1
|
Martin C, Servais L. X-linked myotubular myopathy: an untreated treatable disease. Expert Opin Biol Ther 2025; 25:379-394. [PMID: 40042390 DOI: 10.1080/14712598.2025.2473430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION X-linked myotubular myopathy (XLMTM) is a life-threatening congenital disorder characterized by severe respiratory and motor impairment. This disease presents significant therapeutic challenges, with various strategies being explored to address its underlying pathology. Among these approaches, gene replacement therapy has demonstrated substantial functional improvements in clinical trials. However, safety issues emerged across different therapeutic approaches, highlighting the need for further research. AREAS COVERED This review provides a comprehensive analysis of the data gathered from natural history studies, preclinical models and clinical trials, with a particular focus on gene replacement therapy for XLMTM. The different therapeutic strategies are addressed, including their outcomes and associated safety concerns. EXPERT OPINION Despite the encouraging potential of gene therapy for XLMTM, the occurrence of safety challenges emphasizes the urgent need for a more comprehensive understanding of the disease's complex phenotype. Enhancing preclinical models to more accurately mimic the full spectrum of disease manifestations will be crucial for optimizing therapeutic strategies and reducing risks in future clinical applications.
Collapse
Affiliation(s)
- Cristina Martin
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Pediatrics, Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
2
|
Souza PVS, Haselkorn T, Baima J, Oliveira RW, Hernández F, Birck MG, França MC. A healthcare claims analysis to identify and characterize patients with suspected X-Linked Myotubular Myopathy (XLMTM) in the Brazilian Healthcare System. Orphanet J Rare Dis 2024; 19:188. [PMID: 38715109 PMCID: PMC11077759 DOI: 10.1186/s13023-024-03144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital disease, which is not well-defined. To our knowledge, no studies characterizing the XLMTM disease burden have been conducted in Brazil. We identified and described patients with suspected XLMTM using administrative claims data from the Brazilian public healthcare system. METHODS Data from 2015 to 2019 were extracted from the DATASUS database. As no XLMTM-specific ICD-10 code was available, a stepwise algorithm was applied to identify patients with suspected XLMTM by selecting male patients with a congenital myopathies code (G71.2), aged < 18 years at index date (first claim of G71.2), with an associated diagnostic procedure (muscle biopsy/genetic test) and without spinal muscular atrophy or Duchenne muscular dystrophy. We attempted to identify patients with suspected severe XLMTM based on use of both respiratory and feeding support, which are nearly universal in the care of XLMTM patients. Analyses were performed for the overall cohort and stratified by age at index date < 5 years old and ≥ 5 years old. RESULTS Of 173 patients with suspected XLMTM identified, 39% were < 5 years old at index date. Nearly all (N = 166) patients (96%) were diagnosed by muscle biopsy (91% of patients < 5 years old and 99% of patients ≥ 5 years old), six (3.5%) were diagnosed by clinical evaluation (8% of patients < 5 years old and 1% of patients ≥ 5 years old), and one was diagnosed by a genetic test. Most patients lived in Brasilia (n = 55), São Paulo (n = 33) and Minas Gerais (n = 27). More than 85% of patients < 5 years old and approximately 75% of patients ≥ 5 years old had physiotherapy at the index date. In both age groups, nearly 50% of patients required hospitalization at some point and 25% required mobility support. Respiratory and feeding support were required for 3% and 12% of patients, respectively, suggesting that between 5 and 21 patients may have had severe XLMTM. CONCLUSION In this real-world study, genetic testing for XLMTM appears to be underutilized in Brazil and may contribute to underdiagnosis of the disease. Access to diagnosis and care is limited outside of specific regions with specialized clinics and hospitals. Substantial use of healthcare resources included hospitalization, physiotherapy, mobility support, and, to a lesser extent, feeding support and respiratory support.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcondes C França
- Department of Neurology, University of Campinas (UNICAMP), School of Medical Sciences, Campinas, Brazil.
| |
Collapse
|
3
|
Shieh PB, Kuntz NL, Dowling JJ, Müller-Felber W, Bönnemann CG, Seferian AM, Servais L, Smith BK, Muntoni F, Blaschek A, Foley AR, Saade DN, Neuhaus S, Alfano LN, Beggs AH, Buj-Bello A, Childers MK, Duong T, Graham RJ, Jain M, Coats J, MacBean V, James ES, Lee J, Mavilio F, Miller W, Varfaj F, Murtagh M, Han C, Noursalehi M, Lawlor MW, Prasad S, Rico S. Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial. Lancet Neurol 2023; 22:1125-1139. [PMID: 37977713 DOI: 10.1016/s1474-4422(23)00313-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1. METHODS ASPIRO is an open-label, dose-escalation trial at seven academic medical centres in Canada, France, Germany, and the USA. We included boys younger than 5 years with X-linked myotubular myopathy who required mechanical ventilator support. The trial was initially in two parts. Part 1 was planned as a safety and dose-escalation phase in which participants were randomly allocated (2:1) to either the first dose level (1·3 × 1014 vector genomes [vg]/kg bodyweight) of resamirigene bilparvovec or delayed treatment, then, for later participants, to either a higher dose (3·5 × 1014 vg/kg bodyweight) of resamirigene bilparvovec or delayed treatment. Part 2 was intended to confirm the dose selected in part 1. Resamirigene bilparvovec was administered as a single intravenous infusion. An untreated control group comprised boys who participated in a run-in study (INCEPTUS; NCT02704273) or those in the delayed treatment cohort who did not receive any dose. The primary efficacy outcome was the change from baseline to week 24 in hours of daily ventilator support. After three unexpected deaths, dosing at the higher dose was stopped and the two-part feature of the study design was eliminated. Because of changes to the study design during its implementation, analyses were done on an as-treated basis and are deemed exploratory. All treated and control participants were included in the safety analysis. The trial is registered with ClinicalTrials.gov, NCT03199469. Outcomes are reported as of Feb 28, 2022. ASPIRO is currently paused while deaths in dosed participants are investigated. FINDINGS Between Aug 3, 2017 and June 1, 2021, 30 participants were screened for eligibility, of whom 26 were enrolled; six were allocated to the lower dose, 13 to the higher dose, and seven to delayed treatment. Of the seven children whose treatment was delayed, four later received the higher dose (n=17 total in the higher dose cohort), one received the lower dose (n=7 total in the lower dose cohort), and two received no dose and joined the control group (n=14 total, including 12 children from INCEPTUS). Median age at dosing or enrolment was 12·1 months (IQR 10·0-30·9; range 9·5-49·7) in the lower dose cohort, 31·1 months (16·0-64·7; 6·8-72·7) in the higher dose cohort, and 18·7 months (10·1-31·5; 5·9-39·3) in the control cohort. Median follow-up was 46·1 months (IQR 41·0-49·5; range 2·1-54·7) for lower dose participants, 27·6 months (24·6-29·1; 3·4-41·0) for higher dose participants, and 28·3 months (9·7-46·9; 5·7-32·7) for control participants. At week 24, lower dose participants had an estimated 77·7 percentage point (95% CI 40·22 to 115·24) greater reduction in least squares mean hours per day of ventilator support from baseline versus controls (p=0·0002), and higher dose participants had a 22·8 percentage point (6·15 to 39·37) greater reduction from baseline versus controls (p=0·0077). One participant in the lower dose cohort and three in the higher dose cohort died; at the time of death, all children had cholestatic liver failure following gene therapy (immediate causes of death were sepsis; hepatopathy, severe immune dysfunction, and pseudomonal sepsis; gastrointestinal haemorrhage; and septic shock). Three individuals in the control group died (haemorrhage presumed related to hepatic peliosis; aspiration pneumonia; and cardiopulmonary failure). INTERPRETATION Most children with X-linked myotubular myopathy who received MTM1 gene replacement therapy had important improvements in ventilator dependence and motor function, with more than half of dosed participants achieving ventilator independence and some attaining the ability to walk independently. Investigations into the risk for underlying hepatobiliary disease in X-linked myotubular myopathy, and the need for monitoring of liver function before gene replacement therapy, are ongoing. FUNDING Astellas Gene Therapies.
Collapse
Affiliation(s)
- Perry B Shieh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Nancy L Kuntz
- Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - James J Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wolfgang Müller-Felber
- Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | | | - Laurent Servais
- I-Motion, Hôpital Armand Trousseau, Paris, France; Neuromuscular Reference Center, Department of Pediatrics, University Hospital Liège, University of Liège, Liège, Belgium; Department of Paediatrics, MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Francesco Muntoni
- NIHR, Great Ormond Street Hospital Biomedical Research Centre, University College London Institute of Child Health, London, UK
| | - Astrid Blaschek
- Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Dimah N Saade
- Division of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sarah Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Lindsay N Alfano
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Buj-Bello
- Généthon, Evry, France; Integrare Research Unit UMR_S951, Université Paris-Saclay, Université d'Evry, Inserm, Généthon, Evry, France
| | - Martin K Childers
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Tina Duong
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Robert J Graham
- Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Minal Jain
- Rehabilitation Medicine Department, NIH Hatfield Clinical Research Center, Bethesda, MD, USA
| | - Julie Coats
- Astellas Gene Therapies, San Francisco, CA, USA
| | - Vicky MacBean
- Department of Health Sciences, Brunel University London, London, UK
| | | | - Jun Lee
- Astellas Gene Therapies, San Francisco, CA, USA
| | - Fulvio Mavilio
- Astellas Gene Therapies, San Francisco, CA, USA; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Cong Han
- Astellas Pharma Global Development, Northbrook, IL, USA
| | | | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | | | | |
Collapse
|
4
|
Servais L, Horton R, Saade D, Bonnemann C, Muntoni F. 261st ENMC International Workshop: Management of safety issues arising following AAV gene therapy. 17th-19th June 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:884-896. [PMID: 37919208 DOI: 10.1016/j.nmd.2023.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
Adeno-associated virus (AAV) gene therapies are demonstrating much promise in the area of neuromuscular disorders. There are now therapies in clinical trials or real-world use for several disorders including spinal muscular atrophy and Duchenne muscular dystrophy. However, there have been several concerning reports of serious adverse events, including deaths. Reporting and monitoring of these is not consistent between trials. Therefore, a group of clinicians, investigators, industry and patient representatives met the weekend of 17th-19th June 2022 to discuss safety issues arising from the use of these therapies. The group shared information on safety events across a spectrum of AAV gene therapy products, both in clinical trials and commercial use. Patterns of serious adverse events were identified and the group discussed methods of identification and management of these as well as new ways of improving information sharing across industry in order to improve the safety of these promising treatments.
Collapse
Affiliation(s)
- Laurent Servais
- MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Division of Child Neurology, Centre de Référence des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège and University of Liège, Avenue de l'Hôpital 1 4000 Liege, Belgium.
| | - Rebecca Horton
- MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Dimah Saade
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Carsten Bonnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, The Dubowitz Neuromuscular Centre, London, UK; National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
5
|
Andreoletti G, Romano O, Chou HJ, Sefid-Dashti MJ, Grilli A, Chen C, Lakshman N, Purushothaman P, Varfaj F, Mavilio F, Bicciato S, Urbinati F. High-throughput transcriptome analyses from ASPIRO, a phase 1/2/3 study of gene replacement therapy for X-linked myotubular myopathy. Am J Hum Genet 2023; 110:1648-1660. [PMID: 37673065 PMCID: PMC10577074 DOI: 10.1016/j.ajhg.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital disease characterized by profound muscle weakness, respiratory failure, and early death. No approved therapy for XLMTM is currently available. Adeno-associated virus (AAV)-mediated gene replacement therapy has shown promise as an investigational therapeutic strategy. We aimed to characterize the transcriptomic changes in muscle biopsies of individuals with XLMTM who received resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) in the ASPIRO clinical trial and to identify potential biomarkers that correlate with therapeutic outcome. We leveraged RNA-sequencing data from the muscle biopsies of 15 study participants and applied differential expression analysis, gene co-expression analysis, and machine learning to characterize the transcriptomic changes at baseline (pre-dose) and at 24 and 48 weeks after resamirigene bilparvovec dosing. As expected, MTM1 expression levels were significantly increased after dosing (p < 0.0001). Differential expression analysis identified upregulated genes after dosing that were enriched in several pathways, including lipid metabolism and inflammatory response pathways, and downregulated genes were enriched in cell-cell adhesion and muscle development pathways. Genes involved in inflammatory and immune pathways were differentially expressed between participants exhibiting ventilator support reduction of either greater or less than 6 h/day after gene therapy compared to pre-dosing. Co-expression analysis identified similarly regulated genes, which were grouped into modules. Finally, the machine learning model identified five genes, including MTM1, as potential RNA biomarkers to monitor the progress of AAV gene replacement therapy. These findings further extend our understanding of AAV-mediated gene therapy in individuals with XLMTM at the transcriptomic level.
Collapse
Affiliation(s)
- Gaia Andreoletti
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA.
| | - Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Hsin-Jung Chou
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | | | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Clarice Chen
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA; Tox and Text Solutions, LLC, Anaheim, CA 92807, USA
| | - Neema Lakshman
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | - Pravin Purushothaman
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | - Fatbardha Varfaj
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fabrizia Urbinati
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA.
| |
Collapse
|
6
|
Graham RJ, Darras BT, Haselkorn T, Fisher D, Genetti CA, Miller W, Beggs AH. Real-world analysis of healthcare resource utilization by patients with X-linked myotubular myopathy (XLMTM) in the United States. Orphanet J Rare Dis 2023; 18:138. [PMID: 37280644 PMCID: PMC10242920 DOI: 10.1186/s13023-023-02733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/14/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy with multisystem involvement, often requiring invasive ventilator support, gastrostomy tube feeding, and wheelchair use. Understanding healthcare resource utilization in patients with XLMTM is important for development of targeted therapies but data are limited. METHODS We analyzed individual medical codes as governed by Healthcare Common Procedure Coding System, Current Procedural Terminology, and International Classification of Diseases, 10th Revision (ICD-10) for a defined cohort of XLMTM patients within a US medical claims database. Using third-party tokenization software, we defined a cohort of XLMTM patient tokens from a de-identified dataset in a research registry of diagnostically confirmed XLMTM patients and de-identified data from a genetic testing company. After approval of an ICD-10 diagnosis code for XLMTM (G71.220) in October 2020, we identified additional patients. RESULTS A total of 192 males with a diagnosis of XLMTM were included: 80 patient tokens and 112 patients with the new ICD-10 code. From 2016 to 2020, the annual number of patients with claims increased from 120 to 154 and the average number of claims per patient per year increased from 93 to 134. Of 146 patients coded with hospitalization claims, 80 patients (55%) were first hospitalized between 0 and 4 years of age. Across all patients, 31% were hospitalized 1-2 times, 32% 3-9 times, and 14% ≥ 10 times. Patients received care from multiple specialty practices: pulmonology (53%), pediatrics (47%), neurology (34%), and critical care medicine (31%). The most common conditions and procedures related to XLMTM were respiratory events (82%), ventilation management (82%), feeding difficulties (81%), feeding support (72%), gastrostomy (69%), and tracheostomy (64%). Nearly all patients with respiratory events had chronic respiratory claims (96%). The most frequent diagnostic codes were those investigating hepatobiliary abnormalities. CONCLUSIONS This innovative medical claims analysis shows substantial healthcare resource use in XLMTM patients that increased over the last 5 years. Most patients required respiratory and feeding support and experienced multiple hospitalizations throughout childhood and beyond for those that survived. This pattern delineation will inform outcome assessments with the emergence of novel therapies and supportive care measures.
Collapse
Affiliation(s)
- Robert J Graham
- Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Basil T Darras
- Department of Neurology, Neuromuscular Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Casie A Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle - BCH3150, Boston, MA, 02115, USA
| | - Weston Miller
- Formerly of Astellas Gene Therapies, San Francisco, CA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle - BCH3150, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Abstract
In vivo gene therapy is rapidly emerging as a new therapeutic paradigm for monogenic disorders. For almost three decades, hemophilia A (HA) and hemophilia B (HB) have served as model disorders for the development of gene therapy. This effort is soon to bear fruit with completed pivotal adeno-associated viral (AAV) vector gene addition trials reporting encouraging results and regulatory approval widely anticipated in the near future for the current generation of HA and HB AAV vectors. Here we review the clinical development of AAV gene therapy for HA and HB and examine outstanding questions that have recently emerged from AAV clinical trials for hemophilia and other monogenic disorders.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lindsey A. George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Dowling JJ, Müller-Felber W, Smith BK, Bönnemann CG, Kuntz NL, Muntoni F, Servais L, Alfano LN, Beggs AH, Bilder DA, Blaschek A, Duong T, Graham RJ, Jain M, Lawlor MW, Lee J, Coats J, Lilien C, Lowes LP, MacBean V, Neuhaus S, Noursalehi M, Pitts T, Finlay C, Christensen S, Rafferty G, Seferian AM, Tsuchiya E, James ES, Miller W, Sepulveda B, Vila MC, Prasad S, Rico S, Shieh PB. INCEPTUS Natural History, Run-in Study for Gene Replacement Clinical Trial in X-Linked Myotubular Myopathy. J Neuromuscul Dis 2022; 9:503-516. [PMID: 35694931 PMCID: PMC9398079 DOI: 10.3233/jnd-210781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death. OBJECTIVE We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study. METHODS Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study. Disease-related adverse events, respiratory and motor function, feeding, secretions, and quality of life were assessed. RESULTS During median (range) follow-up of 13.0 (0.5, 32.9) months, there were 3 deaths (aspiration pneumonia; cardiopulmonary failure; hepatic hemorrhage with peliosis) and 61 serious disease-related events in 20 (59%) participants, mostly respiratory (52 events, 18 participants). Most participants (80%) required permanent invasive ventilation (>16 hours/day); 20% required non-invasive support (6-16 hours/day). Median age at tracheostomy was 3.5 months (95% CI: 2.5, 9.0). Thirty-three participants (97%) required gastrostomy. Thirty-one (91%) participants had histories of hepatic disease and/or prospectively experienced related adverse events or laboratory or imaging abnormalities. CHOP INTEND scores ranged from 19-52 (mean: 35.1). Seven participants (21%) could sit unsupported for≥30 seconds (one later lost this ability); none could pull to stand or walk with or without support. These parameters remained static over time across the INCEPTUS cohort. CONCLUSIONS INCEPTUS confirmed high medical impact, static respiratory, motor and feeding difficulties, and early death in boys with XLMTM. Hepatobiliary disease was identified as an under-recognized comorbidity. There are currently no approved disease-modifying treatments.
Collapse
Affiliation(s)
| | | | | | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Nancy L Kuntz
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Francesco Muntoni
- National Institute for Health Research (NIHR) Great Ormond Street (GOS) Hospital Biomedical Research Centre, University College London Institute of Child Health, London, UK
| | - Laurent Servais
- I-Motion, Hôpital Armand Trousseau, Paris, France.,Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| | | | - Alan H Beggs
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Astrid Blaschek
- Dr. v. Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | | | - Robert J Graham
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Minal Jain
- NIH Hatfield Clinical Research Center, Bethesda, MD, USA
| | | | - Jun Lee
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Julie Coats
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | | | | | - Victoria MacBean
- Brunel University London, London, UK and King's College 32 London, London, UK
| | - Sarah Neuhaus
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mojtaba Noursalehi
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | - Caroline Finlay
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Sarah Christensen
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | | | | | | | - Emma S James
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Weston Miller
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | - Bryan Sepulveda
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Maria Candida Vila
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Suyash Prasad
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Salvador Rico
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | | |
Collapse
|