1
|
Trucco F, Davies M, Zambon AA, Ridout D, Abel F, Muntoni F. Definition of diaphragmatic sleep disordered breathing and clinical meaning in Duchenne muscular dystrophy. Thorax 2024; 79:652-661. [PMID: 38729626 DOI: 10.1136/thorax-2023-220729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Diaphragmatic sleep disordered breathing (dSDB) has been recently identified as sleep dysfunction secondary to diaphragmatic weakness in Duchenne muscular dystrophy (DMD). However, scoring criteria for the identification of dSDB are missing.This study aimed to define and validate dSDB scoring criteria and to evaluate whether dSDB severity correlates with respiratory progression in DMD. METHODS Scoring criteria for diaphragmatic apnoea (dA) and hypopnoeas (dH) have been defined by the authors considering the pattern observed on cardiorespiratory polygraphy (CR) and the dSDB pathophysiology.10 sleep professionals (physiologists, consultants) blinded to each other were involved in a two-round Delphi survey to rate each item of the proposed dSDB criteria (Likert scale 1-5) and to recognise dSDB among other SDB. The scorers' accuracy was tested against the authors' panel.Finally, CR previously conducted in DMD in clinical setting were rescored and diaphragmatic Apnoea-Hypopnoea Index (dAHI) was derived. Pulmonary function (forced vital capacity per cent of predicted, FVC%pred), overnight oxygen saturation (SpO2) and transcutaneous carbon dioxide (tcCO2) were correlated with dAHI. RESULTS After the second round of Delphi, raters deemed each item of dA and dH criteria as relevant as 4 or 5. The agreement with the panel in recognising dSDB was 81%, kappa 0.71, sensitivity 77% and specificity 85%.32 CRs from DMD patients were reviewed. dSDB was previously scored as obstructive. The dAHI negatively correlated with FVC%pred (r=-0.4; p<0.05). The total number of dA correlated with mean overnight tcCO2 (r 0.4; p<0.05). CONCLUSIONS dSDB is a newly defined sleep disorder that correlates with DMD progression. A prospective study to evaluate dSDB as a respiratory measure for DMD in clinical and research settings is planned.
Collapse
Affiliation(s)
- Federica Trucco
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
- Paediatric Respiratory Department, Royal Brompton Hospital, Guy's and St Thomas' Trust, London, UK
- Paediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Matthew Davies
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK
| | - Alberto Andrea Zambon
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Deborah Ridout
- Population Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Francois Abel
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
2
|
Fabian L, Karimi E, Farman GP, Gohlke J, Ottenheijm CAC, Granzier HL, Dowling JJ. Comprehensive phenotypic characterization of an allelic series of zebrafish models of NEB-related nemaline myopathy. Hum Mol Genet 2024; 33:1036-1054. [PMID: 38493359 PMCID: PMC11153343 DOI: 10.1093/hmg/ddae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Center (location VUMC), De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Hendrikus L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Division of Neurology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Song T, McNamara JW, Baby A, Ma W, Landim-Vieira M, Natesan S, Pinto JR, Lorenz JN, Irving TC, Sadayappan S. Unlocking the Role of sMyBP-C: A Key Player in Skeletal Muscle Development and Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563591. [PMID: 38076858 PMCID: PMC10705270 DOI: 10.1101/2023.10.23.563591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Skeletal muscle is the largest organ in the body, responsible for gross movement and metabolic regulation. Recently, variants in the MYBPC1 gene have been implicated in a variety of developmental muscle diseases, such as distal arthrogryposis. How MYBPC1 variants cause disease is not well understood. Here, through a collection of novel gene-edited mouse models, we define a critical role for slow myosin binding protein-C (sMyBP-C), encoded by MYBPC1, across muscle development, growth, and maintenance during prenatal, perinatal, postnatal and adult stages. Specifically, Mybpc1 knockout mice exhibited early postnatal lethality and impaired skeletal muscle formation and structure, skeletal deformity, and respiratory failure. Moreover, a conditional knockout of Mybpc1 in perinatal, postnatal and adult stages demonstrates impaired postnatal muscle growth and function secondary to disrupted actomyosin interaction and sarcomere structural integrity. These findings confirm the essential role of sMyBP-C in skeletal muscle and reveal specific functions in both prenatal embryonic musculoskeletal development and postnatal muscle growth and function.
Collapse
Affiliation(s)
- Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James W. McNamara
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - John N. Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Casey JG, Kim ES, Joseph R, Li F, Granzier H, Gupta VA. NRAP reduction rescues sarcomere defects in nebulin-related nemaline myopathy. Hum Mol Genet 2023; 32:1711-1721. [PMID: 36661122 PMCID: PMC10162428 DOI: 10.1093/hmg/ddad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Nemaline myopathy (NM) is a rare neuromuscular disorder associated with congenital or childhood-onset of skeletal muscle weakness and hypotonia, which results in limited motor function. NM is a genetic disorder and mutations in 12 genes are known to contribute to autosomal dominant or recessive forms of the disease. Recessive mutations in nebulin (NEB) are the most common cause of NM affecting about 50% of patients. Because of the large size of the NEB gene and lack of mutational hot spots, developing therapies that can benefit a wide group of patients is challenging. Although there are several promising therapies under investigation, there is no cure for NM. Therefore, targeting disease modifiers that can stabilize or improve skeletal muscle function may represent alternative therapeutic strategies. Our studies have identified Nrap upregulation in nebulin deficiency that contributes to structural and functional deficits in NM. We show that genetic ablation of nrap in nebulin deficiency restored sarcomeric disorganization, reduced protein aggregates and improved skeletal muscle function in zebrafish. Our findings suggest that Nrap is a disease modifier that affects skeletal muscle structure and function in NM; thus, therapeutic targeting of Nrap in nebulin-related NM and related diseases may be beneficial for patients.
Collapse
Affiliation(s)
- Jennifer G Casey
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Euri S Kim
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Remi Joseph
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization. Int J Mol Sci 2022; 23:ijms231911995. [PMID: 36233295 PMCID: PMC9569467 DOI: 10.3390/ijms231911995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the “typical” form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.
Collapse
|
6
|
Gohlke J, Tonino P, Lindqvist J, Smith JE, Granzier H. The number of Z-repeats and super-repeats in nebulin greatly varies across vertebrates and scales with animal size. J Gen Physiol 2020; 153:211611. [PMID: 33337482 PMCID: PMC7754682 DOI: 10.1085/jgp.202012783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Nebulin is a skeletal muscle protein that associates with the sarcomeric thin filaments and has functions in regulating the length of the thin filament and the structure of the Z-disk. Here we investigated the nebulin gene in 53 species of birds, fish, amphibians, reptiles, and mammals. In all species, nebulin has a similar domain composition that mostly consists of ∼30-residue modules (or simple repeats), each containing an actin-binding site. All species have a large region where simple repeats are organized into seven-module super-repeats, each containing a tropomyosin binding site. The number of super-repeats shows high interspecies variation, ranging from 21 (zebrafish, hummingbird) to 31 (camel, chimpanzee), and, importantly, scales with body size. The higher number of super-repeats in large animals was shown to increase thin filament length, which is expected to increase the sarcomere length for optimal force production, increase the energy efficiency of isometric force production, and lower the shortening velocity of muscle. It has been known since the work of A.V. Hill in 1950 that as species increase in size, the shortening velocity of their muscle is reduced, and the present work shows that nebulin contributes to the mechanistic basis. Finally, we analyzed the differentially spliced simple repeats in nebulin's C terminus, whose inclusion correlates with the width of the Z-disk. The number of Z-repeats greatly varies (from 5 to 18) and correlates with the number of super-repeats. We propose that the resulting increase in the width of the Z-disk in large animals increases the number of contacts between nebulin and structural Z-disk proteins when the Z-disk is stressed for long durations.
Collapse
Affiliation(s)
- Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
7
|
Muniz MMM, Fonseca LFS, Dos Santos Silva DB, de Oliveira HR, Baldi F, Chardulo AL, Ferro JA, Cánovas A, de Albuquerque LG. Identification of novel mRNA isoforms associated with meat tenderness using RNA sequencing data in beef cattle. Meat Sci 2020; 173:108378. [PMID: 33248741 DOI: 10.1016/j.meatsci.2020.108378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
The Warner-Bratzler shear force (WBSF) and myofibrillar fragmentation index (MFI) are complementary methodologies used to measure beef tenderness. Longissimus thoracis samples from the 20 most extreme bulls (out of 80 bulls set) for WBSF (tender (n = 10) and tough (n = 10)) and MFI (high (n = 10) and low (n = 10)) traits were collected to perform transcriptomic analysis using RNA-Sequencing. All analysis were performed through CLC Genomics Workbench. A total of 39 and 27 transcripts for WBSF and MFI phenotypes were DE, respectively. The possible DE novel mRNA isoforms, for WBSF and MFI traits, are myosin encoders (e.g. MYL1 and MYL6). In addition, we identified potential mRNA isoforms related to genes affecting the speed fibers degradation during the meat aging process. The DE novel transcripts are transcripted by genes with biological functions related to oxidative process, energy production and striated muscle contraction. The results suggest that the identified mRNA isoforms could be used as potential candidate to select animals in order to improve meat tenderness.
Collapse
Affiliation(s)
- Maria Malane Magalhães Muniz
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | | | | | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Artur Loyola Chardulo
- National Council for Scientific and Technological Development (CNPq), Brazil; São Paulo State University (Unesp), College of Veterinary and Animal Science, Botucatu, SP, Brazil
| | - Jesus Aparecido Ferro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil.
| |
Collapse
|
8
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
9
|
Lindqvist J, Lee EJ, Karimi E, Kolb J, Granzier H. Omecamtiv mecarbil lowers the contractile deficit in a mouse model of nebulin-based nemaline myopathy. PLoS One 2019; 14:e0224467. [PMID: 31721788 PMCID: PMC6853306 DOI: 10.1371/journal.pone.0224467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023] Open
Abstract
Nemaline myopathy (NEM) is a congenital neuromuscular disorder primarily caused by nebulin gene (NEB) mutations. NEM is characterized by muscle weakness for which currently no treatments exist. In NEM patients a predominance of type I fibers has been found. Thus, therapeutic options targeting type I fibers could be highly beneficial for NEM patients. Because type I muscle fibers express the same myosin isoform as cardiac muscle (Myh7), the effect of omecamtiv mecarbil (OM), a small molecule activator of Myh7, was studied in a nebulin-based NEM mouse model (Neb cKO). Skinned single fibers were activated by exogenous calcium and force was measured at a wide range of calcium concentrations. Maximal specific force of type I fibers was much less in fibers from Neb cKO animals and calcium sensitivity of permeabilized single fibers was reduced (pCa50 6.12 ±0.08 (cKO) vs 6.36 ±0.08 (CON)). OM increased the calcium sensitivity of type I single muscle fibers. The greatest effect occurred in type I fibers from Neb cKO muscle where OM restored the calcium sensitivity to that of the control type I fibers. Forces at submaximal activation levels (pCa 6.0–6.5) were significantly increased in Neb cKO fibers (~50%) but remained below that of control fibers. OM also increased isometric force and power during isotonic shortening of intact whole soleus muscle of Neb cKO mice, with the largest effects at physiological stimulation frequencies. We conclude that OM has the potential to improve the quality of life of NEM patients by increasing the force of type I fibers at submaximal activation levels.
Collapse
Affiliation(s)
- Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
10
|
Lee EJ, Kolb J, Hwee DT, Malik FI, Granzier HL. Functional Characterization of the Intact Diaphragm in a Nebulin-Based Nemaline Myopathy (NM) Model-Effects of the Fast Skeletal Muscle Troponin Activator tirasemtiv. Int J Mol Sci 2019; 20:E5008. [PMID: 31658633 PMCID: PMC6829460 DOI: 10.3390/ijms20205008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023] Open
Abstract
Respiratory failure due to diaphragm dysfunction is considered a main cause of death in nemaline myopathy (NM) and we studied both isometric force and isotonic shortening of diaphragm muscle in a mouse model of nebulin-based NM (Neb cKO). A large contractile deficit was found in nebulin-deficient intact muscle that is frequency dependent, with the largest deficits at low-intermediate stimulation frequencies (e.g., a deficit of 72% at a stimulation frequency of 20 Hz). The effect of the fast skeletal muscle troponin activator (FSTA) tirasemtiv on force was examined. Tirasemtiv had a negligible effect at maximal stimulation frequencies, but greatly reduced the force deficit of the diaphragm at sub-maximal stimulation levels with an effect that was largest in Neb cKO diaphragm. As a result, the force deficit of Neb cKO diaphragm fell (from 72% to 29% at 20 Hz). Similar effects were found in in vivo experiments on the nerve-stimulated gastrocnemius muscle complex. Load-clamp experiments on diaphragm muscle showed that tirasemtiv increased the shortening velocity, and reduced the deficit in mechanical power by 33%. Thus, tirasemtiv significantly improves muscle function in a mouse model of nebulin-based nemaline myopathy.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Darren T Hwee
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA.
| | - Fady I Malik
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA.
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
- Medical Research Building, RM 325, 1656 E Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
11
|
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil 2019; 40:111-126. [PMID: 31228046 PMCID: PMC6726674 DOI: 10.1007/s10974-019-09519-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK. .,Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Jenni M Laitila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Cheng AJ, Neyroud D, Kayser B, Westerblad H, Place N. Intramuscular Contributions to Low-Frequency Force Potentiation Induced by a High-Frequency Conditioning Stimulation. Front Physiol 2017; 8:712. [PMID: 28979214 PMCID: PMC5611669 DOI: 10.3389/fphys.2017.00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 11/13/2022] Open
Abstract
Electrically-evoked low-frequency (submaximal) force is increased immediately following high-frequency stimulation in human skeletal muscle. Although central mechanisms have been suggested to be the major cause of this low-frequency force potentiation, intramuscular factors might contribute. Thus, we hypothesized that two intramuscular Ca2+-dependent mechanisms can contribute to the low-frequency force potentiation: increased sarcoplasmic reticulum Ca2+ release and increased myofibrillar Ca2+ sensitivity. Experiments in humans were performed on the plantar flexor muscles at a shortened, intermediate, and long muscle length and electrically evoked contractile force and membrane excitability (i.e., M-wave amplitude) were recorded during a stimulation protocol. Low-frequency force potentiation was assessed by stimulating with a low-frequency tetanus (25 Hz, 2 s duration), followed by a high-frequency tetanus (100 Hz, 2 s duration), and finally followed by another low-frequency (25 Hz, 2 s duration) tetanus. Similar stimulation protocols were performed on intact mouse single fibers from flexor digitorum brevis muscle, whereby force and myoplasmic free [Ca2+] ([Ca2+]i) were assessed. Our data show a low-frequency force potentiation that was not muscle length-dependent in human muscle and it was not accompanied by any increase in M-wave amplitude. A length-independent low-frequency force potentiation could be replicated in mouse single fibers, supporting an intramuscular mechanism. We show that at physiological temperature (31°C) this low-frequency force potentiation in mouse fibers corresponded with an increase in sarcoplasmic reticulum (SR) Ca2+ release. When mimicking the slower contractile properties of human muscle by cooling mouse single fibers to 18°C, the low-frequency force potentiation was accompanied by minimally increased SR Ca2+ release and hence it could be explained by increased myofibrillar Ca2+ sensitivity. Finally, introducing a brief 200 ms pause between the high- and low-frequency tetanus in human and mouse muscle revealed that the low-frequency force potentiation is abolished, arguing that increased myofibrillar Ca2+ sensitivity is the main intramuscular mechanism underlying the low-frequency force potentiation in humans.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden
| | - Daria Neyroud
- Faculty of Biology-Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland.,Department of Physical Therapy, University of Florida Health Science CenterGainesville, FL, United States
| | - Bengt Kayser
- Faculty of Biology-Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden
| | - Nicolas Place
- Faculty of Biology-Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland
| |
Collapse
|