1
|
Estévez-Arias B, Matalonga L, Martorell L, Codina A, Ortez C, Carrera-García L, Expósito-Escudero J, Yubero D, Hoenicka J, Jou C, Palau F, Beltran S, Lochmüller H, Töpf A, Nascimento A, Natera-de Benito D. Improving Diagnostic Precision: Phenotype-Driven Analysis Uncovers a Maternal Mosaicism in an Individual with RYR1-Congenital Myopathy. J Neuromuscul Dis 2024; 11:647-653. [PMID: 38489196 DOI: 10.3233/jnd-230216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Congenital myopathies (CMs) are rare genetic disorders for which the diagnostic yield does not typically exceed 60% . We performed deep phenotyping, histopathological studies, clinical exome and trio genome sequencing and a phenotype-driven analysis of the genomic data, that led to the molecular diagnosis in a child with CM. We identified a heterozygous variant in RYR1 in the affected child, inherited from her asymptomatic mother. Given the alignment of the clinical and histopathological phenotype with RYR1-CM, we considered the potential existence of a missing second variant in trans in the proband, but also hypothesized that the variant might be mosaic in the mother, as subsequently demonstrated. Our study is an example of how heterozygous variants inherited from asymptomatic parents are frequently dismissed. When the genotype-phenotype correlation is strong, it is recommended to consider a parental mosaicism.
Collapse
Affiliation(s)
- Berta Estévez-Arias
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Loreto Martorell
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain
- Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laura Carrera-García
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jessica Expósito-Escudero
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Delia Yubero
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain
- Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain
| | - Cristina Jou
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain
- Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- ERN ITHACA, Barcelona, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Hanns Lochmüller
- Centro Nacional Análisis Genómico (CNAG), Barcelona, Spain
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
2
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Barbosa-Gouveia S, Vázquez-Mosquera ME, González-Vioque E, Hermida-Ameijeiras Á, Sánchez-Pintos P, de Castro MJ, León SR, Gil-Fournier B, Domínguez-González C, Camacho Salas A, Negrão L, Fineza I, Laranjeira F, Couce ML. Rapid Molecular Diagnosis of Genetically Inherited Neuromuscular Disorders Using Next-Generation Sequencing Technologies. J Clin Med 2022; 11:jcm11102750. [PMID: 35628876 PMCID: PMC9143479 DOI: 10.3390/jcm11102750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases are genetically highly heterogeneous, and differential diagnosis can be challenging. Over a 3-year period, we prospectively analyzed 268 pediatric and adult patients with a suspected diagnosis of inherited neuromuscular disorder (INMD) using comprehensive gene-panel analysis and next-generation sequencing. The rate of diagnosis increased exponentially with the addition of genes to successive versions of the INMD panel, from 31% for the first iteration (278 genes) to 40% for the last (324 genes). The global mean diagnostic rate was 36% (97/268 patients), with a diagnostic turnaround time of 4–6 weeks. Most diagnoses corresponded to muscular dystrophies/myopathies (68.37%) and peripheral nerve diseases (22.45%). The most common causative genes, TTN, RYR1, and ANO5, accounted for almost 30% of the diagnosed cases. Finally, we evaluated the utility of the differential diagnosis tool Phenomizer, which established a correlation between the phenotype and molecular findings in 21% of the diagnosed patients. In summary, comprehensive gene-panel analysis of all genes implicated in neuromuscular diseases facilitates a rapid diagnosis and provides a high diagnostic yield.
Collapse
Affiliation(s)
- Sofia Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
- Correspondence: (S.B.-G.); (M.L.C.); Tel.: +34-981-950-151 (M.L.C.)
| | - Maria Eugenia Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Emiliano González-Vioque
- Department of Clinical Biochemistry, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain;
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Paula Sánchez-Pintos
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Maria José de Castro
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Soraya Ramiro León
- Genetics Department, Hospital Universitario de Getafe, 28905 Madrid, Spain; (S.R.L.); (B.G.-F.)
| | - Belén Gil-Fournier
- Genetics Department, Hospital Universitario de Getafe, 28905 Madrid, Spain; (S.R.L.); (B.G.-F.)
| | - Cristina Domínguez-González
- Neuromuscular Unit, Imas12 Research Institute, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Camacho Salas
- Pediatric Neurology Unit, Hospital Universitario 12 de Octubre, Complutense University of Madrid, 28041 Madrid, Spain;
| | - Luis Negrão
- Neuromuscular Diseases Unit, Neurology Service, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Isabel Fineza
- Pediatric Neurology Department, Child Developmental Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra Coimbra Portugal, 3000-075 Coimbra, Portugal;
| | - Francisco Laranjeira
- Biochemical Genetics Unit, Centro de Genética Médica Doutor Jacinto Magalhães, 4050-466 Porto, Portugal;
| | - Maria Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
- Correspondence: (S.B.-G.); (M.L.C.); Tel.: +34-981-950-151 (M.L.C.)
| |
Collapse
|
4
|
Lornage X, Quijano-Roy S, Amthor H, Carlier RY, Monnier N, Deleuze JF, Romero NB, Laporte J, Böhm J. Asymmetric muscle weakness due to ACTA1 mosaic mutations. Neurology 2020; 95:e3406-e3411. [DOI: 10.1212/wnl.0000000000010947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo characterize 2 unrelated patients with either asymmetric or unilateral muscle weakness at the clinical, genetic, histologic, and ultrastructural level.MethodsThe patients underwent thorough clinical examination, whole-body MRI, and exome sequencing. Muscle morphology was assessed by histology and electron microscopy.ResultsBoth patients presented with early-onset hypotonia, delayed motor milestones, scoliosis, and reduced pulmonary function. Patient P1 manifested unilateral muscle weakness exclusively affecting the left side of the body; the asymmetry was less pronounced in patient P2. Muscle biopsies from both patients showed nemaline rods as the main histopathologic hallmark, and MRI revealed major fatty infiltrations in selective head, proximal, and distal muscles, correlating with the degree of muscle weakness asymmetry. Exome sequencing on blood DNA from both patients identified de novo ACTA1 missense mutations in a small number of reads, suggesting mutation mosaicism. Subsequent Sanger sequencing confirmed the presence of the mutations on muscle DNA, while they were barely detectable on blood DNA.ConclusionsDe novo mutations can occur anytime during embryonic development and may result in a mosaic pattern of affected cells and tissues and lead to the development of an asymmetric clinical picture. The present study points out that mosaic mutations might not be easily detectable on leukocyte DNA and thereby escape routine genetic analysis, and possibly account for a significant number of molecularly undiagnosed patients.
Collapse
|
5
|
Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, Chrismer IC, Zhang X, Cosgrove MM, Kuo A, Vasavada R, Jain MS, Waite M, Rajapakse D, Witherspoon JW, Wistow G, Meilleur KG. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol 2018; 265:2506-2524. [PMID: 30155738 PMCID: PMC6182665 DOI: 10.1007/s00415-018-9033-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/01/2023]
Abstract
Variants in the skeletal muscle ryanodine receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.
Collapse
Affiliation(s)
- Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA.
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Monique S Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Xuemin Zhang
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Ruhi Vasavada
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Waite
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| |
Collapse
|