1
|
Sparling AC, Ward JM, Sarkar K, Schiffenbauer A, Farhadi PN, Smith MA, Rahman S, Zerrouki K, Miller FW, Li JL, Casey KA, Rider LG. Neutrophil and mononuclear leukocyte pathways and upstream regulators revealed by serum proteomics of adult and juvenile dermatomyositis. Arthritis Res Ther 2024; 26:196. [PMID: 39529136 PMCID: PMC11552237 DOI: 10.1186/s13075-024-03421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Serum protein abundance was assessed in adult and juvenile dermatomyositis (DM and JDM) patients to determine differentially regulated proteins, altered pathways, and candidate disease activity biomarkers. METHODS Serum protein expression from 17 active adult DM and JDM patients each was compared to matched, healthy control subjects by a multiplex immunoassay. Pathway analysis and protein clustering of the differentially regulated proteins were examined to assess underlying mechanisms. Candidate disease activity biomarkers were identified by correlating protein expression with disease activity measures. RESULTS Seventy-eight of 172 proteins were differentially expressed in the sera of DM and JDM patients compared to healthy controls. Forty-eight proteins were differentially expressed in DM, 32 proteins in JDM, and 14 proteins in both DM and JDM. Twelve additional differentially expressed proteins were identified after combining the DM and JDM cohorts. C-X-C motif chemokine ligand 10 (CXCL10) was the most strongly upregulated protein in both DM and JDM sera. Other highly upregulated proteins in DM included S100 calcium binding protein A12 (S100A12), CXCL9, and nicotinamide phosphoribosyltransferase (NAMPT), while highly upregulated proteins in JDM included matrix metallopeptidase 3 (MMP3), growth differentiation factor 15 (GDF15), and von Willebrand factor (vWF). Pathway analysis indicated that phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and toll-like receptor 7 (TLR7) signaling were activated in DM and JDM. Additional pathways specific to DM or JDM were identified. A protein cluster associated with neutrophils and mononuclear leukocytes and a cluster of interferon-associated proteins were observed in both DM and JDM. Twenty-two proteins in DM and 24 proteins in JDM sera correlated with global, muscle, and/or skin disease activity. Seven proteins correlated with disease activity measures in both DM and JDM sera. IL-1 receptor like 1 (IL1RL1) emerged as a candidate global disease activity biomarker in DM and JDM. CONCLUSION Coordinate analysis of protein expression in DM and JDM patient sera by a multiplex immunoassay validated previous gene expression studies and identified novel dysregulated proteins, altered signaling pathways, and candidate disease activity biomarkers. These findings may further inform the assessment of DM and JDM patients and aid in the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- A Clare Sparling
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Kakali Sarkar
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | - Payam Noroozi Farhadi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA
| | | | - Saifur Rahman
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Frederick W Miller
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Kerry A Casey
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Building 10, CRC Rm 6-5700, MSC 1301 10 Center Drive, Bethesda, MD, 20892-1301, USA.
| |
Collapse
|
2
|
Motegi H, Kirino Y, Morishita R, Nishino I, Suzuki S. Overlap syndrome with antibodies against multiple transfer-RNA components presenting antisynthetase syndrome. Neuromuscul Disord 2023; 33:405-409. [PMID: 37037049 DOI: 10.1016/j.nmd.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Overlap syndrome is a clinical entity of myositis concomitant with one or more collagen diseases such as systemic lupus erythematosus, systemic sclerosis, and/or rheumatoid arthritis. It is not evident whether the myopathology of overlap syndrome is disease-specific or categorizes one of the four major subsets: inclusion body myositis, immune-mediated necrotizing myopathy, dermatomyositis, and antisynthetase syndrome. We report a patient with overlap syndrome who exhibited autoantibodies against multiple transfer-RNA components by RNA immunoprecipitation, suggesting antisynthetase syndrome. A 64-year-old woman developed systemic lupus erythematosus, systemic sclerosis, and myositis. Muscle biopsy showed perifascicular necrosis and perimysial alkaline phosphatase positivity, suggesting antisynthetase syndrome. Enzyme-linked immunosorbent assay was negative for autoantibodies to aminoacyl transfer-RNA synthetase, whereas RNA immunoprecipitation revealed a novel antibody to multiple transfer-RNA components. Although the myopathology of overlap syndrome may be diagnosed as any one of various subsets, this case suggests that the myopathological features of overlap syndrome may include antisynthetase syndrome.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The global spread of severe acute respiratory syndrome coronavirus 2 resulted in many cases of acute and postacute muscular symptoms. In this review, we try to decipher the potential underlying pathomechanisms and summarize the potential links between viral infection and muscle affection. RECENT FINDINGS Disregarding single case studies that do not allow safe conclusions due to the high number of infections, histopathological evidence of myositis has only been reported in deceased individuals with severe COVID-19. Postacute myalgia and weakness seem to occur in a subset of patients up to one year after initial infection, reminiscent of postinfectious syndromes (PIS) described in prior epidemics and pandemics of the past. SUMMARY COVID-19 associated myopathy likely comprises different entities with heterogeneous pathomechanisms. Individual factors such as disease severity and duration, age, sex, constitutional susceptibilities, and preexisting conditions are important to consider when formulating a diagnosis. Persisting symptoms show overlapping features with PIS or postintensive care syndrome. In lack of strong evidence for a direct infection of myocytes, inflammatory myopathies associated with COVID-19 are presumably immune-mediated. Differential diagnosis of rheumatological and nonmuscular neurological origin coinciding with the infection need to be considered, due to the extremely high numbers of newly occurring infections the last 2 years.
Collapse
Affiliation(s)
- Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | | |
Collapse
|
4
|
Merve A, Schneider U, Kara E, Papadopoulou C, Stenzel W. Muscle biopsy in myositis: What the rheumatologist needs to know. Best Pract Res Clin Rheumatol 2022; 36:101763. [PMID: 35773136 DOI: 10.1016/j.berh.2022.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appropriate analysis of skeletal muscle tissues is a key element in many diagnostic procedures and can deliver valuable information about the organ that is affected. Although arguably the frequency of muscle biopsy may be declining in certain domains where genetic analysis is now the first line of diagnostic evaluation, it still has an important role in assessment of patients with neuromuscular disorders such as congenital myopathies, muscular dystrophies, metabolic and inflammatory diseases. Here, we have comprehensively discussed the aspects of a modern and fruitful approach to muscle biopsy histopathological studies in rheumatological disorders. We have focussed on the neuromuscular involvement in myositis and its differential diagnoses in both adult and paediatric settings. We have also covered the clinical indications for the biopsy, technical aspects and practical points relevant for the rheumatologists. Finally, we have critically discussed the current and future opportunities that a muscle biopsy may offer and its limitations.
Collapse
Affiliation(s)
- Ashirwad Merve
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK; Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Udo Schneider
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology, Charitéplatz 1, 10117 Berlin, Germany
| | - Eleanna Kara
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | | | - Werner Stenzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
5
|
Update on Biomarkers of Vasculopathy in Juvenile and Adult Myositis. Curr Rheumatol Rep 2022; 24:227-237. [PMID: 35680774 DOI: 10.1007/s11926-022-01076-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Although rare, idiopathic inflammatory myopathies (IIM) comprise a heterogeneous group of autoimmune conditions in adults and children. Increasingly, vasculopathy is recognised to be key in the underlying pathophysiology and plays a crucial role in some of the more challenging complications including calcinosis, gastrointestinal involvement and interstitial lung disease. The exciting prospect of development of biomarkers of vasculopathy would enable earlier detection and monitoring of these complications and possible prevention of their potentially devastating consequences. The purpose was to review the current literature on biomarkers of vasculopathy in IIM and offer insight as to the biomarkers most likely to have an impact on clinical care. RECENT FINDINGS Multiple candidate biomarkers have been studied including circulating endothelial cells (CEC), microparticles (MP), soluble adhesion markers (ICAM-1, ICAM-3, VCAM-1), selectin proteins (E-, L-, P-selectin), coagulation factors, angiogenic factors, cytokines (including (IL-6, IL-10, TNF-α, IL-18) and interferon (IFN)-related biomarkers (including IFNα, IFN-β, IFNγ, galectin-9, interferon signature and interferon-related chemokines (MCP-1, IP-10 and MIG). There is a growing body of evidence of the potential role of biomarkers in detecting and monitoring the vasculopathy in IIM, detecting disease activity and predicting disease flares and overall prognosis. Exciting progress has been made in the search for biomarkers of vasculopathy of IIM; however, none of the studies are validated and further research is required.
Collapse
|