1
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
2
|
DNA2 mutation causing multisystemic disorder with impaired mitochondrial DNA maintenance. J Hum Genet 2022; 67:691-699. [PMID: 36064591 DOI: 10.1038/s10038-022-01075-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To describe a novel DNA2 variant contributing to defects in mtDNA maintenance and mtDNA depletion syndrome (MDS), and the clinical and histological findings associated with this variation. METHODS Herein, we describe the case of a patient who presented with hearing loss and myopathy, given the family history of similar findings in the father, was evaluated by sequencing of the deafness gene panel, mitochondrial genome, and the exome. Furthermore, tissue staining, mtDNA copy number detection, mtDNA sequencing, and long-range polymerase chain reaction tests were also conducted on the muscle biopsy specimen. In vitro experiments, including analyses of the mtDNA copy number; levels of ATP, ATPase, and reactive oxygen species (ROS); and the membrane potential, were performed. RESULTS The DNA2 heterozygous truncating variant c. 2368C > T (p.Q790X) was identified and verified as the cause of an mtDNA copy number decrement in both functional experiments and muscle tissue analyses. These changes were accompanied by reductions in ATP, ATPase, and ROS levels. CONCLUSION The DNA2 variant was a likely cause of MDS in this patient. These findings expand the mutational spectrum of MDS and improve our understanding of the functions of DNA2 by revealing its novel role in mtDNA maintenance.
Collapse
|
3
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
4
|
Zheng L, Meng Y, Campbell JL, Shen B. Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 2020; 48:16-35. [PMID: 31754720 PMCID: PMC6943134 DOI: 10.1093/nar/gkz1101] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
DNA2 nuclease/helicase is a structure-specific nuclease, 5'-to-3' helicase, and DNA-dependent ATPase. It is involved in multiple DNA metabolic pathways, including Okazaki fragment maturation, replication of 'difficult-to-replicate' DNA regions, end resection, stalled replication fork processing, and mitochondrial genome maintenance. The participation of DNA2 in these different pathways is regulated by its interactions with distinct groups of DNA replication and repair proteins and by post-translational modifications. These regulatory mechanisms induce its recruitment to specific DNA replication or repair complexes, such as DNA replication and end resection machinery, and stimulate its efficient cleavage of various structures, for example, to remove RNA primers or to produce 3' overhangs at telomeres or double-strand breaks. Through these versatile activities at replication forks and DNA damage sites, DNA2 functions as both a tumor suppressor and promoter. In normal cells, it suppresses tumorigenesis by maintaining the genomic integrity. Thus, DNA2 mutations or functional deficiency may lead to cancer initiation. However, DNA2 may also function as a tumor promoter, supporting cancer cell survival by counteracting replication stress. Therefore, it may serve as an ideal target to sensitize advanced DNA2-overexpressing cancers to current chemo- and radiotherapy regimens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
5
|
González-Del Angel A, Bisciglia M, Vargas-Cañas S, Fernandez-Valverde F, Kazakova E, Escobar RE, Romero NB, Jardel C, Rucheton B, Stojkovic T, Malfatti E. Novel Phenotypes and Cardiac Involvement Associated With DNA2 Genetic Variants. Front Neurol 2019; 10:1049. [PMID: 31636600 PMCID: PMC6787284 DOI: 10.3389/fneur.2019.01049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives: To report two novel DNA2 gene mutations causing early onset myopathy with cardiac involvement and late onset mitochondriopathy with rhabdomyolysis. Methods: We performed detailed clinical, muscle histopathology and molecular studies including mitochondrial gene NGS analysis in two patients (Patient 1 and 2), a mother and her son, belonging to a Mexican family, and a third sporadic French patient. Results: Patient 1 and 2 presented with an early onset myopathy associated with ptosis, velopharyngeal weakness, and cardiac involvement. Patient 3 presented rhabdomyolysis unmasking a mitochondrial disease characterized by a sensorineural hearing loss, ptosis, and lipomas. Muscle biopsies performed in all patients showed variable mitochondrial alterations. Patient 3 had multiple mtDNA deletion in his muscle. Genetic studies revealed a novel heterozygous frameshift mutation in DNA2 gene (c.2346delT p.Phe782Leufs*3) in P1 and P2, and a novel heterozygous missense mutation in DNA2 gene (c.578T>C p.Leu193Ser) in the P3. Conclusions: To date only few AD cases presenting either missense or truncating DNA2 variants have been reported. None of them presented with a cardiac involvement or rhabdomyolysis. Here we enlarge the genetic and phenotypic spectrum of DNA2-related mitochondrial disorders.
Collapse
Affiliation(s)
- Ariadna González-Del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Michela Bisciglia
- AP-HP, GHU La Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - Steven Vargas-Cañas
- Instituto Nacional de Neurologia y Neurochirurgia, Mexico City, Mexico.,Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Francisca Fernandez-Valverde
- Instituto Nacional de Neurologia y Neurochirurgia, Mexico City, Mexico.,Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ekaterina Kazakova
- Cedimemm: Centro de Diagnóstico en Metabolismo Energético y Medicina Mitocondrial, Mexico City, Mexico
| | - Rosa Elena Escobar
- Unit of Muscle Dystrophies, Instituto Nacional de Rehabilitacion (INR), Mexico City, Mexico
| | - Norma B Romero
- AP-HP, GHU La Pitié-Salpêtrière, Institut de Myologie, Paris, France.,Instituto Nacional de Neurologia y Neurochirurgia, Mexico City, Mexico.,Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.,Cedimemm: Centro de Diagnóstico en Metabolismo Energético y Medicina Mitocondrial, Mexico City, Mexico.,Unit of Muscle Dystrophies, Instituto Nacional de Rehabilitacion (INR), Mexico City, Mexico.,Sorbonne Université, INSERM, Centre de Recherches, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, GHU Pitié-Salpêtrière, Paris, France
| | - Claude Jardel
- AP-HP, GHU La Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| | - Benoit Rucheton
- AP-HP, GHU La Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| | - Tanya Stojkovic
- AP-HP, GHU La Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - Edoardo Malfatti
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaire Paris-Nord, CHU Raymond-Poincaré, Garches, France.,U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, UFR des Sciences de la santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, France
| |
Collapse
|
6
|
Ronchi D, Liu C, Caporali L, Piga D, Li H, Tagliavini F, Valentino ML, Ferrò MT, Bini P, Zheng L, Carelli V, Shen B, Comi GP. Novel mutations in DNA2 associated with myopathy and mtDNA instability. Ann Clin Transl Neurol 2019; 6:1893-1899. [PMID: 31478350 PMCID: PMC6764641 DOI: 10.1002/acn3.50888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/03/2023] Open
Abstract
The maintenance of mitochondrial DNA (mtDNA) relies on proteins encoded by nuclear genes. Mutations in their coding sequences result in heterogenous clinical presentations featuring mtDNA instability in affected tissues. DNA2 is a multi-catalytic protein involved in the removal of single strand DNA during mtDNA replication or Long Patch Base Excision Repair pathway. We have previously described DNA2 mutations in adult patients affected with familial and sporadic forms of mitochondrial myopathy. Here we describe four novel probands presenting with limb weakness associated with novel DNA2 molecular defects. Biochemical assays were established to investigate the functional effects of these variants.
Collapse
Affiliation(s)
- Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Leonardo Caporali
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Daniela Piga
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Hongzhi Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Francesca Tagliavini
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria Lucia Valentino
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | | | - Paola Bini
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Valerio Carelli
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neuroscience, Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| |
Collapse
|
7
|
Tarnauskaitė Ž, Bicknell LS, Marsh JA, Murray JE, Parry DA, Logan CV, Bober MB, de Silva DC, Duker AL, Sillence D, Wise C, Jackson AP, Murina O, Reijns MAM. Biallelic variants in DNA2 cause microcephalic primordial dwarfism. Hum Mutat 2019; 40:1063-1070. [PMID: 31045292 PMCID: PMC6773220 DOI: 10.1002/humu.23776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/15/2019] [Accepted: 04/28/2019] [Indexed: 11/11/2022]
Abstract
Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.
Collapse
Affiliation(s)
- Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Louise S. Bicknell
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Jennie E. Murray
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - David A. Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Clare V. Logan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael B. Bober
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - Deepthi C. de Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaColomboSri Lanka
| | - Angela L. Duker
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - David Sillence
- Discipline of Genomic Medicine, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Western Sydney Genetics ProgramSydney Children's Hospitals NetworkWestmeadAustralia
| | - Carol Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal ResearchTexas Scottish, Rite Hospital for ChildrenDallasTexas
- McDermott Center for Human Growth and DevelopmentUniversity of Texas, Southwestern Medical CenterDallasTexas
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexas
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Andrew P. Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Olga Murina
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Martin A. M. Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
8
|
Khodour Y, Kaguni LS, Stiban J. Iron-sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. Enzymes 2019; 45:225-256. [PMID: 31627878 DOI: 10.1016/bs.enz.2019.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite their relative simplicity, iron-sulfur clusters have been omnipresent as cofactors in myriad cellular processes such as oxidative phosphorylation and other respiratory pathways. Recent research advances confirm the presence of different clusters in enzymes involved in nucleic acid metabolism. Iron-sulfur clusters can therefore be considered hallmarks of cellular metabolism. Helicases, nucleases, glycosylases, DNA polymerases and transcription factors, among others, incorporate various types of clusters that serve differing roles. In this chapter, we review our current understanding of the identity and functions of iron-sulfur clusters in DNA and RNA metabolizing enzymes, highlighting their importance as regulators of cellular function.
Collapse
Affiliation(s)
- Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
9
|
Mitochondrial DNA replication: clinical syndromes. Essays Biochem 2018; 62:297-308. [PMID: 29950321 DOI: 10.1042/ebc20170101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/17/2018] [Accepted: 05/23/2018] [Indexed: 02/08/2023]
Abstract
Each nucleated cell contains several hundreds of mitochondria, which are unique organelles in being under dual genome control. The mitochondria contain their own DNA, the mtDNA, but most of mitochondrial proteins are encoded by nuclear genes, including all the proteins required for replication, transcription, and repair of mtDNA. MtDNA replication is a continuous process that requires coordinated action of several enzymes that are part of the mtDNA replisome. It also requires constant supply of deoxyribonucleotide triphosphates(dNTPs) and interaction with other mitochondria for mixing and unifying the mitochondrial compartment. MtDNA maintenance defects are a growing list of disorders caused by defects in nuclear genes involved in different aspects of mtDNA replication. As a result of defects in these genes, mtDNA depletion and/or multiple mtDNA deletions develop in affected tissues resulting in variable manifestations that range from adult-onset mild disease to lethal presentation early in life.
Collapse
|