1
|
Remmel HL, Hammer SS, Neff LA, Dorchies OM, Scapozza L, Fischer D, Quay SC. A Hypothesized Therapeutic Role of (Z)-Endoxifen in Duchenne Muscular Dystrophy (DMD). Degener Neurol Neuromuscul Dis 2025; 15:1-15. [PMID: 40124418 PMCID: PMC11923445 DOI: 10.2147/dnnd.s496904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an inherited, X-linked disorder that is progressive, debilitating, and ultimately fatal. The current therapeutic landscape offers no cures, but does include palliative treatments that delay disease progression, and there is progress on genetic therapies that have the promise to be curative. There is much room for new therapies, and foundational work with the estrogen receptor modulator tamoxifen suggests the potential of a unique spectrum of therapeutic benefit from endoxifen, a metabolite of tamoxifen. Here we describe the potential for this new DMD therapy in the context of the overall DMD therapeutic landscape.
Collapse
Affiliation(s)
- H Lawrence Remmel
- Atossa Therapeutics, Inc., Seattle, WA, USA
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Drukier Institute for Children’s Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Laurence A Neff
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Université Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Dirk Fischer
- Division of Pediatric Neurology and Developmental Medicine, University Children’s Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | | |
Collapse
|
2
|
Henzi BC, Putananickal N, Schmidt S, Nagy S, Rubino-Nacht D, Schaedelin S, Amthor H, Childs AM, Deconinck N, Horrocks I, Houwen-van Opstal S, Laugel V, Lobato ML, Osorio AN, Schara-Schmidt U, Spinty S, von Moers A, Lawrence F, Hafner P, Dorchies OM, Fischer D. Safety and efficacy of tamoxifen in non-ambulant patients with Duchenne muscular dystrophy: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial (TAMDMD Group B). Neuromuscul Disord 2025; 47:105275. [PMID: 39879732 DOI: 10.1016/j.nmd.2025.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Most patients with Duchenne muscular dystrophy (DMD) are non-ambulant. Preserving proximal motor function is crucial, rarely studied. Tamoxifen, a selective oestrogen receptor modulator, reduced signs of muscular pathology in a DMD mouse model. Our objective was to assess the safety and efficacy of tamoxifen over 48 weeks in non-ambulant DMD patients. In this multicentre, randomised, double-blind, placebo-controlled, phase 3 trial at six European centres boys aged 10-16 years with genetically diagnosed DMD, non-ambulant and off corticosteroid treatment for ≥6 months, randomly assigned (1:1) to either 20 mg/day tamoxifen orally or placebo were included. The primary outcome was change in D2 motor function measure from baseline to week 48. Of 15 non-ambulant male patients with DMD screened, 14 were enrolled from January 24th, 2019, to January 6th, 2021. Eight patients were randomised to the treatment and six to the placebo group. The primary efficacy outcome did not differ significantly between tamoxifen and placebo (7.8 percentage points, 95 % CI, -26.82 to 11.22, p=0.359) with a trend not favouring tamoxifen. No deaths or life-threatening serious AEs occurred. Tamoxifen was safe but due to insufficient clinical evidence, it cannot be recommended as a treatment option for DMD. Trial registration: ClinicalTrials.gov (NCT03354039).
Collapse
Affiliation(s)
- Bettina C Henzi
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland; Division of Neuropediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Niveditha Putananickal
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Simone Schmidt
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Sara Nagy
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Rubino-Nacht
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Helge Amthor
- Service de Neurologie et Réanimation Pédiatriques, APHP Paris Saclay, Hôpital Raymond Poincaré, 92380, Garches, France
| | | | - Nicolas Deconinck
- Department of Paediatric Neurology and Neuromuscular Reference Center, Hôpital Universitaire des Enfants Reine Fabiola (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Iain Horrocks
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Saskia Houwen-van Opstal
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vincent Laugel
- Department of Pediatric Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Mercedes Lopez Lobato
- Sección de Neurología Pediátrica, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Andrés Nascimento Osorio
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu and Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Spinty
- Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Arpad von Moers
- Department of Pediatrics, DRK Kliniken Berlin Westend, Berlin, Germany
| | | | - Patricia Hafner
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Dirk Fischer
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Zhao L, Shi Y, Hu C, Zhou S, Li H, Zhang L, Qian C, Zhou Y, Wang Y, Li X. Comprehensive analysis of 2097 patients with dystrophinopathy based on a database from 2011 to 2021. Orphanet J Rare Dis 2024; 19:311. [PMID: 39182149 PMCID: PMC11344408 DOI: 10.1186/s13023-024-03217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND An increasing number of clinical trials for new therapeutic strategies are underway or being considered for dystrophinopathy. Having detailed data on the natural progression of this condition is crucial for assessing the effectiveness of new drugs. However, there's a lack of data regarding the long-term data on the natural course and how it's managed in China. In this study, we offer a comprehensive overview of clinical and molecular findings, as well as treatment outcomes in the Chinese population. METHODS Institutional data on all patients with dystrophinopathy from August 2011 to August 2021 were retrospectively reviewed. The data included geographic distribution, age at diagnosis, molecular findings, and treatment options, such as corticosteroids, cardiac interventions, and clinical outcomes. RESULTS In total, 2097 patients with dystrophinopathy, including 1703 cases of Duchenne muscular dystrophy (DMD), 311 cases of Becker muscular dystrophy (BMD), 46 cases of intermediate muscular dystrophy (IMD), and 37 cases categorized as "pending" (individuals with an undetermined phenotype), were registered in the Children's Hospital of Fudan University database for dystrophinopathy from August 2011 to August 2021. The spectrum of identified variants included exonic deletions (66.6%), exonic duplications (10.7%), nonsense variants (10.3%), splice-site variants (4.5%), small deletions (3.5%), small insertions/duplications (1.8%), and missense variants (0.9%). Four deep intronic variants and two inversion variants were identified. Regarding treatment, glucocorticoids were administered to 54.4% of DMD patients and 39.1% of IMD patients. The median age at loss of ambulation was 2.5 years later in DMD patients who received glucocorticoid treatment. Overall, one cardiac medicine at least was prescribed to 7.4% of DMD patients, 8.3% of IMD patients, and 2.6% of BMD patients. Additionally, ventilator support was required by four DMD patients. Eligibility for exon skipping therapy was found in 55.3% of DMD patients, with 12.9%, 10%, and 9.6% of these patients being eligible for skipping exons 51, 53, and 45, respectively. CONCLUSIONS This is one of the largest studies to have evaluated the natural history of dystrophinopathy in China, which is particularly conducive to the recruitment of eligible patients for clinical trials and the provision of real-world data to support drug development.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Yiyun Shi
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Hui Li
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China
| | - Lifeng Zhang
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, China
| | - Chuang Qian
- Department of Orthopedics, Children's Hospital of Fudan University, Shanghai, China
| | - Yiyao Zhou
- Department of Clinical Nutrition, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
4
|
Dillon HT, Foulkes SJ, Baik AH, Scott JM, Touyz RM, Herrmann J, Haykowsky MJ, La Gerche A, Howden EJ. Cancer Therapy and Exercise Intolerance: The Heart Is But a Part: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:496-513. [PMID: 39239327 PMCID: PMC11372306 DOI: 10.1016/j.jaccao.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 09/07/2024] Open
Abstract
The landscape of cancer therapeutics is continually evolving, with successes in improved survivorship and reduced disease progression for many patients with cancer. Improved cancer outcomes expose competing comorbidities, some of which may be exacerbated by cancer therapies. The leading cause of disability and death for many early-stage cancers is cardiovascular disease (CVD), which is often attributed to direct or indirect cardiac injury from cancer therapy. In this review, the authors propose that toxicities related to conventional and novel cancer therapeutics should be considered beyond the heart. The authors provide a framework using the oxygen pathway to understand the impact of cancer treatment on peak oxygen uptake, a marker of integrative cardiopulmonary function and CVD risk. Peripheral toxicities and the impact on oxygen transport are discussed. Consideration for the broad effects of cancer therapies will improve the prediction and identification of cancer survivors at risk for CVD, functional disability, and premature mortality and those who would benefit from therapeutic intervention, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Hayley T. Dillon
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Stephen J. Foulkes
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
- Heart Exercise and Research Trials (HEART) Lab, St Vincent’s Institute, Fitzroy, Victoria, Australia
| | - Alan H. Baik
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jessica M. Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark J. Haykowsky
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - André La Gerche
- Heart Exercise and Research Trials (HEART) Lab, St Vincent’s Institute, Fitzroy, Victoria, Australia
- Cardiology Department, St. Vincent’s Hospital Melbourne, Fitzroy, Australia
- HEART Lab, Victor Chang Cardiovascular Research Institute, Darlinghurst, NSW, Australia
| | - Erin J. Howden
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
6
|
Landfeldt E, Aleman A, Abner S, Zhang R, Werner C, Tomazos I, Lochmüller H, Quinlivan R. Factors Associated with Respiratory Health and Function in Duchenne Muscular Dystrophy: A Systematic Review and Evidence Grading. J Neuromuscul Dis 2024; 11:25-57. [PMID: 37980679 PMCID: PMC10789346 DOI: 10.3233/jnd-230094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Despite advances in the medical management of the disease, respiratory involvement remains a significant source of morbidity and mortality in children and adults with Duchenne muscular dystrophy (DMD). OBJECTIVE The objective of this systematic literature review was to synthesize and grade published evidence of factors associated with respiratory health and function in DMD. METHODS We searched MEDLINE, Embase, and the Cochrane Library for records of studies published from January 1, 2000 (to ensure relevance to current care practices), up until and including December 31, 2022, reporting evidence of prognostic indicators and predictors of disease progression in DMD. The quality of evidence (i.e., very low to high) was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework. RESULTS The bibliographic search strategy resulted in the inclusion of 29 articles. In total, evidence of 10 factors associated with respiratory health and function in patients with DMD was identified: glucocorticoid exposure (high- to very low-quality evidence), DMD mutations (low-quality evidence), DMD genetic modifiers (low-quality evidence), other pharmacological interventions (i.e., ataluren, eteplirsen, idebenone, and tamoxifen) (moderate- to very low-quality evidence), body mass index and weight (low-quality evidence), and functional ability (low-quality evidence). CONCLUSIONS In conclusion, we identified a total of 10 factors associated with respiratory health in function in DMD, encompassing both pharmacological therapies, genetic mutations and modifiers, and patient clinical characteristics. Yet, more research is needed to further delineate sources of respiratory heterogeneity, in particular the genotype-phenotype association and the impact of novel DMD therapies in a real-world setting. Our synthesis and grading should be helpful to inform clinical practice and future research of this heavily burdened patient population.
Collapse
Affiliation(s)
| | - A. Aleman
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Eastern Ontario, Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - R. Zhang
- PTC Therapeutics Sweden AB, Askim, Sweden
| | - C. Werner
- PTC Therapeutics Germany GmbH, Frankfurt, Germany
| | - I. Tomazos
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - H. Lochmüller
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Eastern Ontario, Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - R.M. Quinlivan
- Centre for Neuromuscular Diseases, UCL Institute of Neurology, National Hospital, London, UK
| |
Collapse
|
7
|
Henzi BC, Schmidt S, Nagy S, Rubino-Nacht D, Schaedelin S, Putananickal N, Stimpson G, Amthor H, Childs AM, Deconinck N, de Groot I, Horrocks I, Houwen-van Opstal S, Laugel V, Lopez Lobato M, Madruga Garrido M, Nascimento Osorio A, Schara-Schmidt U, Spinty S, von Moers A, Lawrence F, Hafner P, Dorchies OM, Fischer D. Safety and efficacy of tamoxifen in boys with Duchenne muscular dystrophy (TAMDMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2023; 22:890-899. [PMID: 37739572 DOI: 10.1016/s1474-4422(23)00285-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Drug repurposing could provide novel treatment options for Duchenne muscular dystrophy. Because tamoxifen-an oestrogen receptor regulator-reduced signs of muscular pathology in a Duchenne muscular dystrophy mouse model, we aimed to assess the safety and efficacy of tamoxifen in humans as an adjunct to corticosteroid therapy over a period of 48 weeks. METHODS We did a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial at 12 study centres in seven European countries. We enrolled ambulant boys aged 6·5-12·0 years with a genetically confirmed diagnosis of Duchenne muscular dystrophy and who were on stable corticosteroid treatment for more than 6 months. Exclusion criteria included ophthalmological disorders, including cataracts, and haematological disorders. We randomly assigned (1:1) participants using an online randomisation tool to either 20 mg tamoxifen orally per day or matched placebo, stratified by centre and corticosteroid intake. Participants, caregivers, and clinical investigators were masked to treatment assignments. Tamoxifen was taken in addition to standard care with corticosteroids, and participants attended study visits for examinations every 12 weeks. The primary efficacy outcome was the change from baseline to week 48 in scores on the D1 domain of the Motor Function Measure in the intention-to-treat population (defined as all patients who fulfilled the inclusion criteria and began treatment). This study is registered with ClinicalTrials.gov (NCT03354039) and is completed. FINDINGS Between May 24, 2018, and Oct 14, 2020, 95 boys were screened for inclusion, and 82 met inclusion criteria and were initially enrolled into the study. Three boys were excluded after initial screening due to cataract diagnosis or revoked consent directly after screening, but before randomisation. A further boy assigned to the placebo group did not begin treatment. Therefore, 40 individuals assigned tamoxifen and 38 allocated placebo were included in the intention-to-treat population. The primary efficacy outcome did not differ significantly between tamoxifen (-3·05%, 95% CI -7·02 to 0·91) and placebo (-6·15%, -9·19 to -3·11; 2·90% difference, -3·02 to 8·82, p=0·33). Severe adverse events occurred in two participants: one participant who received tamoxifen had a fall, and one who received placebo suffered a panic attack. No deaths or life-threatening serious adverse events occurred. Viral infections were the most common adverse events. INTERPRETATION Tamoxifen was safe and well tolerated, but no difference between groups was reported for the primary efficacy endpoint. Slower disease progression, defined by loss of motor function over time, was indicated in the tamoxifen group compared with the placebo group, but differences in outcome measures were neither clinically nor statistically significant. Currently, we cannot recommend the use of tamoxifen in daily clinical practice as a treatment option for boys with Duchenne muscular dystrophy due to insufficient clinical evidence. FUNDING Thomi Hopf Foundation, ERA-Net, Swiss National Science Foundation, Duchenne UK, Joining Jack, Duchenne Parent Project, Duchenne Parent Project Spain, Fondation Suisse de Recherche sur les Maladies Musculaires, Association Monegasque contre les Myopathies.
Collapse
Affiliation(s)
- Bettina C Henzi
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland; Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simone Schmidt
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Sara Nagy
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Rubino-Nacht
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Niveditha Putananickal
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Georgia Stimpson
- Developmental Neuroscience Research and Teaching Department, Faculty of Population Health Sciences, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helge Amthor
- Service de Neurologie et Réanimation Pédiatriques, APHP Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | | | - Nicolas Deconinck
- Department of Paediatric Neurology and Neuromuscular Reference Center, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Imelda de Groot
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Saskia Houwen-van Opstal
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vincent Laugel
- Department of Pediatric Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Mercedes Lopez Lobato
- Sección de Neurología Pediátrica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Marcos Madruga Garrido
- Sección de Neurología Pediátrica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Andrés Nascimento Osorio
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu and Center for Biomedical Research Network on Rare Diseases, ISCIII, Barcelona, Spain
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Arpad von Moers
- Department of Pediatrics, DRK Kliniken Berlin Westend, Berlin, Germany
| | | | - Patricia Hafner
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Dirk Fischer
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Servais L. Tamoxifen in children with Duchenne muscular dystrophy. Lancet Neurol 2023; 22:872-873. [PMID: 37739562 DOI: 10.1016/s1474-4422(23)00288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Laurent Servais
- MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Division of Child Neurology, Centre de Référence des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège and University of Liège, 4000 Liege, Belgium.
| |
Collapse
|
9
|
Ulm JW, Barthélémy F, Nelson SF. Elucidation of bioinformatic-guided high-prospect drug repositioning candidates for DMD via Swanson linking of target-focused latent knowledge from text-mined categorical metadata. Front Cell Dev Biol 2023; 11:1226707. [PMID: 37664462 PMCID: PMC10469615 DOI: 10.3389/fcell.2023.1226707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD)'s complex multi-system pathophysiology, coupled with the cost-prohibitive logistics of multi-year drug screening and follow-up, has hampered the pursuit of new therapeutic approaches. Here we conducted a systematic historical and text mining-based pilot feasibility study to explore the potential of established or previously tested drugs as prospective DMD therapeutic agents. Our approach utilized a Swanson linking-inspired method to uncover meaningful yet largely hidden deep semantic connections between pharmacologically significant DMD targets and drugs developed for unrelated diseases. Specifically, we focused on molecular target-based MeSH terms and categories as high-yield bioinformatic proxies, effectively tagging relevant literature with categorical metadata. To identify promising leads, we comprehensively assembled published reports from 2011 and sampling from subsequent years. We then determined the earliest year when distinct MeSH terms or category labels of the relevant cellular target were referenced in conjunction with the drug, as well as when the pertinent target itself was first conclusively identified as holding therapeutic value for DMD. By comparing the earliest year when the drug was identifiable as a DMD treatment candidate with that of the first actual report confirming this, we computed an Index of Delayed Discovery (IDD), which serves as a metric of Swanson-linked latent knowledge. Using these findings, we identified data from previously unlinked articles subsetted via MeSH-derived Swanson linking or from target classes within the DrugBank repository. This enabled us to identify new but untested high-prospect small-molecule candidates that are of particular interest in repurposing for DMD and warrant further investigations.
Collapse
Affiliation(s)
- J. Wes Ulm
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Heydemann A, Siemionow M. A Brief Review of Duchenne Muscular Dystrophy Treatment Options, with an Emphasis on Two Novel Strategies. Biomedicines 2023; 11:biomedicines11030830. [PMID: 36979809 PMCID: PMC10044847 DOI: 10.3390/biomedicines11030830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Despite the full cloning of the Dystrophin cDNA 35 years ago, no effective treatment exists for the Duchenne Muscular Dystrophy (DMD) patients who have a mutation in this gene. Many treatment options have been considered, investigated preclinically and some clinically, but none have circumvented all barriers and effectively treated the disease without burdening the patients with severe side-effects. However, currently, many novel therapies are in the pipelines of research labs and pharmaceutical companies and many of these have progressed to clinical trials. A brief review of these promising therapies is presented, followed by a description of two novel technologies that when utilized together effectively treat the disease in the mdx mouse model. One novel technology is to generate chimeric cells from the patient’s own cells and a normal donor. The other technology is to systemically transplant these cells into the femur via the intraosseous route.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60607, USA
- Correspondence:
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Pokrovsky MV, Korokin MV, Krayushkina AM, Zhunusov NS, Lapin KN, Soldatova MO, Kuzmin EA, Gudyrev OS, Kochkarova IS, Deikin AV. CONVENTIONAL APPROACHES TO THE THERAPY OF HEREDITARY MYOPATHIES. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-5-416-431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the work was to analyze the available therapeutic options for the conventional therapy of hereditary myopathies.Materials and methods. When searching for the material for writing a review article, such abstract databases as PubMed and Google Scholar were used. The search was carried out on the publications during the period from 1980 to September 2022. The following words and their combinations were selected as parameters for the literature selection: “myopathy”, “Duchenne”, “myodystrophy”, “metabolic”, “mitochondrial”, “congenital”, “symptoms”, “replacement”, “recombinant”, “corticosteroids”, “vitamins”, “tirasemtiv”, “therapy”, “treatment”, “evidence”, “clinical trials”, “patients”, “dichloracetate”.Results. Congenital myopathies are a heterogeneous group of pathologies that are caused by atrophy and degeneration of muscle fibers due to mutations in genes. Based on a number of clinical and pathogenetic features, hereditary myopathies are divided into: 1) congenital myopathies; 2) muscular dystrophy; 3) mitochondrial and 4) metabolic myopathies. At the same time, treatment approaches vary significantly depending on the type of myopathy and can be based on 1) substitution of the mutant protein; 2) an increase in its expression; 3) stimulation of the internal compensatory pathways expression; 4) restoration of the compounds balance associated with the mutant protein function (for enzymes); 5) impact on the mitochondrial function (with metabolic and mitochondrial myopathies); 6) reduction of inflammation and fibrosis (with muscular dystrophies); as well as 7) an increase in muscle mass and strength. The current review presents current data on each of the listed approaches, as well as specific pharmacological agents with a description of their action mechanisms.Conclusion. Currently, the following pharmacological groups are used or undergoing clinical trials for the treatment of various myopathies types: inotropic, anti-inflammatory and antifibrotic drugs, antimyostatin therapy and the drugs that promote translation through stop codons (applicable for nonsense mutations). In addition, metabolic drugs, metabolic enzyme cofactors, mitochondrial biogenesis stimulators, and antioxidants can be used to treat myopathies. Finally, the recombinant drugs alglucosidase and avalglucosidase have been clinically approved for the replacement therapy of metabolic myopathies (Pompe’s disease).
Collapse
Affiliation(s)
| | | | | | | | - K. N. Lapin
- V.A. Negovsky Research Institute of General Reanimatology, Federal Scientific and Clinical Center for Resuscitation and Rehabilitology
| | | | - E. A. Kuzmin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
12
|
Emerging therapies for Duchenne muscular dystrophy. Lancet Neurol 2022; 21:814-829. [DOI: 10.1016/s1474-4422(22)00125-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022]
|
13
|
Rüegg U. Tamoxifen in Duchenne muscular dystrophy - promising first results. Neuromuscul Disord 2021; 31:801-802. [PMID: 34635289 DOI: 10.1016/j.nmd.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Urs Rüegg
- Emeritus Professor of Pharmacology, Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|