1
|
Lillback V, Bergant G, Di Feo MF, Bozović IB, Torella A, Johari M, Maver A, Pelin K, Santorelli FMM, Nigro V, Hackman P, Peterlin B, Udd B, Savarese M. Gene prioritisation for enhancing molecular diagnosis in rare skeletal muscle disease cohort. J Med Genet 2025; 62:350-357. [PMID: 40044418 DOI: 10.1136/jmg-2024-110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/16/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Inherited rare skeletal muscle diseases cause muscle weakness and wasting of variable severity. Without a molecular diagnosis, patients often endure prolonged diagnostic journeys, leading to delays in appropriate management of the disease. This occurs in approximately 60% of patients with rare diseases. METHODS To facilitate reanalysis of 278 unsolved patients, we used a gene prioritisation tool Exomiser, which standardises analysis by ranking causative variants based on phenotype relevance and variant pathogenicity. Before analysis, we benchmarked Exomiser for variant prioritisation with solved cases and for novel disease gene discovery with mock cases with variants in candidate disease genes. Additionally, we studied the significance of the specificity of the phenotype descriptions. RESULTS In our study, Exomiser ranked genes in the top 10 correctly in 97.4% of controls with previously detected causative variants. Moreover, 57.1% of candidate genes in mock cases were similarly prioritised in the top 10. We also showed that three parental muscle disease human phenotype ontologies describing the patient phenotype performed as well as patient-specific ones, with a p value of 0.68 for difference in performance. The provided automation and standardisation of variant interpretation resulted in two novel diagnoses and in findings, either in known muscle disease genes or in novel candidate genes, which need further investigation. CONCLUSIONS Exomiser is recommended for initial and periodic reanalyses of exomes in unsolved patients with myopathy, as it benefits from literature updates and minimises effort. This approach could also extend to whole genome sequencing data, aiding the interpretation of variants beyond coding regions.
Collapse
Affiliation(s)
| | - Gaber Bergant
- University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maria Francesca Di Feo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
| | | | - Annalaura Torella
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli studi della Campania Luigi Vanvitelli, Napoli, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Aleš Maver
- University Medical Centre Ljubljana, Ljubljana, Slovenia
- University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Napoli, Italy
- Department of Precision Medicine, Universita degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | | | - Borut Peterlin
- University Medical Centre Ljubljana, Ljubljana, Slovenia
- University of Ljubljana, Ljubljana, Slovenia
| | - Bjarne Udd
- Neuromuscular Center, Tampere University Hospital, Vasa, Finland
| | | |
Collapse
|
2
|
Rashed HR, Nath SR, Milone M. The Spectrum of Small Heat Shock Protein B8 ( HSPB8)-Associated Neuromuscular Disorders. Int J Mol Sci 2025; 26:2905. [PMID: 40243504 PMCID: PMC11989117 DOI: 10.3390/ijms26072905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The heat shock protein B8 (HSPB8) is one of the small heat shock proteins (sHSP or HSPB) and is a ubiquitous protein in various organisms, including humans. It is highly expressed in skeletal muscle, heart, and neurons. It plays a crucial role in identifying misfolding proteins and participating in chaperone-assisted selective autophagy (CASA) for the removal of misfolded and damaged, potentially cytotoxic proteins. Mutations in HSPB8 can cause distal hereditary motor neuropathy (dHMN), Charcot-Marie-Tooth (CMT) disease type 2L, or myopathy. The disease can manifest from childhood to mid-adulthood. Most missense mutations in the N-terminal and α-crystallin domains of HSPB8 lead to dHMN or CMT2L. Frameshift mutations in the C-terminal domain (CTD), resulting in elongation of the HSPB8 C-terminal, cause myopathy with myofibrillar pathology and rimmed vacuoles. Myopathy and motor neuropathy can coexist. HSPB8 frameshift mutations in the CTD result in HSPB8 mutant aggregation, which weakens the CASA ability to direct misfolded proteins to autophagic degradation. Cellular and animal models indicate that HSPB8 mutations drive pathogenesis through a toxic gain-of-function mechanism. Currently, no cure is available for HSPB8-associated neuromuscular disorders, but numerous therapeutic strategies are under investigation spanning from small molecules to RNA interference to exogenous HSPB8 delivery.
Collapse
Affiliation(s)
- Hebatallah R. Rashed
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (H.R.R.); (S.R.N.)
- Department of Neurology, Ain Shams University, Cairo 11588, Egypt
| | - Samir R. Nath
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (H.R.R.); (S.R.N.)
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (H.R.R.); (S.R.N.)
| |
Collapse
|
3
|
Marti P, Pitarch-Castellano I, Muelas N, Azorín I, Fores L, Vilchez R, Sevilla T, Vilchez JJ. Asymptomatic HyperCKemia in the Pediatric Population: A Prospective Study Utilizing Next-Generation Sequencing and Ancillary Tests. Neurology 2025; 104:e210116. [PMID: 39666917 DOI: 10.1212/wnl.0000000000210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Persistent elevation of serum creatine kinase levels (hyperCKemia) as an isolated manifestation presents a diagnostic challenge. Genetic myopathies are frequently involved; however, studies using next-generation sequencing (NGS) in pediatric patients are lacking, and the significance of genetic aberrations remains poorly understood. This study, therefore, aimed to investigate the relevance of NGS and the support of contemporary diagnostic tools in the diagnosis of pediatric asymptomatic hyperCKemia. METHODS This was a prospective cohort study enrolling pediatric (0-18 years old) patients meeting the predefined criteria for asymptomatic/paucisymptomatic hyperCKemia, excluding DMD gene deletion/duplication, recruited from a referral center. NGS, muscle MRI, EMG, and muscle biopsies with immunolabeling and inflammatory markers were performed according to a prespecified protocol. Data analysis was performed using descriptive/univariate statistics and Bayesian logistic regression. RESULTS The series comprised 65 patients (78% male). NGS diagnosis was achieved in 55% of the cohort, with 70% of the pathogenic variants involving 7 genes (DMD, CAPN3, ANO5, DYSF, RYR1, GAA, and CAV3). The diagnostic rate was similar across all age groups; however, the gene profiles varied between the childhood and juvenile groups. EMG yielded myopathic features in 48% of the investigated cases, being predictive for diagnosis (p < 0.05; odds ratio [OR] 13.484, 95% CI 1.358-705.297). MRI showed normal (64%), focal fatty change (26%), or short-tau inversion recovery hyperintensity (10%) profiles, which were not predictive of diagnosis but supported muscle biopsy indications. Muscle biopsy provided a significant diagnostic effect (p < 0.05; OR 0.028, 95% CI 0.001-0.238), contributing to myopathologic features clarifying the variant pathogenicity and identifying inflammatory myopathies. The diagnoses remained inconclusive and unresolved in 14% and 29% of the cohorts, respectively. The diagnostic rate for patients with CK levels below the threshold of 3× was 42%. In multivariate analysis, NGS was the only variable achieving a significant diagnostic effect (β = 9.85, 95% CI 4.65-16.09). DISCUSSION NGS, as the primary diagnostic tool for investigating hyperCKemia in the pediatric population, yielded a higher diagnostic rate. However, muscle biopsies are necessary to define variants of uncertain pathogenicity and aid in identifying inflammatory myopathies. EMG and MRI may play a role in hyperCKemia characterization, guiding the decision to perform muscle biopsy. The primary limitation of this study was that not all ancillary tests were performed in all recruited patients owing to ethical restrictions, which lowered the power of the predictive analysis.
Collapse
Affiliation(s)
- Pilar Marti
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Inmaculada Pitarch-Castellano
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Nuria Muelas
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Inmaculada Azorín
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Lorena Fores
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Roger Vilchez
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Teresa Sevilla
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Juan Jesus Vilchez
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| |
Collapse
|
4
|
Nagy S, Pagnamenta AT, Cali E, Braakman HMH, Wijntjes J, Kusters B, Gotkine M, Elpeleg O, Meiner V, Lenberg J, Wigby K, Friedman J, Perry LD, Rossor AM, Uhrova Meszarosova A, Thomasova D, Jacob S, O'Driscoll M, De Simone L, Grange DK, Sommerville R, Firoozfar Z, Alavi S, Mazaheri M, Parmar JM, Lamont PJ, Pini V, Sarkozy A, Muntoni F, Ravenscroft G, Jones E, O'Rourke D, Nel M, Heckmann JM, Kvalsund M, Kapapa MM, Wa Somwe S, Bearden DR, Çakar A, Childs AM, Horvath R, Reilly MM, Houlden H, Maroofian R. Autosomal recessive VWA1-related disorder: comprehensive analysis of phenotypic variability and genetic mutations. Brain Commun 2024; 6:fcae377. [PMID: 39502942 PMCID: PMC11535570 DOI: 10.1093/braincomms/fcae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/14/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A newly identified subtype of hereditary axonal motor neuropathy, characterized by early proximal limb involvement, has been discovered in a cohort of 34 individuals with biallelic variants in von Willebrand factor A domain-containing 1 (VWA1). This study further delineates the disease characteristics in a cohort of 20 individuals diagnosed through genome or exome sequencing, incorporating neurophysiological, laboratory and imaging data, along with data from previously reported cases across three different studies. Newly reported clinical features include hypermobility/hyperlaxity, axial weakness, dysmorphic signs, asymmetric presentation, dystonic features and, notably, upper motor neuron signs. Foot drop, foot deformities and distal leg weakness followed by early proximal leg weakness are confirmed to be initial manifestations. Additionally, this study identified 11 novel VWA1 variants, reaffirming the 10 bp insertion-induced p.Gly25ArgfsTer74 as the most prevalent disease-causing allele, with a carrier frequency of ∼1 in 441 in the UK and Western European population. Importantly, VWA1-related pathology may mimic various neuromuscular conditions, advocating for its inclusion in diverse gene panels spanning hereditary neuropathies to muscular dystrophies. The study highlights the potential of lower quality control filters in exome analysis to enhance diagnostic yield of VWA1 disease that may account for up to 1% of unexplained hereditary neuropathies.
Collapse
Affiliation(s)
- Sara Nagy
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neurology, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford OX3 9DU, UK
| | - Elisa Cali
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Hilde M H Braakman
- Department of Pediatric Neurology, Amalia Children’s Hospital, Radboud University Medical Center & Donders Institute for Brain, Cognition and Behavior, Nijmegen 6525 GA, The Netherlands
| | - Juerd Wijntjes
- Department of Neurology and Clinical Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen 6525 GD, The Netherlands
| | - Benno Kusters
- Department of Pathology, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, Jerusalem 9574869, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, Jerusalem 9574869, Israel
| | - Jerica Lenberg
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kristen Wigby
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Friedman
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Luke D Perry
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, London WC1N 3BG, UK
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Anna Uhrova Meszarosova
- Neurogenetic Laboratory, Department of Paediatric Neurology, and Institute of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Dana Thomasova
- Neurogenetic Laboratory, Department of Paediatric Neurology, and Institute of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague 150 06, Czech Republic
| | - Saiju Jacob
- Department of Neurology, University Hospitals Birmingham, Birmingham B15 2TT, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Lenika De Simone
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Dorothy K Grange
- Department of Neurology at Washington University, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO 63108, USA
| | - Richard Sommerville
- Department of Neurology at Washington University, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO 63108, USA
| | | | | | - Mahta Mazaheri
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 97514, Iran
- Dr. Mazaheri’s Medical Genetics Lab, Yazd 97514, Iran
| | - Jevin M Parmar
- Rare Disease Genetics and Functional Genomics Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | | | - Veronica Pini
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, London WC1N 3BG, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street, Great Ormond Street Hospital, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Eppie Jones
- Genomics Medicine Ireland, Dublin D18 K7W4, Ireland
| | - Declan O'Rourke
- Children’s Health Ireland at Temple Street, Dublin, Dublin D01 XD99, Ireland
| | - Melissa Nel
- Neurogenomics Lab, Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Jeannine M Heckmann
- Neurology Research Group, Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
| | - Michelle Kvalsund
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14618, USA
- Department of Internal Medicine, University of Zambia School of Medicine, Ridgeway, Lusaka, Zambia
| | - Musambo M Kapapa
- Department of Physiotherapy, University of Zambia School of Health Sciences, Lusaka, Zambia
| | - Somwe Wa Somwe
- Department of Paediatrics and Child Health, School of Medicine and Health Sciences, University of Lusaka, Lusaka, Zambia
| | - David R Bearden
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14618, USA
- Department of Educational Psychology, University of Zambia, Lusaka, Zambia
| | - Arman Çakar
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Neuromuscular Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Anne-Marie Childs
- Department of Paediatric Neurology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
5
|
Alhammad RM, Alrehaili ML, Albulaihe HM, Aljereish SS, Alanazy MH. Clinical and genetic evaluation of hereditary myopathies in an adult Saudi cohort. BMC Neurol 2024; 24:312. [PMID: 39232665 PMCID: PMC11373090 DOI: 10.1186/s12883-024-03838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Diagnosis of hereditary myopathy is often challenging owing to overlapping clinical phenotypes and muscle histopathological findings. This retrospective study aimed to identify the phenotypic and genotypic spectra of hereditary myopathies at a tertiary hospital in Riyadh, Saudi Arabia. METHODS We reviewed the medical records of patients with hereditary myopathy who were evaluated between January 2018 and December 2022. RESULTS Eighty-seven patients (78 families) were included, two-thirds were men with a mean age of 35 (SD 14.2) years. Limb-girdle muscular dystrophy (LGMD) was the most prevalent clinical diagnosis (25 cases; 29%), of whom, a genetic diagnosis was achieved in 15 of 22 patients tested (68%). In genetically confirmed LGMD, the most prevalent disorders were dysferlinopathy (27%) followed by fukutin-related protein (FKRP) - related limb girdle muscular dystrophy (20%), sarcoglycanopathy (20%), lamin A/C related myopathy (13%), and calpain-3 myopathy (13%). In 26 patients with pathogenic/likely pathogenic variants, the genetic testing method was whole exome sequencing (WES) (42%), Next generation sequencing (NGS) (31%), and targeted single gene analysis (27%). The sensitivity of each genetic testing method was as follows: 100% for targeted single-gene analysis, 100% for targeted analysis of D4Z4 repeat array units, 88% for myotonic dystrophy protein kinase (DMPK) repeat expansion analysis, 42% for NGS-neuromuscular panel, and 46% for WES. CONCLUSION The prevalent types of hereditary myopathies were consistent with those reported locally and internationally. This study highlights the diagnostic yield of various molecular genetic tests for the diagnosis of hereditary myopathy in an adult cohort and the need for improved access to advanced molecular testing in cases suspected to have facioscapulohumeral muscular dystrophy (FSHD) or mitochondrial myopathies.
Collapse
Affiliation(s)
- Reem M Alhammad
- Department of Internal Medicine, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia.
| | - Marwa L Alrehaili
- Department of Internal Medicine, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
- Department of Internal Medicine, King Fahad Hospital, Ministry of Health, PO Box 42210, Madina, Saudi Arabia
| | - Hana M Albulaihe
- Department of Internal Medicine, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
| | - Sultan S Aljereish
- Department of Internal Medicine, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
- Department of Internal Medicine, King Fahad Hospital Hofuf, Ministry of Health, PO Box 36441, Alahsa, Saudi Arabia
| | - Mohammed H Alanazy
- Department of Internal Medicine, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
| |
Collapse
|
6
|
Robaszkiewicz K, Siatkowska M, Wadman RI, Kamsteeg EJ, Chen Z, Merve A, Parton M, Bugiardini E, de Bie C, Moraczewska J. A Novel Variant in TPM3 Causing Muscle Weakness and Concomitant Hypercontractile Phenotype. Int J Mol Sci 2023; 24:16147. [PMID: 38003336 PMCID: PMC10671854 DOI: 10.3390/ijms242216147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.
Collapse
Affiliation(s)
- Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Małgorzata Siatkowska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Renske I. Wadman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Erik-Jan Kamsteeg
- Department of Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Zhiyong Chen
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
- Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore
| | - Ashirwad Merve
- Department of Neuropathology, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK;
| | - Matthew Parton
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Enrico Bugiardini
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Charlotte de Bie
- Department of Genetics, University Medical Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| |
Collapse
|
7
|
Meyer AP, Ma J, Brock G, Hashimoto S, Cottrell CE, Mathew M, Hunter JM, Leung ML, Corsmeier D, Jayaraman V, Waldrop MA, Flanigan KM. Exome sequencing in the pediatric neuromuscular clinic leads to more frequent diagnosis of both neuromuscular and neurodevelopmental conditions. Muscle Nerve 2023; 68:833-840. [PMID: 37789688 DOI: 10.1002/mus.27976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION/AIMS Exome sequencing (ES) has proven to be a valuable diagnostic tool for neuromuscular disorders, which often pose a diagnostic challenge. The aims of this study were to investigate the clinical outcomes associated with utilization of ES in the pediatric neuromuscular clinic and to determine if specific phenotypic features or abnormal neurodiagnostic tests were predictive of a diagnostic result. METHODS This was a retrospective medical record review of 76 pediatric neuromuscular clinic patients who underwent ES. Based upon clinical assessment prior to ES, patients were divided into two groups: affected by neuromuscular (n = 53) or non-neuromuscular (n = 23) syndromes. RESULTS A diagnosis was made in 28/76 (36.8%), with 29 unique disorders identified. In the neuromuscular group, a neuromuscular condition was confirmed in 78% of those receiving a genetic diagnosis. Early age of symptom onset was associated with a significantly higher diagnostic yield. The most common reason neuromuscular diagnoses were not detected on prior testing was due to causative genes not being present on disease-specific panels. Changes to medical care were made in 57% of individuals receiving a diagnosis on ES. DISCUSSION These data further support ES as a powerful diagnostic tool in the pediatric neuromuscular clinic and highlight the advantages of ES over gene panels, including the ability to identify diagnoses regardless of etiology, identify genes newly associated with disease, and identify multiple confounding diagnoses. Rapid and accurate diagnosis by ES can not only end the patient's diagnostic odyssey, but often impacts patients' medical management and genetic counseling of families.
Collapse
Affiliation(s)
- Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jianing Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Sayaka Hashimoto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Catherine E Cottrell
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Mariam Mathew
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Jesse M Hunter
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Marco L Leung
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Don Corsmeier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Megan A Waldrop
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Neurology, Nationwide Children's Hospital & The Ohio State University, Columbus, Ohio, USA
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kevin M Flanigan
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Neurology, Nationwide Children's Hospital & The Ohio State University, Columbus, Ohio, USA
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
8
|
Ng KWP, Chin HL, Chin AXY, Goh DLM. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol 2022; 13:997551. [PMID: 36313509 PMCID: PMC9602396 DOI: 10.3389/fneur.2022.997551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023] Open
Abstract
The diagnosis of inherited neuromuscular disorders is challenging due to their genetic and phenotypic variability. Traditionally, neurophysiology and histopathology were primarily used in the initial diagnostic approach to these conditions. Sanger sequencing for molecular diagnosis was less frequently utilized as its application was a time-consuming and cost-intensive process. The advent and accessibility of next-generation sequencing (NGS) has revolutionized the evaluation process of genetically heterogenous neuromuscular disorders. Current NGS diagnostic testing approaches include gene panels, whole exome sequencing (WES), and whole genome sequencing (WGS). Gene panels are often the most widely used, being more accessible due to availability and affordability. In this mini-review, we describe the benefits and risks of clinical genetic testing. We also discuss the utility, benefits, challenges, and limitations of using gene panels in the evaluation of neuromuscular disorders.
Collapse
Affiliation(s)
- Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Denise Li-Meng Goh
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Nicolau S, Milone M, Liewluck T. Guidelines for genetic testing of muscle and neuromuscular junction disorders. Muscle Nerve 2021; 64:255-269. [PMID: 34133031 DOI: 10.1002/mus.27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Despite recent advances in the understanding of inherited muscle and neuromuscular junction diseases, as well as the advent of a wide range of genetic tests, patients continue to face delays in diagnosis of sometimes treatable disorders. These guidelines outline an approach to genetic testing in such disorders. Initially, a patient's phenotype is evaluated to identify myopathies requiring directed testing, including myotonic dystrophies, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, mitochondrial myopathies, dystrophinopathies, and oculopharyngodistal myopathy. Initial investigation in the remaining patients is generally a comprehensive gene panel by next-generation sequencing. Broad panels have a higher diagnostic yield and can be cost-effective. Due to extensive phenotypic overlap and treatment implications, genes responsible for congenital myasthenic syndromes should be included when evaluating myopathy patients. For patients whose initial genetic testing is negative or inconclusive, phenotypic re-evaluation is warranted, along with consideration of genes and variants not included initially, as well as their acquired mimickers.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Babić Božović I, Maver A, Leonardis L, Meznaric M, Osredkar D, Peterlin B. Diagnostic yield of exome sequencing in myopathies: Experience of a Slovenian tertiary centre. PLoS One 2021; 16:e0252953. [PMID: 34106991 PMCID: PMC8189452 DOI: 10.1371/journal.pone.0252953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Our aim was to present the experience of systematic, routine use of next generation sequencing (NGS) in clinical diagnostics of myopathies. METHODS Exome sequencing was performed on patients with high risk for inherited myopathy, which were selected based on the history of the disease, family history, clinical presentation, and diagnostic workup. Exome target capture was performed, followed by sequencing on HiSeq 2500 or MiSeq platforms. Data analysis was performed using internally developed bioinformatic pipeline. RESULTS The study comprised 86 patients, including 22 paediatric cases (26%). The largest group were patients referred with an unspecified myopathy (47%), due to non-specific or incomplete clinical and laboratory findings, followed by congenital myopathies (22%) and muscular dystrophies (22%), congenital myotonias (6%), and mitochondrial myopathies (3%). Altogether, a diagnostic yield was 52%; a high diagnostic rate was present in paediatric patients (64%), while in patients with unspecified myopathies the rate was 35%. We found 51 pathogenic/likely pathogenic variants in 23 genes and two pathogenic copy number variations. CONCLUSION Our results provide evidence that phenotype driven exome analysis diagnostic approach facilitates the diagnostic rate of complex, heterogeneous disorders, such as myopathies, particularly in paediatric patients and patients with unspecified myopathies.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Meznaric
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Department of Paediatric Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Deschauer M, Hengel H, Rupprich K, Kreiß M, Schlotter-Weigel B, Grimmel M, Admard J, Schneider I, Alhaddad B, Gazou A, Sturm M, Vorgerd M, Balousha G, Balousha O, Falna M, Kirschke JS, Kornblum C, Jordan B, Kraya T, Strom TM, Weis J, Schöls L, Schara U, Zierz S, Riess O, Meitinger T, Haack TB. Bi-allelic truncating mutations in VWA1 cause neuromyopathy. Brain 2021; 144:574-583. [PMID: 33459760 DOI: 10.1093/brain/awaa418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022] Open
Abstract
The von Willebrand Factor A domain containing 1 protein, encoded by VWA1, is an extracellular matrix protein expressed in muscle and peripheral nerve. It interacts with collagen VI and perlecan, two proteins that are affected in hereditary neuromuscular disorders. Lack of VWA1 is known to compromise peripheral nerves in a Vwa1 knock-out mouse model. Exome sequencing led us to identify bi-allelic loss of function variants in VWA1 as the molecular cause underlying a so far genetically undefined neuromuscular disorder. We detected six different truncating variants in 15 affected individuals from six families of German, Arabic, and Roma descent. Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed. Our findings establish VWA1 as a new disease gene confidently implicated in this autosomal recessive neuromyopathic condition presenting with child-/adult-onset muscle weakness as a key clinical feature.
Collapse
Affiliation(s)
- Marcus Deschauer
- Department of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Holger Hengel
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Katrin Rupprich
- Department of Neuropediatrics, University Hospital Essen, 45147 Germany
| | - Martina Kreiß
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | | | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Ilka Schneider
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany
| | - Bader Alhaddad
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Anastasia Gazou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Ghassan Balousha
- Department of Pathology and Histology, Al-Quds University, Eastern Jerusalem, Palestinian Authority
| | - Osama Balousha
- Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestinian Authority
| | - Mohammed Falna
- Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestinian Authority
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Berit Jordan
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany.,Department of Neurology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Torsten Kraya
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Joachim Weis
- Institute for Neuropathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Ulrike Schara
- Department of Neuropediatrics, University Hospital Essen, 45147 Germany
| | - Stephan Zierz
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany.,Center for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Warman-Chardon J, Diaz-Manera J, Tasca G, Straub V. 247th ENMC International Workshop: Muscle magnetic resonance imaging - Implementing muscle MRI as a diagnostic tool for rare genetic myopathy cohorts. Hoofddorp, The Netherlands, September 2019. Neuromuscul Disord 2020; 30:938-947. [PMID: 33004285 DOI: 10.1016/j.nmd.2020.08.360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Jodi Warman Chardon, Neurology/Genetics, The Ottawa Hospital/Research Institute, Canada; Children's Hospital of Eastern Ontario/Research Institute, Canada
| | - Jordi Diaz-Manera
- Neuromuscular Disorders Unit, Neurology department, Hospital Universitari de la Santa Creu i Sant Pau, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain; John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK.
| | | |
Collapse
|