1
|
El-Sobky TA, Abdulhady H, Mahmoud S, Amen J. Orthopedic manifestations of congenital muscular dystrophy subtypes in children: Emerging signatures need consolidation: a scoping review. JOURNAL OF MUSCULOSKELETAL SURGERY AND RESEARCH 2024; 8:11-23. [DOI: 10.25259/jmsr_229_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Our objective was to screen the literature on congenital muscular dystrophy (CMD) children/adolescents regarding the extent/nature of reporting orthopedic manifestations/deformities and to assess its appropriateness in informing clinical practice/research. We searched PubMed for original research on orthopedic surgical/non-surgical manifestations of CMD. Eligible articles needed to focus on orthopedic manifestations/deformities as one of the study objectives with no restrictions on study designs/types or search period. Eight hundred and thirty articles were initially identified and screened. Following the exclusion of 501 articles for disagreeing titles/abstracts, 329 were available for eligibility assessment. Two hundred and fifty-five articles were excluded for reasons. Of one hundred articles, 15 were captured manually and 11 through pre-submission searches, with 1078 patients included in the final analysis. The most common subtype was Laminin alpha-2 (LAMA2)-relatedCMD. Orthopedic manifestations of CMD are generally underreported and insufficiently detailed. There is reliable evidence that accurate reporting of orthopedic manifestations can be a valuable clinical supplement to the complex differential diagnosis process in collagen VI-related CMD, LAMA2-related-CMD, LMNA-related-CMD, and SEPN1-related CMD (SELENON). For alpha dystroglycan-related CMD, there is insufficient information to delineate a subtype-specific pattern. There is emerging evidence that reporting spine surgery outcomes may facilitate orthopedic decision making. The greatest clinical/research utility was provided by articles with longitudinal, comprehensive, and correlative reporting of larger cohorts. Detailed reporting of the orthopedic phenotype of CMD in future research may further uncover its diagnostic potential.
Collapse
Affiliation(s)
- Tamer A. El-Sobky
- Department of Orthopaedic Surgery, Division of Paediatric Orthopaedics, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| | - Hala Abdulhady
- Department of Physical Medicine and Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| | - Shady Mahmoud
- Department of Orthopaedic Surgery, Division of Paediatric Orthopaedics, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| | - John Amen
- Department of Orthopaedic Surgery, Division of Paediatric Orthopaedics, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| |
Collapse
|
2
|
Chen G, Li L, Sun T, Jiang C, Xu W, Chen S, Hu C, Yue Y, Wang T, Jiang W, Yuan Y. The Interaction of LAMA2 and Duration of Illness Affects the Thickness of the Right Transverse Temporal Gyrus in Major Depressive Disorder. Neuropsychiatr Dis Treat 2023; 19:2807-2816. [PMID: 38144699 PMCID: PMC10749177 DOI: 10.2147/ndt.s435025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
Background Depression is a heritable brain disorder. Laminin genes were recently identified to affect the brain's overall thickness through neurogenesis, differentiation, and migration in depression. This study aims to explore the effects of the LAMA2's single nucleotide polymorphisms (SNP), a subunit gene of laminin, on the detected brain regions of patients with major depressive disorder (MDD). Methods The study included 89 patients with MDD and 60 healthy controls with T1-weighted structural magnetic resonance imaging and blood samples for genotyping. The interactions between LAMA2 gene SNPs and diagnosis as well as duration of illness (DOI) were explored on brain measures controlled for age, gender, and site. Results The right transverse temporal gyrus and right parahippocampal gyrus showed reduced thickness in MDD. Almost all seven LAMA2 SNPs showed significant interactions with diagnosis on both gyrus (corrected p < 0.05 or trending). In MDD, rs6569604, rs2229848, rs2229849, rs2229850, and rs2784895 interacted with DOI on the right transverse temporal gyrus (corrected p < 0.05), but not the right parahippocampal gyrus. Conclusion The thickness of the right transverse temporal gyrus in patients with MDD may be affected by LAMA2 gene and DOI.
Collapse
Affiliation(s)
- Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Department of Medical Psychology, Huai’an NO 3 People’s Hospital, Huaian, People’s Republic of China
| | - Lei Li
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Department of Sleep Medicine, The Fourth People’s Hospital of Lianyungang, Lianyungang, People’s Republic of China
| | - Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Department of Medical Psychology, Huai’an NO 3 People’s Hospital, Huaian, People’s Republic of China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Changchun Hu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Tianyu Wang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Diaz-Lombana N, Diaz-Ordoñez L, Gutierrez-Medina JD, Pachajoa H. Case report: Novel frameshift mutation in LAMA2 gene causing congenital muscular dystrophy type 1A. Front Genet 2023; 14:1158350. [PMID: 37415604 PMCID: PMC10319579 DOI: 10.3389/fgene.2023.1158350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Congenital muscular dystrophy type 1A (CMD1A) is a rare autosomal recessive disorder caused by mutations in the LAMA2 gene. CMD1A is characterized by peripheral hypotonia and muscle weakness from the first months of life, cerebral white matter abnormalities, and elevated creatine phosphokinase (CPK) levels. We describe an 8-year-old girl from Colombia with clinical features compatible with CMD1A, severe scoliosis corrected with surgery, and feeding difficulty corrected with a gastrostomy. Whole-exome sequencing identified two heterozygous variants: a reported nonsense variant (LAMA2 NM_000426.3:c.4198C>T) and a novel likely pathogenic variant (LAMA2 NM_000426.3:c.9227_9243dup). This is the first genetically confirmed case of CMD1A in Colombia and the first report of the c.9227_9243dup variant causing CMD1A.
Collapse
Affiliation(s)
- Natalia Diaz-Lombana
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | - Lorena Diaz-Ordoñez
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Departamento de Ciencias Básicas Médicas, Facultad de Salud, Universidad Icesi, Cali, Colombia
| | - Juan David Gutierrez-Medina
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| | - Harry Pachajoa
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Departamento de Ciencias Básicas Médicas, Facultad de Salud, Universidad Icesi, Cali, Colombia
- Genetic Division, Fundación Valle del Lili, Cali, Colombia
| |
Collapse
|
4
|
Tran VK, Nguyen NL, Tran LNT, Le PT, Tran AH, Pham TLA, Lien NTK, Xuan NT, Thanh LT, Ta TV, Tran TH, Nguyen HH. Merosin-deficient congenital muscular dystrophy type 1a: detection of LAMA2 variants in Vietnamese patients. Front Genet 2023; 14:1183663. [PMID: 37388928 PMCID: PMC10301838 DOI: 10.3389/fgene.2023.1183663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Merosin-deficient congenital muscular dystrophy type 1A (MDC1A), also known as laminin-α2 chain-deficient congenital muscular dystrophy (LAMA2-MD), is an autosomal recessive disease caused by biallelic variants in the LAMA2 gene. In MDC1A, laminin- α2 chain expression is absent or significantly reduced, leading to some early-onset clinical symptoms including severe hypotonia, muscle weakness, skeletal deformity, non-ambulation, and respiratory insufficiency. Methods: Six patients from five unrelated Vietnamese families presenting with congenital muscular dystrophy were investigated. Targeted sequencing was performed in the five probands. Sanger sequencing was carried out in their families. Multiplex ligation-dependent probe amplification was performed in one family to examine an exon deletion. Results: Seven variants of the LAMA2 (NM_000426) gene were identified and classified as pathogenic/likely pathogenic variants using American College of Medical Genetics and Genomics criteria. Two of these variants were not reported in the literature, including c.7156-5_7157delinsT and c.8974_8975insTGAT. Sanger sequencing indicated their parents as carriers. The mothers of family 4 and family 5 were pregnant and a prenatal testing was performed. The results showed that the fetus of the family 4 only carries c.4717 + 5G>A in the heterozygous form, while the fetus of the family 5 carries compound heterozygous variants, including a deletion of exon 3 and c.4644C>A. Conclusion: Our findings not only identified the underlying genetic etiology for the patients, but also provided genetic counseling for the parents whenever they have an offspring.
Collapse
Affiliation(s)
- Van Khanh Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Lan Ngoc Thi Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Phuong Thi Le
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Anh Hai Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Tuan L. A. Pham
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Le Tat Thanh
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thanh Van Ta
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | - Thinh Huy Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
5
|
Camelo CG, Artilheiro MC, Martins Moreno CA, Ferraciolli SF, Serafim Silva AM, Fernandes TR, Lucato LT, Rocha AJ, Reed UC, Zanoteli E. Brain MRI Abnormalities, Epilepsy and Intellectual Disability in LAMA2 Related Dystrophy - a Genotype/Phenotype Correlation. J Neuromuscul Dis 2023:JND221638. [PMID: 37182895 DOI: 10.3233/jnd-221638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND LAMA2-related muscular dystrophy is a disorder that causes muscle weakness and varies in severity, from a severe, congenital type to a milder, late-onset form. However, the disease does not only affect the muscles, but has systemic involvement and can lead to alterations such as brain malformation, epilepsy and intellectual disability. OBJECTIVE Describe the frequency of cortical malformations, epilepsy and intellectual disability in LAMA2-RD in a Brazilian cohort and correlate the neurological findings to genetic and motor function. METHODS This is an observational study of 52 LAMA2-RD patients, who were divided into motor function subgroups and compared based on brain MRI findings, epilepsy, intellectual disability, and type of variants and variant domains. RESULTS 44 patients (84.6%) were only able to sit, and 8 patients (15.4%) were able to walk. 10 patients (19.2%) presented with cortical malformations (polymicrogyria, lissencephaly-pachygyria, and cobblestone),10 patients (19.2%) presented with epilepsy, and 8 (15.4%) had intellectual disability. CNS manifestations correlated with a more severe motor phenotype and none of the patients able to walk presented with cortical malformation or epilepsy. There was a relation between gene variants affecting the laminin-α2 LG-domain and the presence of brain malformation (P = 0.016). There was also a relation between the presence of null variants and central nervous system involvement. A new brazilian possible founder variant was found in 11 patients (21,15%) (c.1255del; p. Ile419Leufs *4). CONCLUSION Cortical malformations, epilepsy and intellectual disability are more frequent among LAMA2-RD patients than previously reported and correlate with motor function severity and the presence of variants affecting the laminin-α2 LG domain. This brings more insight fore phenotype-genotype correlations, shows the importance of reviewing the brain MRI of patients with LAMA2-RD and allows greater attention to the risk of brain malformation, epilepsy, and intellectual disability in those patients with variants that affect the LG domain.
Collapse
Affiliation(s)
- Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | - Sueli Fazio Ferraciolli
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - André Macedo Serafim Silva
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Tatiana Ribeiro Fernandes
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Leandro Tavares Lucato
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Antônio José Rocha
- Department of Radiology, Faculdade de Medicina da Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Umbertina Conti Reed
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
6
|
El Kadiri Y, Ratbi I, Laarabi FZ, Kriouile Y, Sefiani A, Lyahyai J. Identification of a novel LAMA2 c.2217G > A, p.(Trp739*) mutation in a Moroccan patient with congenital muscular dystrophy: a case report. BMC Med Genomics 2021; 14:113. [PMID: 33882917 PMCID: PMC8060993 DOI: 10.1186/s12920-021-00959-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a rare autosomal recessive genetic condition caused by deleterious mutations in the LAMA2 gene encoding the laminin-α2 chain. It is the most frequent subtype of congenital muscular dystrophies (CMDs) characterized by total laminin-α2 deficiency with muscle weakness at birth or in the first six months of life. To the best of our knowledge, this study reports the first molecular diagnosis and genetic defect of this heterogeneous form of CMD performed in a Moroccan medical genetic center using next-generation sequencing (NGS). It allows us to expand the mutational spectrum of the LAMA2 gene. CASE PRESENTATION We report the case of a female Moroccan child with clinical and paraclinical features in favor of a CMD. She has global congenital hypotonia with generalized muscle weakness, psychomotor retardation, increased serum creatine kinase, and normal brain scan at the age of six months. Targeted NGS leads to the identification of a novel homozygous nonsense mutation c.2217G > A, p.(Trp739*) in the exon 16 of LAMA2. Sanger sequencing confirmed this mutation in the affected patient and showed that her parents are heterozygous carriers. CONCLUSIONS A modern genetic analysis by NGS improves the genetic diagnosis pathway for adequate genetic counseling of affected families more precisely. An accession number from the National Center for Biotechnology Information (NCBI) ClinVar database was retrieved for this novel LAMA2 mutation.
Collapse
Affiliation(s)
- Youssef El Kadiri
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco.
- Département de Génétique Médicale, Institut National d'Hygiène, BP 769 Agdal, 10090, Rabat, Morocco.
| | - Ilham Ratbi
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco
| | - Fatima Zahra Laarabi
- Département de Génétique Médicale, Institut National d'Hygiène, BP 769 Agdal, 10090, Rabat, Morocco
| | - Yamna Kriouile
- Unité de Neuropédiatrie et Maladies Neuro-Métaboliques, Service de Pédiatrie 2- Hôpital d'enfants, Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco
- Département de Génétique Médicale, Institut National d'Hygiène, BP 769 Agdal, 10090, Rabat, Morocco
| | - Jaber Lyahyai
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, 10100, Rabat, Morocco
| |
Collapse
|
7
|
A cryptic intronic LAMA2 insertion in a boy with mild congenital muscular dystrophy type 1A. Neuromuscul Disord 2021; 31:660-665. [PMID: 34074572 DOI: 10.1016/j.nmd.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022]
Abstract
Recessive mutations in the LAMA2 gene lead to congenital muscular dystrophy type 1A and limb girdle muscular dystrophy R23 with complete or partial laminin α2 chain deficiency. Complete laminin α2 chain deficiency presents with early onset of severe hypotonia and generalized weakness, whereas partial deficiency shows a milder and more variable course with limb girdle weakness. Here, we report a child with mildly delayed motor development, elevated serum creatine kinase levels (>1000 U/l) and brain white matter hypointensity, indicative of laminin α2 chain deficiency. In addition to a stop gain variant in exon 39, the patient was found to carry an intronic insertion of 72 bp in intron 38 of the LAMA2 gene in trans. RNA analysis revealed that this insertion results in abnormally spliced as well as wild type transcript, which explains the partial laminin α2 chain deficiency observed in the muscle biopsy.
Collapse
|
8
|
Nguyen NL, Ngoc CTB, Vu CD, Nguyen TTH, Nguyen HH. Whole Exome Sequencing as a Diagnostic Tool for Unidentified Muscular Dystrophy in a Vietnamese Family. Diagnostics (Basel) 2020; 10:741. [PMID: 32987775 PMCID: PMC7598670 DOI: 10.3390/diagnostics10100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
Muscular dystrophies are a group of heterogeneous clinical and genetic disorders. Two siblings presented with characteristics like muscular dystrophy, abnormal white matter, and elevated serum creatine kinase level. The high throughput of whole exome sequencing (WES) makes it an efficient tool for obtaining a precise diagnosis without the need for immunohistochemistry. WES was performed in the two siblings and their parents, followed by prioritization of variants and validation by Sanger sequencing. Very rare variants with moderate to high predicted impact in genes associated with neuromuscular disorders were selected. We identified two pathogenic missense variants, c.778C>T (p.H260Y) and c.2987G>A (p.C996Y), in the LAMA2 gene (NM_000426.3), in the homozygous state in two siblings, and in the heterozygous state in their unaffected parents, which were confirmed by Sanger sequencing. Variant c.2987G>A has not been reported previously. These variants may lead to a change in the structure and function of laminin-α2, a member of the family of laminin-211, which is an extracellular matrix protein that functions to stabilize the basement membrane of muscle fibers during contractions. Overall, WES enabled an accurate diagnosis of both patients with LAMA2-related muscular dystrophy and expanded the spectrum of missense variants in LAMA2.
Collapse
Affiliation(s)
- Ngoc-Lan Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam; (N.-L.N.); (T.T.H.N.)
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam
| | - Can Thi Bich Ngoc
- Center for Rare Diseases and Newborn Screening, Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, 18/879 La Thanh str., Dong Da, Hanoi 100000, Vietnam; (C.T.B.N.); (C.D.V.)
| | - Chi Dung Vu
- Center for Rare Diseases and Newborn Screening, Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, 18/879 La Thanh str., Dong Da, Hanoi 100000, Vietnam; (C.T.B.N.); (C.D.V.)
| | - Thi Thu Huong Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam; (N.-L.N.); (T.T.H.N.)
| | - Huy Hoang Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam; (N.-L.N.); (T.T.H.N.)
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str., Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|