1
|
Massucco S, Fossa P, Fiorillo C, Faedo E, Gemelli C, Barresi R, Ripolone M, Patrone S, Gaudio A, Mandich P, Gotta F, Baratto S, Traverso M, Pisciotta L, Zaottini F, Camera M, Scarsi E, Grandis M. Case report: A single novel calpain 3 gene variant associated with mild myopathy. Front Genet 2024; 15:1437859. [PMID: 39703226 PMCID: PMC11655484 DOI: 10.3389/fgene.2024.1437859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Recessively inherited limb-girdle muscular dystrophy type 1, caused by mutations in the calpain 3 gene, is the most common limb-girdle muscular dystrophy worldwide. Recently, cases of autosomal dominant calpainopathy have been described. A man was referred to our neurological outpatient clinic at the age of 54 for persistent hyperCKemia (>1000 U/l) associated with muscle fatigue and myalgia. Clinical examination revealed mild proximal weakness in the lower limbs. His brother exhibited a moderate increase in serum creatine kinase levels (up to 2000 U/l) without other signs of myopathy. Their father experienced slowly progressive lower limb weakness after the age of 50. The calpain 3 variant c.1478G>A (p.Arg493Gln) in the heterozygous state was identified in both brothers. In silico modeling studies predict that this substitution may disrupt protein folding. This represents the first description of the heterozygous p.Arg493Gln calpain 3 variant as a potential cause of mild calpainopathy.
Collapse
Affiliation(s)
- Sara Massucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genova, Italy
| | - Chiara Fiorillo
- Paediatric Neurology and Neuromuscular Disorders Unit, University of Genoa and IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elena Faedo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | | | | | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Patrone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Livia Pisciotta
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), School of Medical and Pharmaceutical Sciences, University of Genoa, Genova, Italy
| | | | - Mattia Camera
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Elena Scarsi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Li Z, Zeng S, Xie Y, Li X, Huang S, Zhao H, Cao W, Liu L, Wang M, Gong Q, Liu J, Rong P, Zhang R. Genetic and clinical profile of 15 Chinese families with GDAP1-related Charcot-Marie-Tooth disease and identification of H256R as a frequent mutation. J Peripher Nerv Syst 2024; 29:232-242. [PMID: 38705839 DOI: 10.1111/jns.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIMS Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause axonal or demyelinating Charcot-Marie-Tooth disease (CMT) with autosomal dominant or recessive inheritance. In this study, we aim to report the genotypic and phenotypic features of GDAP1-related CMT in a Chinese cohort. METHODS Clinical, neurophysiological, genetic data, and available muscle/brain imaging information of 28 CMT patients with GDAP1 variants were retrospectively collected. RESULTS We identified 16 GDAP1 pathogenic variants, among which two novel variants c.980dup(p.L328FfsX25) and c.480+4T>G were first reported. Most patients (16/28) presented with AR or AD CMT2K phenotype. Clinical characteristics in our cohort demonstrated that the AR patients presented earlier onset, more severe phenotype compared with the AD patients. Considerable intra-familial phenotypic variability was observed among three AD families. Muscle atrophy and fatty infiltration in the lower extremity were detected by Muscle magnetic resonance imaging (MRI) scans in four patients. MRI showed two AR patients showed more severe muscle involvement of the posterior compartment than those of the anterolateral compartment in the calf. One patient carrying Q38*/H256R variants accompanied with mild periventricular leukoaraiosis. CONCLUSIONS In this study, we conducted an analysis of clinical features of the GDAP1-related CMT patients, expanded the mutation spectrum in GDAP1 by reporting two novel variants, and presented the prevalent occurrence of the H256R mutation in China. The screening of GDAP1 should be particularly emphasized in Chinese patients with CMT2, given the incomplete penetrance and pathogenic inheritance patterns involving dominant and recessive modes.
Collapse
Affiliation(s)
- Zhongzheng Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoyu Gong
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Geroldi A, Ponti C, Mammi A, Patrone S, Gotta F, Trevisan L, Sanguineri F, Origone P, Gaudio A, La Barbera A, Cataldi M, Gemelli C, Massucco S, Schenone A, Lanteri P, Fiorillo C, Grandis M, Mandich P, Bellone E. Early Onset Inherited Peripheral Neuropathies: The Experience of a Specialized Referral Center for Genetic Diagnosis Achievement. Pediatr Neurol 2024; 154:4-8. [PMID: 38428336 DOI: 10.1016/j.pediatrneurol.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of inherited peripheral neuropathies. Although the typical disease onset is reported in the second decade, earlier onsets are not uncommon. To date, few studies on pediatric populations have been conducted and the achievement of molecular diagnosis remains challenging. METHODS During the last 24 years we recruited 223 patients with early-onset hereditary peripheral neuropathies (EOHPN), negative for PMP22 duplication, 72 of them referred by a specialized pediatric hospital. Genetic testing for CMT-associated genes has been carried out with a range of different techniques. RESULTS Of the 223 EOHPN cases, 43% were classified as CMT1 (demyelinating), 49% as CMT2 (axonal), and 8% as CMTi (intermediate). Genetic diagnosis was reached in 51% of patients, but the diagnostic yield increased to 67% when focusing only on cases from the specialized pediatric neuromuscular centers. Excluding PMP22 rearrangements, no significant difference in diagnostic rate between demyelinating and axonal forms was identified. De novo mutations account for 38% of cases. CONCLUSIONS This study describes an exhaustive picture of EOHPN in an Italian referral genetic center and analyzes the molecular diagnostic rate of a heterogeneous cohort compared with one referred by a specialized pediatric center. Our data identify MPZ, MFN2, GDAP1, and SH3TC2 genes as the most frequent players in EOHPN. Our study underlines the relevance of a specific neurological pediatric expertise to address the genetic testing and highlights its importance to clarify possible unexpected results when neuropathy is only a secondary clinical sign of a more complex phenotype.
Collapse
Affiliation(s)
- Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy.
| | - Clarissa Ponti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Alessia Mammi
- IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Serena Patrone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Lucia Trevisan
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Francesca Sanguineri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Paola Origone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Andrea La Barbera
- IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Matteo Cataldi
- Pediatric Neuropsychiatric Unit, IRCCS Institute "G. Gaslini", Genoa, Italy
| | - Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Clinica Neurologica, Genoa, Italy
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Clinica Neurologica, Genoa, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Clinica Neurologica, Genoa, Italy
| | - Paola Lanteri
- Pediatric Neuropsychiatric Unit, IRCCS Institute "G. Gaslini", Genoa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; Unit of Paediatric Neurology and Neuromuscular Disorders, IRCCS Institute "G. Gaslini", Genoa, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Clinica Neurologica, Genoa, Italy
| | - Paola Mandich
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| | - Emilia Bellone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, UOC Genetica Medica, Genoa, Italy
| |
Collapse
|
4
|
Manzoor U, Ali A, Ali SL, Abdelkarem O, Kanwal S, Alotaibi SS, Baazeem A, Baiduissenova A, Yktiyarov A, Hajar A, Olzhabay A. Mutational screening of GDAP1 in dysphonia associated with Charcot-Marie-Tooth disease: clinical insights and phenotypic effects. J Genet Eng Biotechnol 2023; 21:119. [PMID: 37966693 PMCID: PMC10651813 DOI: 10.1186/s43141-023-00568-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION Mutations in GDAP1 (Ganglioside-induced differentiation-associated protein 1) gene are linked to Charcot-Marie-Tooth disease (CMT), a Heterogenous group of disorders with multiple phenotypes, characterized by peripheral nerve dysfunction that can lead to vocal cord paralysis and diaphragmatic dysfunction. MAIN BODY All three affected children of this chosen family have manifested the same clinical symptoms with progressive weakness, mild sensory impairment, and absent tendon reflexes in their early years. Electrodiagnostic analysis displayed an axonal type of neuropathy in affected patients. Sequencing of the GDAP1 gene was requested for all members of the family. Diagnostic assessments included pulmonary and vocal cord function tests, as well as phrenic and peripheral nerve conduction studies. Pathogenicity of GDAP1 variant p.Pro419Leu with axonal CMT2 and autosomal recessive inheritance was confirmed via in silico analysis. Patients with GDAP1 mutations showed dysphonia, speech difficulties, and the characteristic symptoms of CMT. The severity of symptoms correlated with the presence of a type of GDAP1 mutation. Patients with normal vocal cords and pulmonary function exhibited milder symptoms compared to those with GDAP1 mutations. Our study provides clinical insights into the phenotypic effects of GDAP1 mutations in CMT patients. The findings highlight the adverse clinical course and severe disability associated with GDAP1 mutations, including weak limb and laryngeal muscles. CONCLUSION Patients with GDAP1 mutations and autosomal recessive neuropathy present with dysphonia and require interventions such as surgery, braces, physical therapy, and exercise. Early diagnosis and comprehensive clinical evaluations are crucial for managing CMT patients with GDAP1 mutations.
Collapse
Affiliation(s)
- Uzma Manzoor
- Department of Clinical Biochemistry, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan.
| | - Awais Ali
- Department of Biochemistry, Abdul wali Khan University Mardan, Mardan, 23200, Pakistan
| | - S Luqman Ali
- Department of Biochemistry, Abdul wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Omneya Abdelkarem
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sumaira Kanwal
- Department of Clinical Biochemistry, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O.Box 11099, 21944, Taif, Saudi Arabia
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Aliya Baiduissenova
- Department of Microbiology and Virology, Astana Medical University, Astana City, 010000, Kazakhstan
| | - Ayaz Yktiyarov
- Department of Microbiology and Virology, Astana Medical University, Astana City, 010000, Kazakhstan
| | - Azraida Hajar
- Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Abay Olzhabay
- Department of Otorhinolaryngology, Astana Medical University, Astana City, 010000, Kazakhstan
| |
Collapse
|
5
|
Rodriguez-Hernandez A, Mayo M, Jauregui L, Patel P. Autosomal dominant GDAP1 mutation with severe phenotype and respiratory involvement: A case report. Front Neurol 2022; 13:905725. [PMID: 36353131 PMCID: PMC9637907 DOI: 10.3389/fneur.2022.905725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Charcot Marie Tooth (CMT) is a heterogeneous group of genetic disorders characterized by progressive motor and sensory neuropathy. CMT is a multi-gene disorder with several possible mutations responsible for a wide range of clinical presentations. A specific mutation of the ganglioside-induced-differentiation-associated protein 1 (GDAP1) gene is associated with the axonal subtype of CMT (CMT2K) which is inherited in an autosomal dominant fashion, as well as the demyelinating subtype (CMT4A) which is inherited in an autosomal recessive pattern. Phenotypic disease expression is largely dependent on these inheritance patterns. While the autosomal recessive form (CMT4A) exhibits severe disease with an early onset, the autosomal dominant variant (CMT2K) tends to have milder phenotypes and a later onset. We describe an atypical presentation of a patient with severe CMT2K with rapidly progressive polyneuropathy, respiratory failure, and dysphonia. We suggest that this case will inspire further evaluation of disease heterogeneity and variants.
Collapse
Affiliation(s)
- Adrian Rodriguez-Hernandez
- Department of Neurology, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- *Correspondence: Adrian Rodriguez-Hernandez
| | - Meagan Mayo
- Department of Internal Medicine, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Lilibeth Jauregui
- Department of Internal Medicine, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Pooja Patel
- Department of Neurology, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Neurology, Marcus Neuroscience Institute, Boca Raton, FL, United States
| |
Collapse
|
6
|
Jerath NU. Mild Late-Onset Sensory Neuropathy Associated with Heterozygous Missense GDAP1 Variants. Case Rep Med 2022; 2022:7492077. [PMID: 35656516 PMCID: PMC9155904 DOI: 10.1155/2022/7492077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
This study presents the clinical and electrophysiological findings of four subjects with a pathogenic heterozygous GDAP1 variant causing Charcot-Marie-Tooth disease 2K (CMT2K) and one additional subject with an uncertain GDAP1 variant and clinical findings of CMT 2K. The study evaluated these five subjects using clinical, laboratory, electrophysiological, and genetic testing. The findings showed that clinical features demonstrated no pes cavus, no significant weakness in the hands or feet, normal reflexes in four out of the five subjects, and mild to normal electrodiagnostic findings. The variant was associated with painful and numb feet with diminished sensation to pinprick. This study suggests that GDAP1 variants may be associated with very mild, predominantly sensory Charcot-Marie-Tooth disease, warranting continuing research for this type of the disease.
Collapse
Affiliation(s)
- Nivedita U. Jerath
- AdventHealth Neuroscience Institute, 1573 West Fairbanks Avenue, Suite 210 Winter Park, Orlando, FL, USA
| |
Collapse
|
7
|
Gentile L, Russo M, Taioli F, Ferrarini M, Aguennouz M, Rodolico C, Toscano A, Fabrizi GM, Mazzeo A. Rare among Rare: Phenotypes of Uncommon CMT Genotypes. Brain Sci 2021; 11:brainsci11121616. [PMID: 34942918 PMCID: PMC8699517 DOI: 10.3390/brainsci11121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Charcot–Marie–Tooth disease (CMT) is the most frequent form of inherited chronic motor and sensory polyneuropathy. Over 100 CMT causative genes have been identified. Previous reports found PMP22, GJB1, MPZ, and MFN2 as the most frequently involved genes. Other genes, such as BSCL2, MORC2, HINT1, LITAF, GARS, and autosomal dominant GDAP1 are responsible for only a minority of CMT cases. (2) Methods: we present here our records of CMT patients harboring a mutation in one of these rare genes (BSCL2, MORC2, HINT1, LITAF, GARS, autosomal dominant GDAP1). We studied 17 patients from 8 unrelated families. All subjects underwent neurologic evaluation and genetic testing by next-generation sequencing on an Ion Torrent PGM (Thermo Fischer) with a 44-gene custom panel. (3) Results: the following variants were found: BSCL2 c.263A > G p.Asn88Ser (eight subjects), MORC2 c.1503A > T p.Gln501His (one subject), HINT1 c.110G > C p.Arg37Pro (one subject), LITAF c.404C > G p.Pro135Arg (two subjects), GARS c.1660G > A p.Asp554Asn (three subjects), GDAP1 c.374G > A p.Arg125Gln (two subjects). (4) Expanding the spectrum of CMT phenotypes is of high relevance, especially for less common variants that have a higher risk of remaining undiagnosed. The necessity of reaching a genetic definition for most patients is great, potentially making them eligible for future experimentations.
Collapse
Affiliation(s)
- Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
- Correspondence:
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - Moreno Ferrarini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| |
Collapse
|
8
|
Lehtilahti M, Kallio M, Majamaa K, Kärppä M. Phenotype of Patients With Charcot-Marie-Tooth With the p.His123Arg Mutation in GDAP1 in Northern Finland. NEUROLOGY-GENETICS 2021; 7:e629. [PMID: 34632054 PMCID: PMC8495501 DOI: 10.1212/nxg.0000000000000629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022]
Abstract
Background and Objectives Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene cause autosomal dominant or autosomal recessive forms of Charcot-Marie-Tooth disease (CMT). Our aim was to study the clinical phenotype of patients with CMT caused by heterozygous p.His123Arg in GDAP1. Methods Twenty-three Finnish patients were recruited from a population-based cohort and through family investigation. Each patient was examined clinically and electrophysiologically. The Neuropathy Symptom Score and the Neuropathy Disability Score (NDS) were used in clinical evaluation. Results The median age at onset of symptoms was 17 years among patients with p.His123Arg in GDAP1. Motor symptoms were markedly more common than sensory symptoms at onset. All patients had distal weakness in lower extremities, and 17 (74%) patients had proximal weakness. Muscle atrophy and pes cavus were also common. Nineteen (82%) patients had sensory symptoms such as numbness or pain. The disease progressed with age, and the NDS increased 8.5 points per decade. Electrodiagnostic testing revealed length-dependent, sensory and motor axonal polyneuropathy. EDx findings were asymmetrical in 14 patients. Genealogic study of the families suggested a founder effect. Discussion We found that CMT in patients with p.His123Arg in GDAP1 is relatively mild and slow in progression.
Collapse
Affiliation(s)
- Maria Lehtilahti
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| | - Mika Kallio
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| | - Kari Majamaa
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| | - Mikko Kärppä
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| |
Collapse
|
9
|
Figueiredo FB, Silva WA, Giuliatti S, Tomaselli PJ, Lourenço CM, Gouvêa SDP, Covaleski APPM, Hallak JE, Marques W. GDAP1 mutations are frequent among Brazilian patients with autosomal recessive axonal Charcot-Marie-Tooth disease. Neuromuscul Disord 2021; 31:505-511. [PMID: 33903021 DOI: 10.1016/j.nmd.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Mutations in ganglioside-induced differentiation-associated-protein 1 (GDAP1) are associated with several subtypes of Charcot-Marie-Tooth (CMT) disease, including autosomal recessive and demyelinating (CMT4A); autosomal recessive and axonal (AR-CMT2K); autosomal dominant and axonal (CMT2K); and an intermediate and recessive form (CMTRIA). To date, at least 103 mutations in this gene have been described, but the relative frequency of GDAP1 mutations in the Brazilian CMT population is unknown. In this study, we investigated the frequency of GDAP1 mutations in a cohort of 100 unrelated Brazilian CMT patients. We identified five variants in unrelated axonal CMT patients, among which two were novel and probably pathogenic (N64S, P119T) one was novel and was classified as VUS (K207L) and two were known pathogenic variants (R125* and Q163*). The prevalence rate of GDAP1 among the axonal CMT cases was 7,14% (5/70), all of them of recessive inheritance, thus suggesting that the prevalence was higher than what is observed in most countries. All patients exhibited severe early-onset CMT that was rapidly progressive. Additionally, this study widens the mutational spectrum of GDAP1-related CMT through identification of two novel likely pathogenic variants.
Collapse
Affiliation(s)
- Fernanda Barbosa Figueiredo
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pedro José Tomaselli
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Charles Marques Lourenço
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Silmara de Paula Gouvêa
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | - Jaime E Hallak
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil; National Institute of Sciences and Technology - INCT-Translational Medicine - CNPq/FAPESP, São Paulo, Brazil
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil; National Institute of Sciences and Technology - INCT-Translational Medicine - CNPq/FAPESP, São Paulo, Brazil.
| |
Collapse
|
10
|
Chen CX, Li JQ, Dong HL, Liu GL, Bai G, Wu ZY. Identification and functional characterization of novel GDAP1 variants in Chinese patients with Charcot-Marie-Tooth disease. Ann Clin Transl Neurol 2020; 7:2381-2392. [PMID: 33136338 PMCID: PMC7732252 DOI: 10.1002/acn3.51233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To identify and characterize the pathogenicity of novel variants in Chinese patients with Charcot–Marie–Tooth disease. Methods Multiplex ligation‐dependent probe amplification (MLPA) and whole‐exome sequencing (WES) were performed in 30 unrelated CMT patients. Minigene assay was used to verify the effect of a novel splicing variant (c.694+1G>A) on pre‐mRNA. Primary fibroblast cell lines were established from skin biopsies to characterize the biological effects of the novel variants p.L26R and p.S169fs. The mitochondrial structure was observed by an electron microscope. The expression level of protein was analyzed by Western Blotting. Mitochondrial dynamics and mitochondrial membrane potential (MMP, Δψm) were analyzed via immunofluorescence study. Mitochondrial ATP levels were analyzed via bioluminescence assay. The rate of oxygen consumption was measured with a Seahorse Bioscience XF‐96 extracellular flux analyzer. Results We identified 10 pathogenic variants in three known CMT related genes, including three novel variants (p.L26R, p.S169fs, c.694+1G>A) and one known pathogenic variant (p.R120W) in GDAP1. Further, we described the clinical features of patients carrying pathogenic variants in GDAP1 and found that almost all Chinese CMT patients with GDAP1 variants present axonal type. The effect of c.694+1G>A on pre‐mRNA was verified via minigene splice assay. Cellular biological effects showed ultrastructure damage of mitochondrial, reduced protein levels, different patterns of mitochondrial dynamics, decreased mitochondrial membrane potential (Δψm), ATP content, and defects in respiratory capacity in the patient carrying p.L26R and p.S169fs in GDAP1. Interpretation Our results broaden the genetic spectrum of GDAP1 and provided functional evidence for mitochondrial pathways in the pathogenesis of GDAP1 variants.
Collapse
Affiliation(s)
- Cong-Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jia-Qi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ge Bai
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Chapman J, Ng YS, Nicholls TJ. The Maintenance of Mitochondrial DNA Integrity and Dynamics by Mitochondrial Membranes. Life (Basel) 2020; 10:life10090164. [PMID: 32858900 PMCID: PMC7555930 DOI: 10.3390/life10090164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are complex organelles that harbour their own genome. Mitochondrial DNA (mtDNA) exists in the form of a circular double-stranded DNA molecule that must be replicated, segregated and distributed around the mitochondrial network. Human cells typically possess between a few hundred and several thousand copies of the mitochondrial genome, located within the mitochondrial matrix in close association with the cristae ultrastructure. The organisation of mtDNA around the mitochondrial network requires mitochondria to be dynamic and undergo both fission and fusion events in coordination with the modulation of cristae architecture. The dysregulation of these processes has profound effects upon mtDNA replication, manifesting as a loss of mtDNA integrity and copy number, and upon the subsequent distribution of mtDNA around the mitochondrial network. Mutations within genes involved in mitochondrial dynamics or cristae modulation cause a wide range of neurological disorders frequently associated with defects in mtDNA maintenance. This review aims to provide an understanding of the biological mechanisms that link mitochondrial dynamics and mtDNA integrity, as well as examine the interplay that occurs between mtDNA, mitochondrial dynamics and cristae structure.
Collapse
Affiliation(s)
- James Chapman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (J.C.); (T.J.N.)
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (J.C.); (T.J.N.)
| |
Collapse
|
12
|
Nolano M, Provitera V. Vascular bed and nerve vessels in the skin biopsy: Beyond intraepidermal nerve fibers. Muscle Nerve 2020; 62:427-429. [PMID: 32657423 DOI: 10.1002/mus.27019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Nolano
- Scientific Institute for Research and Health Care - IRCCS, Maugeri Scientific Clinical Institutes, Pavia, Italy.,Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Provitera
- Scientific Institute for Research and Health Care - IRCCS, Maugeri Scientific Clinical Institutes, Pavia, Italy
| |
Collapse
|
13
|
Whole exome sequencing reveals a broader variant spectrum of Charcot-Marie-Tooth disease type 2. Neurogenetics 2019; 21:79-86. [PMID: 31832804 DOI: 10.1007/s10048-019-00591-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous inherited neuropathy. Although new causative and disease-associated genes have been identified for CMT2 in recent years, molecular diagnoses are still lacking for a majority of patients. We here studied a cohort of 35 CMT2 patients of Chinese descent, using whole exome sequencing to investigate gene mutations and then explored relationships among genotypes, clinical features, and mitochondrial DNA levels in blood as assessed by droplet digital PCR. We identified pathogenic variants in 57% of CMT2 patients. The most common genetic causes in the cohort were MFN2 mutations. Two patients with typical CMT phenotype and neuromyotonia were detected to harbor compound heterozygous variations in the HINT1 gene. In conclusion, our work supports that the molecular diagnostic rate of CMT2 patients can be increased via whole exome sequencing, and our data suggest that assessment of possible HINT1 mutations should be undertaken for CMT2 patients with neuromyotonia.
Collapse
|
14
|
Novel GDAP1 Mutation in a Vietnamese Family with Charcot-Marie-Tooth Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7132494. [PMID: 31179332 PMCID: PMC6507255 DOI: 10.1155/2019/7132494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 04/14/2019] [Indexed: 01/09/2023]
Abstract
Background Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth (CMT) disease and over 80 different mutations have been identified so far. This study analyzed the clinical and genetic characteristics of a Vietnamese CMT family that was affected by a novel GDAP1 mutation. Methods We present three children of a family with progressive weakness, mild sensory loss, and absent tendon reflexes. Electrodiagnostic analyses displayed an axonal type of neuropathy in affected patients. Sequencing of GDAP1 gene was requested for all members of the family. Results All affected individuals manifested identical clinical symptoms of motor and sensory impairments within the first three years of life, and nerve conduction study indicated the axonal degeneration. A homozygous GDAP1 variant (c.667_671dup) was found in the three affected children as recessive inheritance pattern. The mutation leads to a premature termination codon that shortens GDAP1 protein (p.Gln224Hisfs∗37). Further testing showed heterozygous c.667_671dup variant in the parents. Discussion Our study expands the mutational spectrum of GDAP1-related CMT disease with the new and unreported GDAP1 variant. Alterations in GDAP1 gene should be evaluated as CMT causing variants in the Vietnamese population, predominantly axonal form of neuropathy in CMT disease.
Collapse
|
15
|
de Anda‐Jáuregui G, McGregor BA, Guo K, Hur J. A Network Pharmacology Approach for the Identification of Common Mechanisms of Drug-Induced Peripheral Neuropathy. CPT Pharmacometrics Syst Pharmacol 2019; 8:211-219. [PMID: 30762308 PMCID: PMC6482281 DOI: 10.1002/psp4.12383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023] Open
Abstract
Drug-induced peripheral neuropathy is a side effect of a variety of therapeutic agents that can affect therapeutic adherence and lead to regimen modifications, impacting patient quality of life. The molecular mechanisms involved in the development of this condition have yet to be completely described in the literature. We used a computational network pharmacology approach to explore the Connectivity Map, a large collection of transcriptional profiles from drug perturbation experiments to identify common genes affected by peripheral neuropathy-inducing drugs. Consensus profiles for 98 of these drugs were used to construct a drug-gene perturbation network. We identified 27 genes significantly associated with neuropathy-inducing drugs. These genes may have a potential role in the action of neuropathy-inducing drugs. Our results suggest that molecular mechanisms, including alterations in mitochondrial function, microtubule and cytoskeleton function, ion channels, transcriptional regulation including epigenetic mechanisms, signal transduction, and wound healing, may play a critical role in drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Guillermo de Anda‐Jáuregui
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
- Present address:
Computational Genomics DivisionNational Institute of Genomic MedicineColonia Arenal TepepanDelegación TlalpanMéxico DFMexico
| | - Brett A. McGregor
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Kai Guo
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Junguk Hur
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
16
|
Pakhrin PS, Xie Y, Hu Z, Li X, Liu L, Huang S, Wang B, Yang Z, Zhang J, Liu X, Xia K, Tang B, Zhang R. Genotype–phenotype correlation and frequency of distribution in a cohort of Chinese Charcot–Marie–Tooth patients associated with GDAP1 mutations. J Neurol 2018; 265:637-646. [DOI: 10.1007/s00415-018-8743-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/13/2017] [Accepted: 01/07/2018] [Indexed: 01/08/2023]
|
17
|
Similar clinical, pathological, and genetic features in Chinese patients with autosomal recessive and dominant Charcot–Marie–Tooth disease type 2K. Neuromuscul Disord 2017; 27:760-765. [DOI: 10.1016/j.nmd.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/24/2017] [Accepted: 04/04/2017] [Indexed: 11/22/2022]
|
18
|
Sivera R, Frasquet M, Lupo V, García-Sobrino T, Blanco-Arias P, Pardo J, Fernández-Torrón R, de Munain AL, Márquez-Infante C, Villarreal L, Carbonell P, Rojas-García R, Segovia S, Illa I, Frongia AL, Nascimento A, Ortez C, García-Romero MDM, Pascual SI, Pelayo-Negro AL, Berciano J, Guerrero A, Casasnovas C, Camacho A, Esteban J, Chumillas MJ, Barreiro M, Díaz C, Palau F, Vílchez JJ, Espinós C, Sevilla T. Distribution and genotype-phenotype correlation of GDAP1 mutations in Spain. Sci Rep 2017; 7:6677. [PMID: 28751717 PMCID: PMC5532232 DOI: 10.1038/s41598-017-06894-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Mutations in the GDAP1 gene can cause Charcot-Marie-Tooth disease. These mutations are quite rare in most Western countries but not so in certain regions of Spain or other Mediterranean countries. This cross-sectional retrospective multicenter study analyzed the clinical and genetic characteristics of patients with GDAP1 mutations across Spain. 99 patients were identified, which were distributed across most of Spain, but especially in the Northwest and Mediterranean regions. The most common genotypes were p.R120W (in 81% of patients with autosomal dominant inheritance) and p.Q163X (in 73% of autosomal recessive patients). Patients with recessively inherited mutations had a more severe phenotype, and certain clinical features, like dysphonia or respiratory dysfunction, were exclusively detected in this group. Dominantly inherited mutations had prominent clinical variability regarding severity, including 29% of patients who were asymptomatic. There were minor clinical differences between patients harboring specific mutations but not when grouped according to localization or type of mutation. This is the largest clinical series to date of patients with GDAP1 mutations, and it contributes to define the genetic distribution and genotype-phenotype correlation in this rare form of CMT.
Collapse
Affiliation(s)
- Rafael Sivera
- Department of Neurology, Hospital Francesc de Borja, Gandía, Spain.
| | - Marina Frasquet
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain.,Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders and Service of Genomics and Traslational Geneticis, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | - Patricia Blanco-Arias
- Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain
| | - Julio Pardo
- Department of Neurology, Hospital Clínico, Santiago de Compostela, Spain
| | - Roberto Fernández-Torrón
- Neuromuscular Disorders Unit, Neurology Department, Hospital Donostia, San Sebastián, Spain.,The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Disorders Unit, Neurology Department, Hospital Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Neurosciences, School of Medicine, University of the Basque Country (EHU-UPV), San Sebastián, Spain
| | - Celedonio Márquez-Infante
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Liliana Villarreal
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pilar Carbonell
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Ricard Rojas-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sonia Segovia
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain
| | - Isabel Illa
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Lia Frongia
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundacion Sant Joan de Deu, Barcelona, Spain
| | - Andrés Nascimento
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundacion Sant Joan de Deu, Barcelona, Spain
| | - Carlos Ortez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundacion Sant Joan de Deu, Barcelona, Spain
| | | | - Samuel Ignacio Pascual
- Neuropaediatrics Department, Hospital la Paz, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Lara Pelayo-Negro
- Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", Santander, Spain.,University of Cantabria (UC), Santander, Spain
| | - José Berciano
- Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Instituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", Santander, Spain.,University of Cantabria (UC), Santander, Spain
| | - Antonio Guerrero
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Clínico San Carlos, Madrid, Spain
| | - Carlos Casasnovas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari de Bellvitge - IDIBELL, Barcelona, Spain
| | - Ana Camacho
- Child Neurology Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jesús Esteban
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Neurology, Hospital Ruber Internacional, Madrid, Spain
| | - María José Chumillas
- Department of Neurophysiology, Hospital Universitari I Politécnic La Fe, Valencia, Spain
| | - Marisa Barreiro
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
| | - Carmen Díaz
- Department of Neurology, Hospital General de Alicante, Alicante, Spain
| | - Francesc Palau
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Institut de Recerca Sant Joan de Déu and Hospital Sant Joan de Déu, Barcelona, Spain.,Hospital Clínic, Barcelona, Spain.,Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Juan Jesús Vílchez
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain.,Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders and Service of Genomics and Traslational Geneticis, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Teresa Sevilla
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain.,Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Intituto Carlos III, Ministry of Economy and Competitiviness, Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|