610 DOI: 10.1016/j.nmd.2017.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a group of hereditary disorders affecting the neuromuscular junction. Here, we present clinical, electrophysiological and genetic findings of 69 patients from 51 unrelated kinships from Turkey. Genetic tests of 60 patients were performed at Mayo Clinic. Median follow-up time was 9.8 years (range 1-22 years). The most common CMS was primary acetylcholine receptor (AChR) deficiency (31/51) and the most common mutations in AChR were c.1219 + 2T > G (12/51) and c.1327delG (6/51) in CHRNE. Four of our 5 kinships with AChE deficiency carried p.W148X that truncates the collagen domain of COLQ, and was previously reported only in patients from Turkey. These were followed by GFPT1 deficiency (4/51), DOK7 deficiency (3/51), slow channel CMS (3/51), fast channel CMS (3/51), choline acetyltransferase deficiency (1/51) and a CMS associated with desmin deficiency (1/51). Distribution of muscle weakness was sometimes useful in giving a clue to the CMS subtype. Presence of repetitive compound muscle action potentials pointed to AChE deficiency or slow channel CMS. Our experience confirms that one needs to be cautious using pyridostigmine, since it can worsen some types of CMS. Ephedrine/salbutamol were very effective in AChE and DOK7 deficiencies and were useful as adjuncts in other types of CMS. Long follow-up gave us a chance to assess progression of the disease, and to witness 12 mainly uneventful pregnancies in 8 patients. In this study, we describe some new phenotypes and detail the clinical features of the well-known CMS.
Collapse
Affiliation(s)
- Hacer Durmus
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Capa, 34390, Istanbul, Turkey
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Piraye Serdaroglu-Oflazer
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Capa, 34390, Istanbul, Turkey
| | - Bulent Kara
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Capa, 34390, Istanbul, Turkey
| | - Yesim Parman-Gulsen
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Capa, 34390, Istanbul, Turkey
| | - Coskun Ozdemir
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Capa, 34390, Istanbul, Turkey
| | - Joan Brengman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Feza Deymeer
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Tan JZ, Man Y, Xiao F. A Missense Mutation in Epsilon-subunit of Acetylcholine Receptor Causing Autosomal Dominant Slow-channel Congenital Myasthenic Syndrome in a Chinese Family. Chin Med J (Engl) 2017; 129:2596-2602. [PMID: 27779167 PMCID: PMC5125339 DOI: 10.4103/0366-6999.192780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Congenital myasthenic syndromes are a group of rare disorders that are clinically and genetically heterogeneous and caused by mutations in the genes encoding proteins of the neuromuscular junction. Here, we described a Chinese family that presented with phenotypes of classic slow-channel congenital myasthenic syndrome (SCCMS). METHODS Clinical characteristics and electrophysiological features of three patients from a Chinese family were examined, and next-generation sequencing followed by direct sequencing was carried out. RESULTS The patients revealed variability in clinical and electrophysiological features. However, weakness, scoliosis, and repetitive-compound muscle action potential were found in all affected members in the family. A heterozygous C>T missense mutation at nucleotide 865 in acetylcholine receptor epsilon-subunit (CHRNE) gene that causes a leucine-to-phenylalanine substitution at position 289 (L289F) was found. CONCLUSIONS We reported a SCCMS family of Chinese origin. In the family, classical clinical phenotype with phenotypic variability among different members was found. Genetic testing could help diagnose this rare disease.
Collapse
Affiliation(s)
- Jia-Ze Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yuan Man
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
15
|
Shen XM, Okuno T, Milone M, Otsuka K, Takahashi K, Komaki H, Giles E, Ohno K, Engel AG. Mutations Causing Slow-Channel Myasthenia Reveal That a Valine Ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating. Hum Mutat 2016; 37:1051-9. [PMID: 27375219 DOI: 10.1002/humu.23043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/18/2016] [Accepted: 06/23/2016] [Indexed: 12/22/2022]
Abstract
We identify two novel mutations in acetylcholine receptor (AChR) causing a slow-channel congenital myasthenia syndrome (CMS) in three unrelated patients (Pts). Pt 1 harbors a heterozygous βV266A mutation (p.Val289Ala) in the second transmembrane domain (M2) of the AChR β subunit (CHRNB1). Pts 2 and 3 carry the same mutation at an equivalent site in the ε subunit (CHRNE), εV265A (p.Val285Ala). The mutant residues are conserved across all AChR subunits of all species and are components of a valine ring in the channel pore, which is positioned four residues above the leucine ring. Both βV266A and εV265A reduce the amino acid size and lengthen the channel opening bursts by fourfold by enhancing gating efficiency by approximately 30-fold. Substitution of alanine for valine at the corresponding position in the δ and α subunit prolongs the burst duration four- and eightfold, respectively. Replacing valine at ε codon 265 either by a still smaller glycine or by a larger leucine also lengthens the burst duration. Our analysis reveals that each valine in the valine ring contributes to channel kinetics equally, and the valine ring has been optimized in the course of evolution to govern channel gating.
Collapse
Affiliation(s)
- Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota. ,
| | - Tatsuya Okuno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kenji Otsuka
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Takahashi
- Department of Child Neurology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | | | - Kinji Ohno
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|