1
|
Onnée M, Malfatti E. The widening genetic and myopathologic spectrum of congenital myopathies (CMYOs): a narrative review. Neuromuscul Disord 2025; 49:105338. [PMID: 40112751 DOI: 10.1016/j.nmd.2025.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Congenital myopathies (CMYOs) represent a genetically and clinically heterogeneous group of disorders characterized by early-onset muscle weakness and distinct myopathologic features. The advent of next-generation sequencing (NGS) has accelerated the identification of causative genes, leading to the discovery of novel CMYOs and thereby challenging the traditional classification. In this comprehensive review, we focus on the clinical, myopathologic, molecular and pathophysiological features of 33 newly identified CMYOs.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Hôpital Henri Mondor, 94010 Créteil, France; European Reference Center for Neuromuscular Disorders, EURO-NMD, France.
| |
Collapse
|
2
|
Richardson L, Hughes R, Johnson CA, Egginton S, Peckham M. The role of MEGF10 in myoblast fusion and hypertrophic response to overload of skeletal muscle. J Muscle Res Cell Motil 2025:10.1007/s10974-024-09686-4. [PMID: 39825147 DOI: 10.1007/s10974-024-09686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/22/2024] [Indexed: 01/20/2025]
Abstract
Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2kb-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2kb-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours. We additionally tested the role of Megf10 in vivo using transgenic mice with reduced (Megf10+/-) or no (Megf10-/-) Megf10. We found that the extensor digitorum longus muscle had fewer anti-Pax7 stained cell nuclei and was less able to undergo hypertrophy in response to muscle overload concomitant with a lower level of satellite cell activation. Taken together, our data suggest that MEGF10 may promote satellite cell adhesion and survival and prevent premature fusion helping to explain its role in EMARDD.
Collapse
Affiliation(s)
- Louise Richardson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth Hughes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Colin A Johnson
- Faculty of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stuart Egginton
- School of Biomedical Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Figueiredo AS, Da Silva Cardoso J, Santos M, Garrido C. Severe Scoliosis As the Clue for an Early Onset Myopathy, Areflexia, Respiratory Distress, and Dysphagia (EMARDD) Diagnosis During Childhood: A Case Report. Cureus 2024; 16:e74966. [PMID: 39654599 PMCID: PMC11627526 DOI: 10.7759/cureus.74966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
We present a novel case of a school-aged boy with scoliosis and progressive muscle weakness, featuring new onset hypotonia and respiratory distress. Genetic analysis revealed two heterozygous variants in the MEGF10 gene: one known pathogenic variant and one novel missense variant. This case illustrates the heterogeneous phenotype of early onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD), according to the mutations associated, and underscores the importance of early genetic testing. Among the few cases described in the literature, few report symptom onset and diagnoses after the first years of life, unlike the case reported here. Additionally, this report alerts for the suspicion of myopathy in children with severe scoliosis and recurrent respiratory infections and revises the current knowledge of EMARDD, emphasizing the necessity for comprehensive and timely treatment approaches.
Collapse
Affiliation(s)
- Ana Sofia Figueiredo
- Pediatrics, Hospital de São Pedro, Unidade Local de Saúde de Trás-os-Montes e Alto Douro, Vila Real, PRT
| | - Juliana Da Silva Cardoso
- Paediatric Neurology, Centro Materno Infantil do Norte, Unidade Local de Saúde de Santo António, Porto, PRT
| | - Manuela Santos
- Paediatric Neurology, Centro Materno Infantil do Norte, Unidade Local de Saúde de Santo António, Porto, PRT
| | - Cristina Garrido
- Paediatric Neurology, Centro Materno Infantil do Norte, Unidade Local de Saúde de Santo António, Porto, PRT
| |
Collapse
|
4
|
Juros D, Avila MF, Hastings RL, Pendragon A, Wilson L, Kay J, Valdez G. Cellular and molecular alterations to muscles and neuromuscular synapses in a mouse model of MEGF10-related myopathy. Skelet Muscle 2024; 14:10. [PMID: 38760872 PMCID: PMC11100254 DOI: 10.1186/s13395-024-00342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.
Collapse
Affiliation(s)
- Devin Juros
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | | | - Robert Louis Hastings
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Ariane Pendragon
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Liam Wilson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Jeremy Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA.
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Vargas‐Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022; 66:530-544. [PMID: 35968817 PMCID: PMC9804383 DOI: 10.1002/mus.27684] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.
Collapse
Affiliation(s)
| | - Raghav Kalra
- Division of Pediatric NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Isabelle Draper
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusetts
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Atsushi Asakura
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| |
Collapse
|
6
|
Croci C, Traverso M, Baratto S, Iacomino M, Pedemonte M, Caroli F, Scala M, Bruno C, Fiorillo C. Congenital myopathy associated with a novel mutation in MEGF10 gene, myofibrillar alteration and progressive course. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2022; 41:111-116. [PMID: 36349186 PMCID: PMC9628799 DOI: 10.36185/2532-1900-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023]
Abstract
Early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD) is caused by homozygous or compound heterozygous mutation in the MEGF10 gene (OMIM #614399). Phenotypic spectrum of EMARDD is variable, ranging from severe infantile forms in which patients are ventilator-dependent and die in childhood, to milder chronic disorders with a more favorable course (mild variant, mvEMARDD). Here we describe a 22 years old boy, offspring of consanguineous parents, presenting a congenital myopathic phenotype since infancy with elbow contractures and scoliosis. The patient developed a slowly progressive muscle weakness with impaired walking, rhinolalia, dysphagia, and respiratory involvement, which required noninvasive ventilation therapy since the age of 16 years. First muscle biopsy revealed unspecific muscle damage, with fiber size variation, internal nuclei and fibrosis. Myofibrillar alterations were noted at a second muscle biopsy including whorled fibres, cytoplasmic inclusion and minicores. Exome sequencing identified a homozygous mutation in MEGF10 gene, c.2096G > C (p.Cys699Ser), inherited by both parents. This variant, not reported in public databases of mutations, is expected to alter the structure of the protein and is therefore predicted to be probably damaging according to ACMG classification. In conclusion, we found a new likely pathogenic mutation in MEGF10, which is responsible for a progressive form of mvEMARDD with myofibrillar alterations at muscle biopsy. Interestingly, the presence of MEGF10 mutations has not been reported in Italian population. Early diagnosis of MEGF10 myopathy is essential in light of recent results from in vivo testing demonstrating a potential therapeutic effect of SSRIs compounds.
Collapse
Affiliation(s)
- Carolina Croci
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child (DINOGMI), University of Genoa, Genoa Italy
| | - Monica Traverso
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto “G. Gaslini”, Genoa Italy
| | - Serena Baratto
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto “G. Gaslini”, Genoa Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto “G. Gaslini”, Genoa, Italy
| | - Marina Pedemonte
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto “G. Gaslini”, Genoa Italy
| | - Francesco Caroli
- Medical Genetics Unit, IRCCS Istituto “G. Gaslini”, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child (DINOGMI), University of Genoa, Genoa Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto “G. Gaslini”, Genoa, Ital
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child (DINOGMI), University of Genoa, Genoa Italy, Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto “G. Gaslini”, Genoa Italy,Correspondence Chiara Fiorillo Paediatric Neurology and Neuromuscular Disorder Unit, IRCCS Istituto “G. Gaslini”, largo Gaslini 5, 16147 Genoa, Italy. Tel.: +39 010 56363566. E-mail:
| |
Collapse
|