1
|
Vaillend C, Aoki Y, Mercuri E, Hendriksen J, Tetorou K, Goyenvalle A, Muntoni F. Duchenne muscular dystrophy: recent insights in brain related comorbidities. Nat Commun 2025; 16:1298. [PMID: 39900900 PMCID: PMC11790952 DOI: 10.1038/s41467-025-56644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common childhood muscular dystrophy, arises from DMD gene mutations, affecting the production of muscle dystrophin protein. Brain dystrophin-gene products are also transcribed via internal promoters. Their deficiency contributes to comorbidities, including intellectual disability ( ~ 22% of patients), autism ( ~ 6%) and attention deficit disorders ( ~ 18%), representing a major unmet need for patients and families. Thus, improvement of their diagnosis and treatment is needed. Dystrophic mouse models exhibit similar phenotypes, where genetic therapies restoring brain dystrophins improve their behaviour. This suggests that future genetic therapies could address both muscle and brain dysfunction in DMD patients.
Collapse
Affiliation(s)
- Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, Paris, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - Jos Hendriksen
- Kempenhaeghe Centre for Neurological Learning Disabilities, Heeze, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, Maastricht, the Netherlands.
| | - Konstantina Tetorou
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Aurelie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.
| | - Francesco Muntoni
- University College London Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
2
|
Hoskens J, Vandekerckhove I, De Waele L, Feys H, Goemans N, Klingels K. How do fine and gross motor skills develop in preschool boys with Duchenne Muscular Dystrophy? RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 154:104845. [PMID: 39340934 DOI: 10.1016/j.ridd.2024.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Boys with Duchenne Muscular Dystrophy (DMD) experience both fine and gross motor problems. Nowadays, early intervention focuses almost exclusively on gross motor skills. AIMS We aimed to explore early motor development in preschool boys with DMD and investigate the influence of cognition. METHODS AND PROCEDURES Seventeen boys with DMD (11 months- 6 years) were compared to typically developing (TD) peers and followed-up with the Bayley Scales of Infant and Toddler Development (Bayley-III); Peabody developmental motor scales (PDMS-II) and Motor Function Measure (MFM-20). The longitudinal evolution of fine and gross motor skills was investigated using linear mixed effect models (LMM). Cognition was added to the LMM as a covariate. OUTCOMES AND RESULTS Preschool boys with DMD scored lower compared to TD peers on both fine and gross motor skills (p<0.001). The evolution of motor development was subscale-dependent. A significant influence of cognition was found on different subscales (p= 0.002-0.04). CONCLUSIONS AND IMPLICATIONS Preschool boys with DMD do not achieve the same functioning level as TD boys. Cognition plays a crucial role in the evolution of motor skills. Our results suggest a shift to a broader psychomotor approach including both fine and gross motor skills, also considering the impact of cognition. WHAT THIS PAPER ADDS?: Our study provides a detailed mapping of early fine and gross motor development in preschool boys with Duchenne Muscular Dystrophy (DMD) and describes the influence of cognition on both fine and gross motor skills. Preschool boys with DMD do not achieve the same functioning level compared to typically developing boys. They score significantly lower on both fine and gross motor skills. The evolution of fine and gross motor development was subscale-dependent e.g. a negative-positive evolution was seen for grasping skills, with a tipping point around the age of four; stationary scaled scores decreased followed by a stabilization around the age four to five and locomotion scaled scores remained stable over time. Finally, we also found that cognition plays a crucial role in the evolution of both fine and gross motor skills. These new insights in the evolution of early motor development could be of added value for future clinical trials in young boys with DMD. Subsequently, increased alertness to early symptoms, e.g. developmental delay, may advance the age of diagnosis, as well as associated early intervention.
Collapse
Affiliation(s)
- Jasmine Hoskens
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), Herestraat 49, Leuven 3000, Belgium; UHasselt, Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), Campus Diepenbeek, Agoralaan, Diepenbeek, Hasselt 3590, Belgium.
| | - Ines Vandekerckhove
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), Herestraat 49, Leuven 3000, Belgium.
| | - Liesbeth De Waele
- University Hospitals Leuven, Department of Child Neurology, Herestraat 49, Leuven 3000, Belgium; KU Leuven, Department of Development and Regeneration, Herestraat 49, Leuven 3000, Belgium.
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), Herestraat 49, Leuven 3000, Belgium.
| | - Nathalie Goemans
- University Hospitals Leuven, Department of Child Neurology, Herestraat 49, Leuven 3000, Belgium.
| | - Katrijn Klingels
- UHasselt, Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), Campus Diepenbeek, Agoralaan, Diepenbeek, Hasselt 3590, Belgium.
| |
Collapse
|
3
|
Zhao L, Shi Y, Hu C, Zhou S, Li H, Zhang L, Qian C, Zhou Y, Wang Y, Li X. Comprehensive analysis of 2097 patients with dystrophinopathy based on a database from 2011 to 2021. Orphanet J Rare Dis 2024; 19:311. [PMID: 39182149 PMCID: PMC11344408 DOI: 10.1186/s13023-024-03217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND An increasing number of clinical trials for new therapeutic strategies are underway or being considered for dystrophinopathy. Having detailed data on the natural progression of this condition is crucial for assessing the effectiveness of new drugs. However, there's a lack of data regarding the long-term data on the natural course and how it's managed in China. In this study, we offer a comprehensive overview of clinical and molecular findings, as well as treatment outcomes in the Chinese population. METHODS Institutional data on all patients with dystrophinopathy from August 2011 to August 2021 were retrospectively reviewed. The data included geographic distribution, age at diagnosis, molecular findings, and treatment options, such as corticosteroids, cardiac interventions, and clinical outcomes. RESULTS In total, 2097 patients with dystrophinopathy, including 1703 cases of Duchenne muscular dystrophy (DMD), 311 cases of Becker muscular dystrophy (BMD), 46 cases of intermediate muscular dystrophy (IMD), and 37 cases categorized as "pending" (individuals with an undetermined phenotype), were registered in the Children's Hospital of Fudan University database for dystrophinopathy from August 2011 to August 2021. The spectrum of identified variants included exonic deletions (66.6%), exonic duplications (10.7%), nonsense variants (10.3%), splice-site variants (4.5%), small deletions (3.5%), small insertions/duplications (1.8%), and missense variants (0.9%). Four deep intronic variants and two inversion variants were identified. Regarding treatment, glucocorticoids were administered to 54.4% of DMD patients and 39.1% of IMD patients. The median age at loss of ambulation was 2.5 years later in DMD patients who received glucocorticoid treatment. Overall, one cardiac medicine at least was prescribed to 7.4% of DMD patients, 8.3% of IMD patients, and 2.6% of BMD patients. Additionally, ventilator support was required by four DMD patients. Eligibility for exon skipping therapy was found in 55.3% of DMD patients, with 12.9%, 10%, and 9.6% of these patients being eligible for skipping exons 51, 53, and 45, respectively. CONCLUSIONS This is one of the largest studies to have evaluated the natural history of dystrophinopathy in China, which is particularly conducive to the recruitment of eligible patients for clinical trials and the provision of real-world data to support drug development.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Yiyun Shi
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Hui Li
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China
| | - Lifeng Zhang
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, China
| | - Chuang Qian
- Department of Orthopedics, Children's Hospital of Fudan University, Shanghai, China
| | - Yiyao Zhou
- Department of Clinical Nutrition, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
4
|
Hoskens J, Schiava M, Goemans N, Feys H, McDermott MP, Martens WB, Mayhew A, Griggs RC, Klingels K, Guglieri M. Reference curves of motor function outcomes in young steroid-naïve males with Duchenne muscular dystrophy. Dev Med Child Neurol 2024; 66:644-653. [PMID: 37885269 DOI: 10.1111/dmcn.15788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
AIM To investigate functional motor performance in a large cohort of young steroid-naïve males with Duchenne muscular dystrophy (DMD) and typically developing males, and to develop specific reference curves for both groups. Also, to describe associations between anthropometric values and functional motor outcomes. METHOD Cross-sectional data of 196 steroid-naïve males with DMD aged 4 to 8 years and 497 typically developing males aged 2 years 6 months to 8 years were included. Both groups were evaluated with the time to rise from the floor test, 10-metre walk/run test, 6-minute walk test, and North Star Ambulatory Assessment. Reference curves with centiles 5%, 10%, 25%, 50%, 75%, 90%, and 95% were estimated using quantile regression. RESULTS Males with DMD scored significantly worse on all functional motor outcomes than age-matched typically developing males (p < 0.001): 89% to 95% of the males with DMD scored below the 5th centile of the typically developing males. No or weak correlations exist between anthropometric values and functional motor outcomes. INTERPRETATION The estimated reference curves can support consultation with families of young males with DMD and can support the evaluation of treatment for reaching motor skills and functional motor outcomes compared with typically developing males.
Collapse
Affiliation(s)
- Jasmine Hoskens
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), UHasselt, Leuven, Belgium
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Leuven, Belgium
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Leuven, Belgium
| | - Michael P McDermott
- Department of Neurology, University of Rochester Medical Centre, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Centre, Rochester, NY, USA
| | - William B Martens
- Department of Neurology, University of Rochester Medical Centre, Rochester, NY, USA
| | - Anna Mayhew
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Robert C Griggs
- Department of Neurology, University of Rochester Medical Centre, Rochester, NY, USA
| | - Katrijn Klingels
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), UHasselt, Leuven, Belgium
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Leuven, Belgium
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Chrzanowski S, Batra R. CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders. Pediatr Neurol 2024; 153:166-174. [PMID: 38394831 DOI: 10.1016/j.pediatrneurol.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
The emergence of gene editing technologies offers a unique opportunity to develop mutation-specific treatments for pediatric neurological disorders. Gene editing systems can potentially alter disease trajectory by correcting dysfunctional mutations or therapeutically altering gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches are attractive gene therapy platforms to personalize treatments because of their specificity, ease of design, versatility, and cost. However, many such approaches remain in the early stages of development, with ongoing efforts to optimize editing efficiency, minimize unintended off-target effects, and mitigate pathologic immune responses. Given the rapid evolution of CRISPR-based therapies, it is prudent for the clinically based child neurologist to have a conceptual understanding of what such therapies may entail, including both benefits and risks and how such therapies may be clinically applied. In this review, we describe the fundamentals of CRISPR-based therapies, discuss the opportunities and challenges that have arisen, and highlight preclinical work in several pediatric neurological diseases.
Collapse
Affiliation(s)
- Stephen Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.
| | | |
Collapse
|
6
|
Mercuri E, Pane M, Cicala G, Brogna C, Ciafaloni E. Detecting early signs in Duchenne muscular dystrophy: comprehensive review and diagnostic implications. Front Pediatr 2023; 11:1276144. [PMID: 38027286 PMCID: PMC10667703 DOI: 10.3389/fped.2023.1276144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Despite the early onset of clinical signs suggestive of Duchenne muscular dystrophy (DMD), a diagnosis is often not made until four years of age or older, with a diagnostic delay of up to two years from the appearance of the first symptoms. As disease-modifying therapies for DMD become available that are ideally started early before irreversible muscle damage occurs, the importance of avoiding diagnostic delay increases. Shortening the time to a definite diagnosis in DMD allows timely genetic counseling and assessment of carrier status, initiation of multidisciplinary standard care, timely initiation of appropriate treatments, and precise genetic mutation characterization to assess suitability for access to drugs targeted at specific mutations while reducing the emotional and psychological family burden of the disease. This comprehensive literature review describes the early signs of impairment in DMD and highlights the bottlenecks related to the different diagnostic steps. In summary, the evidence suggests that the best mitigation strategy for improving the age at diagnosis is to increase awareness of the early symptoms of DMD and encourage early clinical screening with an inexpensive and sensitive serum creatine kinase test in all boys who present signs of developmental delay and specific motor test abnormality at routine pediatrician visits.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marika Pane
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianpaolo Cicala
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudia Brogna
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
Wijekoon N, Gonawala L, Ratnayake P, Amaratunga D, Hathout Y, Mohan C, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions. J Clin Med 2023; 12:5637. [PMID: 37685704 PMCID: PMC10488491 DOI: 10.3390/jcm12175637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Brain function and its effect on motor performance in Duchenne muscular dystrophy (DMD) is an emerging concept. The present study explored how cumulative dystrophin isoform loss, age, and a corticosteroid treatment affect DMD motor outcomes. A total of 133 genetically confirmed DMD patients from Sri Lanka were divided into two groups based on whether their shorter dystrophin isoforms (Dp140, Dp116, and Dp71) were affected: Group 1, containing patients with Dp140, Dp116, and Dp71 affected (n = 98), and Group 2, containing unaffected patients (n = 35). A subset of 52 patients (Group 1, n = 38; Group 2, n = 14) was followed for up to three follow-ups performed in an average of 28-month intervals. The effect of the cumulative loss of shorter dystrophin isoforms on the natural history of DMD was analyzed. A total of 74/133 (56%) patients encountered developmental delays, with 66/74 (89%) being in Group 1 and 8/74 (11%) being in Group 2 (p < 0.001). Motor developmental delays were predominant. The hip and knee muscular strength, according to the Medical Research Council (MRC) scale and the North Star Ambulatory Assessment (NSAA) activities, "standing on one leg R", "standing on one leg L", and "walk", declined rapidly in Group 1 (p < 0.001 In the follow-up analysis, Group 1 patients became wheelchair-bound at a younger age than those of Group 2 (p = 0.004). DMD motor dysfunction is linked to DMD mutations that affect shorter dystrophin isoforms. When stratifying individuals for clinical trials, considering the DMD mutation site and its impact on a shorter dystrophin isoform is crucial.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | | | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (Y.H.); (E.P.H.)
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX 77204, USA;
| | - Harry W. M. Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India;
| | - Eric P. Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (Y.H.); (E.P.H.)
| | - K. Ranil D. de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana 10390, Sri Lanka
| |
Collapse
|
8
|
Mercuri E, Seferian A, Servais L, Deconinck N, Stevenson H, Ni X, Zhang W, East L, Yonren S, Muntoni F, Deconinck N, Van Coster R, Vanlander A, Seferian A, De Lucia S, Gidaro T, Brande LV, Servais L, Kirschner J, Borell S, Mercuri E, Brogna C, Pane M, Fanelli L, Norcia G, Muntoni F, Brusa C, Chesshyre M, Maresh K, Pitchforth J, Schottlaender L, Scoto M, Silwal A, Trucco F. Safety, tolerability and pharmacokinetics of eteplirsen in young boys aged 6–48 months with Duchenne muscular dystrophy amenable to exon 51 skipping. Neuromuscul Disord 2023; 33:476-483. [PMID: 37207382 DOI: 10.1016/j.nmd.2023.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Eteplirsen is FDA-approved for the treatment of Duchenne muscular dystrophy (DMD) in exon 51 skip-amenable patients. Previous studies in boys > 4 years of age indicate eteplirsen is well tolerated and attenuates pulmonary and ambulatory decline compared with matched natural history cohorts. Here the safety, tolerability and pharmacokinetics of eteplirsen in boys aged 6-48 months is evaluated. In this open-label, multicenter, dose-escalation study (NCT03218995), boys with a confirmed mutation of the DMD gene amenable to exon 51 skipping (Cohort 1: aged 24-48 months, n = 9; Cohort 2: aged 6 to < 24 months, n = 6) received ascending doses (2, 4, 10, 20, 30 mg/kg) of once-weekly eteplirsen intravenously over 10 weeks, continuing at 30 mg/kg up to 96 weeks. Endpoints included safety (primary) and pharmacokinetics (secondary). All 15 participants completed the study. Eteplirsen was well tolerated with no treatment-related discontinuations, deaths or evidence of kidney toxicity. Most treatment-emergent adverse events were mild; most common were pyrexia, cough, nasopharyngitis, vomiting, and diarrhea. Eteplirsen pharmacokinetics were consistent between both cohorts and with previous clinical experience in boys with DMD > 4 years of age. These data support the safety and tolerability of eteplirsen at the approved 30-mg/kg dose in boys as young as 6 months old.
Collapse
|
9
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
10
|
Coratti G, Lenkowicz J, Norcia G, Lucibello S, Ferraroli E, d’Amico A, Bello L, Pegoraro E, Messina S, Ricci F, Mongini T, Berardinelli A, Masson R, Previtali SC, D’angelo G, Magri F, Comi GP, Politano L, Passamano L, Vita G, Sansone VA, Albamonte E, Panicucci C, Bruno C, Pini A, Bertini E, Patarnello S, Pane M, Mercuri E. Age, corticosteroid treatment and site of mutations affect motor functional changes in young boys with Duchenne Muscular Dystrophy. PLoS One 2022; 17:e0271681. [PMID: 35905042 PMCID: PMC9337636 DOI: 10.1371/journal.pone.0271681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to establish the possible effect of age, corticosteroid treatment and brain dystrophin involvement on motor function in young boys affected by Duchenne Muscular Dystrophy who were assessed using the North Star Ambulatory Assessment between the age of 4 and 7 years. The study includes 951 North Star assessments from 226 patients. Patients were subdivided according to age, to the site of mutation and therefore to the involvement of different brain dystrophin isoforms and to corticosteroids duration. There was a difference in the maximum North Star score achieved among patients with different brain dystrophin isoforms (p = 0.007). Patients with the involvement of Dp427, Dp140 and Dp71, had lower maximum NSAA scores when compared to those with involvement of Dp427 and Dp140 or of Dp427 only. The difference in the age when the maximum score was achieved in the different subgroups did not reach statistical significance. Using a linear regression model on all assessments we found that each of the three variables, age, site of mutation and corticosteroid treatment had an influence on the NSAA values and their progression over time. A second analysis, looking at 12-month changes showed that within this time interval the magnitude of changes was related to corticosteroid treatment but not to site of mutation. Our findings suggest that each of the considered variables appear to play a role in the progression of North Star scores in patients between the age of 4 and 7 years and that these should be carefully considered in the trial design of boys in this age range.
Collapse
Affiliation(s)
- Giorgia Coratti
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Jacopo Lenkowicz
- Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Norcia
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Simona Lucibello
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elisabetta Ferraroli
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Adele d’Amico
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Ricci
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Turin, Torino, Italy
| | | | - Riccardo Masson
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | - Francesca Magri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigia Passamano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gianluca Vita
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Valeria A. Sansone
- The NEMO Center in Milan, Neurorehabilitation Unit, ASST Niguarda Hospital, University of Milan, Milan, Italy
| | - Emilio Albamonte
- The NEMO Center in Milan, Neurorehabilitation Unit, ASST Niguarda Hospital, University of Milan, Milan, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, and Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health—DINOGMI, University of Genova, Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, and Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health—DINOGMI, University of Genova, Genoa, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, UOC di Neuropsichiatria dell’età pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Stefano Patarnello
- Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marika Pane
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eugenio Mercuri
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- * E-mail:
| | | |
Collapse
|
11
|
Peng F, Xu H, Song Y, Xu K, Li S, Cai X, Guo Y, Gong L. Utilization of T1-Mapping for the pelvic and thigh muscles in Duchenne Muscular Dystrophy: a quantitative biomarker for disease involvement and correlation with clinical assessments. BMC Musculoskelet Disord 2022; 23:681. [PMID: 35842609 PMCID: PMC9288085 DOI: 10.1186/s12891-022-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the disease distribution and severity detected by T1-mapping in Duchenne muscular dystrophy (DMD). Furthermore, the correlation between skeletal muscle T1-values and clinical assessments is less studied. Hence, the purposes of our study are to investigate quantitative T1-mapping in detecting the degree of disease involvement by detailed analyzing the hip and thigh muscle, future exploring the predicting value of T1-mapping for the clinical status of DMD. METHODS Ninety-two DMD patients were included. Grading fat infiltration and measuring the T1-values of 19 pelvic and thigh muscles (right side) in axial T1-weighted images (T1WI) and T1-maps, respectively, the disease distribution and severity were evaluated and compared. Clinical assessments included age, height, weight, BMI, wheelchair use, timed functional tests, NorthStar ambulatory assessment (NSAA) score, serum creatine kinase (CK) level. Correlation analysis were performed between the muscle T1-value and clinical assessments. Multiple linear regression analysis was conducted for the independent association of T1-value and motor function. RESULTS The gluteus maximus had the lowest T1-value, and the gracilis had the highest T1-value. T1-value decreased as the grade of fat infiltration increased scored by T1WI (P < 0.001). The decreasing of T1-values was correlated with the increase of age, height, weight, wheelchair use, and timed functional tests (P < 0.05). T1-value correlated with NSAA (r = 0.232-0.721, P < 0.05) and CK (r = 0.208-0.491, P < 0.05) positively. T1-value of gluteus maximus, tensor fascia, vastus lateralis, vastus intermedius, vastus medialis, and adductor magnus was independently associated with the clinical motor function tests (P < 0.05). Interclass correlation coefficient (ICC) analysis and Bland-Altman plots showed excellent inter-rater reliability of T1-value region of interest (ROI) measurements. CONCLUSION T1-mapping can be used as a quantitative biomarker for disease involvement, further assessing the disease severity and predicting motor function in DMD.
Collapse
Affiliation(s)
- Fei Peng
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Shuhao Li
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
| | - Xiaotang Cai
- Department of Pediatrics Neurology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Lianggeng Gong
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
12
|
Biggar WD, Skalsky A, McDonald CM. Comparing Deflazacort and Prednisone in Duchenne Muscular Dystrophy. J Neuromuscul Dis 2022; 9:463-476. [PMID: 35723111 PMCID: PMC9398085 DOI: 10.3233/jnd-210776] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deflazacort and prednisone/prednisolone are the current standard of care for patients with Duchenne muscular dystrophy (DMD) based on evidence that they improve muscle strength, improve timed motor function, delay loss of ambulation, improve pulmonary function, reduce the need for scoliosis surgery, delay onset of cardiomyopathy, and increase survival. Both have been used off-label for many years (choice dependent on patient preference, cost, and geographic location) before FDA approval of deflazacort for DMD in 2017. In this review, we compare deflazacort and prednisone/prednisolone in terms of their key pharmacological features, relative efficacy, and safety profiles in patients with DMD. Differentiating features include lipid solubility, pharmacokinetics, changes in gene expression profiles, affinity for the mineralocorticoid receptor, and impact on glucose metabolism. Evidence from randomized clinical trials, prospective studies, meta-analyses, and post-hoc analyses suggests that patients receiving deflazacort experience similar or slower rates of functional decline compared with those receiving prednisone/prednisolone. Regarding side effects, weight gain and behavior side effects appear to be greater with prednisone/prednisolone than with deflazacort, whereas bone health, growth parameters, and cataracts appear worse with deflazacort.
Collapse
Affiliation(s)
- W Douglas Biggar
- University of Toronto, 15583 22nd Side Road, Georgetown, Ontario, Canada
| | - Andrew Skalsky
- University of California San Diego, Rady Children's Hospital San Diego, MC, San Diego, CA, USA
| | - Craig M McDonald
- University of California Davis Health, Departments of Physical Medicine & Rehabilitation and Pediatrics, Lawrence J. Ellison Ambulatory Care Center, Sacramento, CA, USA
| |
Collapse
|
13
|
Suslov V, Suslova G, Lytaev S. MRI Assessment of Motor Capabilities in Patients with Duchenne Muscular Dystrophy According to the Motor Function Measure Scale. Tomography 2022; 8:948-960. [PMID: 35448710 PMCID: PMC9025497 DOI: 10.3390/tomography8020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The research was aimed on the study of motor capabilities on the Motor Function Measure (MFM) scale in ambulant and non-ambulant patients with Duchenne muscular dystrophy, and to conduct a correlation analysis between the results of the MFM scale and Magnetic Resonance Imaging (MRI) data. A total of 46 boys who had genetically confirmed Duchenne muscular dystrophy (age from 2.1 to 16.7 years) and were in clinical rehabilitation were investigated. An assessment was performed according to the Motor Function Measure scale (subsections D1, D2, D3, and the total score), an MRI obtaining T1-VI of the muscles of the pelvic girdle was conducted, and the thighs and lower legs were further assessed in terms of the severity of fibrous-fat degeneration according to the Mercuri scale. In ambulant patients, the ability to stand up and move (D1) was 74.4%, axial and proximal motor functions (D2)—97.6%, distal motor functions (D3)—96.2%, and total score was 87.9%. In non-ambulant patients, the ability to stand up and move (D1) was 1.7%, axial and proximal motor functions (D2)—47%, distal motor functions (D3)—67.5%, and the total score—33.1%. A high inverse correlation (r = −0.7, p < 0.05) of the MRI data of the pelvic girdle and thighs with tasks D1, as well as a noticeable inverse correlation with tasks D2 (r = −0.6, p < 0.05) of the scale MFM, were revealed in the ambulant group of patients. In the non-ambulant group of patients, the MRI data of the lower legs muscles were characterized by a high inverse correlation (r = −0.7, p < 0.05) with tasks D3 and a noticeable inverse correlation (r = −0.6, p < 0.05) with tasks D1 of the MFM scale. Conclusion: The Motor Function Measure scale allows effective assessment of the motor capabilities of patients with Duchenne muscular dystrophy at different stages of the disease, which is confirmed by visualization of fibro-fatty muscle replacement.
Collapse
Affiliation(s)
- Vasily Suslov
- Department of Rehabilitation, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia;
- Correspondence: ; Tel.: +7-911-2297049
| | - Galina Suslova
- Department of Rehabilitation, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia;
| | - Sergey Lytaev
- Department of Normal Physiology, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia;
| |
Collapse
|
14
|
Woof AL, Selby K, Harris SR. Ankle contractures and functional motor decline in Duchenne muscular dystrophy. Brain Dev 2022; 44:105-113. [PMID: 34629214 DOI: 10.1016/j.braindev.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION This prospective, correlational pilot study investigated the relationship between ankle plantar flexion contractures and motor function in boys with Duchenne muscular dystrophy in British Columbia (BC), Canada. PARTICIPANTS Ambulatory boys with Duchenne muscular dystrophy were recruited from BC Children's Hospital, which follows everyone with Duchenne muscular dystrophy in BC ≤ 18 years of age (n = 14). METHODS Spearman and Pearson correlation coefficients were estimated to examine the association between the degree of ankle dorsiflexion range of motion and North Star Ambulatory Assessment scores and the degree of ankle dorsiflexion range and six-minute walk test distances. RESULTS Our analysis showed a moderate correlation between the degree of ankle dorsiflexion range and North Star Ambulatory Assessment scores [rho (14) = 0.50; p = 0.070] and a weak correlation between ankle dorsiflexion range of motion and six-minute walk test distances [rho (13) = 0.08; p = 0.747], however neither result was statistically significant. DISCUSSION Although a significant relationship between ankle dorsiflexion range of motion and motor function was not found, the variability of ankle dorsiflexion range suggests challenges with preventing ankle contracture. This reinforces the importance of assessing ankle range of motion in boys with Duchenne muscular dystrophy with sufficient frequency to identify a need for additional interventions.
Collapse
Affiliation(s)
- Angelina L Woof
- Rehabilitation Science Online Programs, Faculty of Medicine, University of British Columbia, T325-2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada; BC Centre for Ability, 2805 Kingsway, Vancouver, British Columbia V5R 5H9, Canada
| | - Kathryn Selby
- British Columbia Children's Hospital, University of British Columbia, 4500 Oak St., Vancouver, British Columbia V6H 3N1, Canada
| | - Susan R Harris
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
15
|
Rocha CT, Escolar DM. Treatment and Management of Muscular Dystrophies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Bitetti I, Mautone C, Bertella M, Manna MR, Varone A. Early treatment with Ataluren of a 2-year-old boy with nonsense mutation Duchenne dystrophy. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:184-186. [PMID: 35047759 PMCID: PMC8744012 DOI: 10.36185/2532-1900-062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/11/2021] [Indexed: 11/03/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked myopathy caused by mutations, in most cases deletions and duplications, in the dystrophin gene. Point mutations account for 13% and stop codon mutations are even rarer. Ataluren was approved for the treatment of DMD caused by nonsense mutations in 2014, and several clinical trials documented its efficacy and safety. However, few real-life experience data is available, especially in pediatric age. We report the case of a 2-year- ambulant child affected by DMD caused by the stop-codon mutation c.10801C > T, p.Gln3601X in exon 76, who was early treated with Ataluren at a dosage of 40 mg/kg/die, and presented a rapid improvement in both muscle strength and cognitive and social skills.
Collapse
Affiliation(s)
- Ilaria Bitetti
- Pediatric Neurology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Cinzia Mautone
- Pediatric Neurology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Marianna Bertella
- Neurorehabilitation Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Rosaria Manna
- Neurorehabilitation Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Antonio Varone
- Pediatric Neurology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| |
Collapse
|
17
|
Ambrosini A, Baldessari D, Pozzi S, Battaglia M, Beltrami E, Merico AM, Rasconi M, Monaco L. Fondazione Telethon and Unione Italiana Lotta alla Distrofia Muscolare, a successful partnership for neuromuscular healthcare research of value for patients. Orphanet J Rare Dis 2021; 16:408. [PMID: 34600567 PMCID: PMC8487484 DOI: 10.1186/s13023-021-02047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
In 2001, Fondazione Telethon and the Italian muscular dystrophy patient organisation Unione Italiana Lotta alla Distrofia Muscolare joined their efforts to design and launch a call for grant applications specifically dedicated to clinical projects in the field of neuromuscular disorders. This strategic initiative, run regularly over the years and still ongoing, aims at supporting research with impact on the daily life of people with a neuromuscular condition and is centred on macro-priorities identified by the patient organisation. It is investigator-driven, and all proposals are peer-reviewed for quality and feasibility. Over the years, this funding program contributed to strengthening the activities of the Italian neuromuscular clinical network, reaching many achievements in healthcare research. Moreover, it has been an enabling factor for innovative therapy experimentation at international level and prepared the clinical ground to make therapies available to Italian patients. The ultimate scope of healthcare research is to ameliorate the delivery of care. In this paper, the achievements of the funded studies are analysed also from this viewpoint, to ascertain to which extent they have fulfilled the original goals established by the patient organisation. The evidence presented indicates that this has been a highly fruitful program. Factors that contributed to its success, lessons learned, challenges, and issues that remain to be addressed are discussed to provide practical examples of an experience that could inspire also other organizations active in the field of rare disease research.
Collapse
Affiliation(s)
| | | | - Silvia Pozzi
- Fondazione Telethon, Via Poerio 14, Milan, Italy
- B.E.A. Consulting, Milan, Italy
| | | | | | | | - Marco Rasconi
- UILDM, Unione Italiana Lotta alla Distrofia Muscolare, Padua, Italy
| | - Lucia Monaco
- Fondazione Telethon, Via Poerio 14, Milan, Italy
| |
Collapse
|
18
|
Yuan W, Chen MH, Zhong J. Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials. STATISTICS IN BIOSCIENCES 2021. [DOI: 10.1007/s12561-021-09321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Flickinger J, Fan J, Wellik A, Ganetzky R, Goldstein A, Muraresku CC, Glanzman AM, Ballance E, Leonhardt K, McCormick EM, Soreth B, Nguyen S, Gornish J, George‐Sankoh I, Peterson J, MacMullen LE, Vishnubhatt S, McBride M, Haas R, Falk MJ, Xiao R, Zolkipli‐Cunningham Z. Development of a Mitochondrial Myopathy‐Composite Assessment Tool. JCSM CLINICAL REPORTS 2021. [DOI: 10.1002/crt2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amanda Wellik
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Allan M. Glanzman
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth Ballance
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Kristin Leonhardt
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Brianna Soreth
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Sara Nguyen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Jennifer Gornish
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Ibrahim George‐Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - James Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Shailee Vishnubhatt
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Michael McBride
- Cardiovascular Exercise Physiology Laboratory, Division of Cardiology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Richard Haas
- Metabolic and Mitochondrial Disease Center La Jolla CA USA
- Department of Neurosciences University of California San Diego School of Medicine La Jolla CA USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Zarazuela Zolkipli‐Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| |
Collapse
|
20
|
Finkel RS, McDonald CM, Lee Sweeney H, Finanger E, Neil Knierbein E, Wagner KR, Mathews KD, Marks W, Statland J, Nance J, McMillan HJ, McCullagh G, Tian C, Ryan MM, O'Rourke D, Müller-Felber W, Tulinius M, Bryan Burnette W, Nguyen CT, Vijayakumar K, Johannsen J, Phan HC, Eagle M, MacDougall J, Mancini M, Donovan JM. A Randomized, Double-Blind, Placebo-Controlled, Global Phase 3 Study of Edasalonexent in Pediatric Patients with Duchenne Muscular Dystrophy: Results of the PolarisDMD Trial. J Neuromuscul Dis 2021; 8:769-784. [PMID: 34120912 PMCID: PMC8543277 DOI: 10.3233/jnd-210689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Edasalonexent (CAT-1004) is an orally-administered novel small molecule drug designed to inhibit NF-κB and potentially reduce inflammation and fibrosis to improve muscle function and thereby slow disease progression and muscle decline in Duchenne muscular dystrophy (DMD). Objective: This international, randomized 2 : 1, placebo-controlled, phase 3 study in patients ≥4 – < 8 years old with DMD due to any dystrophin mutation examined the effect of edasalonexent (100 mg/kg/day) compared to placebo over 52 weeks. Methods: Endpoints were changes in the North Star Ambulatory Assessment (NSAA; primary) and timed function tests (TFTs; secondary). Assessment of health-related function used the Pediatric Outcomes Data Collection tool (PODCI). Results: One hundred thirty one patients received edasalonexent (n = 88) and placebo (n = 43). At week 52, differences between edasalonexent and placebo for NSAA total score and TFTs were not statistically significant, although there were consistently less functional declines in the edasalonexent group. A pre-specified analysis by age demonstrated that younger patients (≤6.0 years) showed more robust and statistically significant differences between edasalonexent and placebo for some assessments. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly involved the gastrointestinal system (primarily diarrhea). Conclusions: Edasalonexent was generally well-tolerated with a manageable safety profile at the dose of 100 mg/kg/day. Although edasalonexent did not achieve statistical significance for improvement in primary and secondary functional endpoints for assessment of DMD, subgroup analysis suggested that edasalonexent may slow disease progression if initiated before 6 years of age. (NCT03703882)
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL
| | | | - H Lee Sweeney
- University of Florida College of Medicine, Gainesville, FL
| | | | | | - Kathryn R Wagner
- Kennedy Krieger Institute, The Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | - Cuixia Tian
- Cincinnati Children's Hospital & University of Cincinnati, Cincinnati, OH
| | | | | | | | - Mar Tulinius
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | | | | | | | | | - Han C Phan
- Rare Disease Research, LLC, Atlanta GA, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Suthar R, Reddy BVC, Malviya M, Sirari T, Attri SV, Patial A, Tageja M, Didwal G, Khandelwal NK, Saini AG, Saini L, Sahu JK, Dayal D, Sankhyan N. Bone density and bone health alteration in boys with Duchenne Muscular Dystrophy: a prospective observational study. J Pediatr Endocrinol Metab 2021; 34:573-581. [PMID: 33838091 DOI: 10.1515/jpem-2020-0680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Boys with Duchenne Muscular Dystrophy (DMD) are at increased risk for compromised bone health, manifesting as low-impact trauma long bone fractures and vertebral compression fractures. METHODS In a prospective observational study, we studied bone health parameters in North Indian boys with DMD. We consecutively enrolled ambulatory boys with DMD on glucocorticoid therapy. Bone health was evaluated with X-ray spine, Dual-energy X-ray absorptiometry (DXA), serum calcium, vitamin D3 (25[OH]D), 1,25-dihyroxyvitamin D3 (1,25[OH]2D3), serum osteocalcin, osteopontin, and N terminal telopeptide of type 1 collagen (Ntx) levels. RESULTS A total of 76 boys with DMD were enrolled. The median age was 8.5 (interquartile range [IQR] 7.04-10.77) years. Among these, seven (9.2%) boys had long bone fractures, and four (5.3%) had vertebral compression fractures. Fifty-four (71%) boys underwent DXA scan, and among these 31 (57%) had low bone mineral density (BMD, ≤-2 z-score) at the lumbar spine. The mean BMD z-score at the lumbar spine was -2.3 (95% confidence interval [CI] = -1.8, -2.8), and at the femoral neck was -2.5 (95% CI = -2, -2.9). 25(OH)D levels were deficient in 68 (89.5%, n=76) boys, and 1,25(OH)2D3 levels were deficient in all. Mean serum osteocalcin levels were 0.68 ± 0.38 ng/mL (n=54), serum osteopontin levels were 8.6 ± 4.6 pg/mL (n=54) and serum Ntx levels were 891 ± 476 nmol/L (n=54). Boys with low BMD received glucocorticoids for longer duration, in comparison to those with normal BMD (median, IQR [16.9 (6-34) months vs. 7.8 (4.8-13.4) months]; p=0.04). CONCLUSIONS Bone health is compromised in North Indian boys with DMD. BMD at the lumbar spine is reduced in more than half of boys with DMD and nearly all had vitamin D deficiency on regular vitamin D supplements. Longer duration of glucocorticoid therapy is a risk factor for low BMD in our cohort.
Collapse
Affiliation(s)
- Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - B V Chaithanya Reddy
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Manisha Malviya
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Titiksha Sirari
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Savita Verma Attri
- Pediatric Biochemistry Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Ajay Patial
- Pediatric Biochemistry Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Minni Tageja
- Pediatric Biochemistry Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Gunjan Didwal
- Pediatric Biochemistry Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | | | - Arushi G Saini
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Jitendra K Sahu
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Devi Dayal
- Pediatric Endocrinology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, APC, PGIMER, Chandigarh, India
| |
Collapse
|
22
|
Finkel RS, Finanger E, Vandenborne K, Sweeney HL, Tennekoon G, Shieh PB, Willcocks R, Walter G, Rooney WD, Forbes SC, Triplett WT, Yum SW, Mancini M, MacDougall J, Fretzen A, Bista P, Nichols A, Donovan JM. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31:385-396. [PMID: 33678513 DOI: 10.1016/j.nmd.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL, United States.
| | - Erika Finanger
- Oregon Health & Science University, Portland, OR, United States
| | | | - H Lee Sweeney
- University of Florida Health, Gainesville, FL, United States
| | - Gihan Tennekoon
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Perry B Shieh
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Glenn Walter
- University of Florida Health, Gainesville, FL, United States
| | | | - Sean C Forbes
- University of Florida Health, Gainesville, FL, United States
| | | | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Mancini
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | | | | - Pradeep Bista
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | - Andrew Nichols
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | |
Collapse
|
23
|
Norcia G, Lucibello S, Coratti G, Onesimo R, Pede E, Ferrantini G, Brogna C, Cicala G, Carnicella S, Forcina N, Fanelli L, Pane M, Mercuri E. Early Gross Motor Milestones in Duchenne Muscular Dystrophy. J Neuromuscul Dis 2021; 8:453-456. [PMID: 33935100 PMCID: PMC8385509 DOI: 10.3233/jnd-210640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Over the last few years there has been increasing attention to detect early signs of impairment in young Duchenne muscular dystrophy boys but less has been reported on whether the delay may also affect the very early aspects of motor development, such as gross motor milestones. OBJECTIVE The aim of this study was to retrospectively assess the age when early motor milestones were achieved in Duchenne muscular dystrophy. METHODS The study is a retrospective analysis of data collected as part of a larger natural history project. Information on past medical history, collected at the time the boys were seen for the first time, were recorded and re available on clinical notes and on electronic CRF. RESULTS Data were collected in 134 DMD boys. Sitting was achieved at 7.04 months. The % of DMD boys not achieving sitting by 9.4 months was 10%, ranging from 2% in the boys with mutations before exon 44 to 33% in those beyond exon 63. Walking was achieved at a mean age of 16.35 months. The % of DMD boys not achieving independent walking by 18 months was 17%, ranging from 9% in the boys with mutations between 44 and 51 to 42% in those beyond exon 63. CONCLUSIONS Our results showed that the risk of a delay in sitting and walking was increasingly high in patients with mutations predictive of the involvement of different brain dystrophin isoforms.
Collapse
Affiliation(s)
- Giulia Norcia
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Simona Lucibello
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgia Coratti
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Onesimo
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elisa Pede
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gloria Ferrantini
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Brogna
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Sara Carnicella
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicola Forcina
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lavinia Fanelli
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marika Pane
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Miller NF, Alfano LN, Iammarino MA, Connolly AM, Moore-Clingenpeel M, Powers BR, Tsao CY, Waldrop MA, Flanigan KM, Mendell JR, Lowes LP. Natural History of Steroid-Treated Young Boys With Duchenne Muscular Dystrophy Using the NSAA, 100m, and Timed Functional Tests. Pediatr Neurol 2020; 113:15-20. [PMID: 32979653 DOI: 10.1016/j.pediatrneurol.2020.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Clinical trials targeting younger cohorts of boys with Duchenne muscular dystrophy are necessary as earlier intervention may maximize treatment effect. Boys with Duchenne muscular dystrophy often have gross motor delays very early in life, and although they gain skills, they are on a lower trajectory than typical peers. Quantifying the natural rate of motor maturation in Duchenne muscular dystrophy from an early age permits identification of deviations from the expected trajectory related to treatment effects. METHODS The purpose of our study was to define the natural history in boys aged from ≥3 to <8 years using the North Star Ambulatory Assessment (NSAA), 100-meter timed test (100m), 10-meter walk/run (10m), time to rise (Rise), and 4-stair climb (4SC). Assessments were completed as standard of care during regularly scheduled clinic visits. RESULTS One hundred sixty-two boys with DMD aged 3.1 to 7.9 years on glucocorticoids were evaluated using one or more of the following tests as appropriate for age: NSAA (N = 158; 3.1-7.9 years), 100m (N = 131; 3.4-7.9 years), 10m (N = 162; 3.1-7.9 years), Rise (N = 160; 3.1-7.9 years), and 4SC (N = 153; 3.1-7.9 years). Longitudinal data are presented by age in a subcohort (N = 64). CONCLUSIONS Our study documents the baseline function of boys with DMD who are being treated with corticosteroids. These data will be useful to compare ongoing and future therapeutic intervention(s) for DMD.
Collapse
Affiliation(s)
- Natalie F Miller
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.
| | - Lindsay N Alfano
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Megan A Iammarino
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Anne M Connolly
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Neurology, The College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Melissa Moore-Clingenpeel
- Biostatistics Resource, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Brenna R Powers
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Chang-Yong Tsao
- Department of Neurology, The College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Megan A Waldrop
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kevin M Flanigan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Linda P Lowes
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|