1
|
Toncheva D, Serbezov D, Karachanak-Yankova S, Nesheva D. Ancient mitochondrial DNA pathogenic variants putatively associated with mitochondrial disease. PLoS One 2020; 15:e0233666. [PMID: 32970680 PMCID: PMC7514063 DOI: 10.1371/journal.pone.0233666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA variants associated with diseases are widely studied in contemporary populations, but their prevalence has not yet been investigated in ancient populations. The publicly available AmtDB database contains 1443 ancient mtDNA Eurasian genomes from different periods. The objective of this study was to use this data to establish the presence of pathogenic mtDNA variants putatively associated with mitochondrial diseases in ancient populations. The clinical significance, pathogenicity prediction and contemporary frequency of mtDNA variants were determined using online platforms. The analyzed ancient mtDNAs contain six variants designated as being "confirmed pathogenic" in modern patients. The oldest of these, m.7510T>C in the MT-TS1 gene, was found in a sample from the Neolithic period, dated 5800-5400 BCE. All six have well established clinical association, and their pathogenic effect is corroborated by very low population frequencies in contemporary populations. Analysis of the geographic location of the ancient samples, contemporary epidemiological trends and probable haplogroup association indicate diverse spatiotemporal dynamics of these variants. The dynamics in the prevalence and distribution is conceivably result of de novo mutations or human migrations and subsequent evolutionary processes. In addition, ten variants designated as possibly or likely pathogenic were found, but the clinical effect of these is not yet well established and further research is warranted. All detected mutations putatively associated with mitochondrial disease in ancient mtDNA samples are in tRNA coding genes. Most of these mutations are in a mt-tRNA type (Model 2) that is characterized by loss of D-loop/T-loop interaction. Exposing pathogenic variants in ancient human populations expands our understanding of their origin and prevalence dynamics.
Collapse
Affiliation(s)
- Draga Toncheva
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
- Bulgarian Academy of Sciences–BAS, Sofia, Bulgaria
- * E-mail:
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Sena Karachanak-Yankova
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
- Department of Genetics, Faculty of biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Desislava Nesheva
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
| |
Collapse
|
2
|
Lim AZ, Blakely EL, Baty K, He L, Hopton S, Falkous G, McWilliam K, Cozens A, McFarland R, Taylor RW. A novel pathogenic m.4412G>A MT-TM mitochondrial DNA variant associated with childhood-onset seizures, myopathy and bilateral basal ganglia changes. Mitochondrion 2019; 47:18-23. [PMID: 31022467 PMCID: PMC6617384 DOI: 10.1016/j.mito.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/03/2022]
Abstract
Mitochondrial DNA variants in the MT-TM (mt-tRNAMet) gene are rare, typically associated with myopathic phenotypes. We identified a novel MT-TM variant resulting in prolonged seizures with childhood-onset myopathy, retinopathy, short stature and elevated CSF lactate associated with bilateral basal ganglia changes on neuroimaging. Muscle biopsy confirmed multiple respiratory chain deficiencies and focal cytochrome c oxidase (COX) histochemical abnormalities. Next-generation sequencing of the mitochondrial genome revealed a novel m.4412G>A variant at high heteroplasmy levels in muscle that fulfils all accepted criteria for pathogenicity including segregation within single muscle fibres, thus broadening the genotypic and phenotypic landscape of mitochondrial tRNA-related disease.
Collapse
Affiliation(s)
- Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Karen Baty
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
| | - Kenneth McWilliam
- Department of Paediatric Neurology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Alison Cozens
- Inherited Metabolic Disorders Scotland, NHS National Services Scotland, Glasgow G2 6QE, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
3
|
Ahuja AS. Understanding mitochondrial myopathies: a review. PeerJ 2018; 6:e4790. [PMID: 29844960 PMCID: PMC5967365 DOI: 10.7717/peerj.4790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA), or possibly in the nuclear DNA (nDNA). The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient's current abilities to move and function.
Collapse
Affiliation(s)
- Abhimanyu S Ahuja
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
4
|
Volobueva AS, Melnichenko AA, Grechko AV, Orekhov AN. Mitochondrial genome variability: the effect on cellular functional activity. Ther Clin Risk Manag 2018; 14:237-245. [PMID: 29467576 PMCID: PMC5811183 DOI: 10.2147/tcrm.s153895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are the key players in cell metabolism, calcium homeostasis, and reactive oxygen species (ROS) production. Mitochondrial genome alterations are reported to be associated with numerous human disorders affecting nearly all tissues. In this review, we discuss the available information on the involvement of mitochondrial DNA (mtDNA) mutations in cell dysfunction.
Collapse
Affiliation(s)
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| |
Collapse
|