1
|
Venter SN, Rodriguez-R LM, Chuvochina M, Palmer M, Hugenholtz P, Steenkamp ET. Options and considerations for validation of prokaryotic names under the SeqCode. Syst Appl Microbiol 2024; 47:126554. [PMID: 39305564 DOI: 10.1016/j.syapm.2024.126554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
Stable taxon names for Bacteria and Archaea are essential for capturing and documenting prokaryotic diversity. They are also crucial for scientific communication, effective accumulation of biological data related to the taxon names and for developing a comprehensive understanding of prokaryotic evolution. However, after more than a hundred years, taxonomists have succeeded in valid publication of only around 30 000 species names, based mostly on pure cultures under the International Code of Nomenclature of Prokaryotes (ICNP), out of the millions estimated to reside in the biosphere. The vast majority of prokaryotic species have not been cultured and are becoming increasingly known to us via culture-independent sequence-based approaches. Until recently, such taxa could only be addressed nomenclaturally via provisional names such as Candidatus or alphanumeric identifiers. Here, we present options and considerations to facilitate validation of names for these taxa using the recently established Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Community engagement and participation of relevant taxon specialists are critical and encouraged for the success of endeavours to formally name the uncultured majority.
Collapse
Affiliation(s)
- Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Lata P, Bhargava V, Gupta S, Singh A, Bala K, Lal R. SeqCode: A Nomenclatural Code for Prokaryotes. Indian J Microbiol 2024; 64:859-866. [PMID: 39282201 PMCID: PMC11399350 DOI: 10.1007/s12088-024-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/15/2024] [Indexed: 09/18/2024] Open
Abstract
SeqCode is a nomenclatural code for naming prokaryotes based on genetic information. With the majority of prokaryotes being inaccessible as pure cultures, they are not eligible for naming under the International Code of Nomenclature of Prokaryotes. To address this challenge, a new concept that is SeqCode, which assign names to prokaryotes on the basis of genome sequence, has been announced in 2022. The valid publication of names for prokaryotes based on isolated genome, metagenome-assembled genomes, or single-amplified genome sequences. It operates through a registration portal, SeqCode Registry, where metadata is linked to names and nomenclatural types. This code provides a framework for reproducible nomenclature for all prokaryotes, either culturable or not and facilitates communication across all microbiological disciplines. Additionally, the SeqCode includes provisions for updating and revising names as new data becomes available. By providing a standardized system for naming and classifying these microorganisms based on their genetic information, the SeqCode will facilitate the discovery, understanding and comparison of these microorganisms, helping us to understand their role in the environment and how they contribute to the functioning of the Earth.
Collapse
Affiliation(s)
- Pushp Lata
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vatsal Bhargava
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Sonal Gupta
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Ajaib Singh
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhin, 110021 India
| | - Kiran Bala
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, 110019 India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, Delhi, 110019 India
| |
Collapse
|
3
|
Jiao JY, Abdugheni R, Zhang DF, Ahmed I, Ali M, Chuvochina M, Dedysh SN, Dong X, Göker M, Hedlund BP, Hugenholtz P, Jangid K, Liu SJ, Moore ERB, Narsing Rao MP, Oren A, Rossello-Mora R, Rekadwad BN, Salam N, Shu W, Sutcliffe IC, Teo WFA, Trujillo ME, Venter SN, Whitman WB, Zhao G, Li WJ. Advancements in prokaryotic systematics and the role of Bergey's International Society for Microbial Systematicsin addressing challenges in the meta-data era. Natl Sci Rev 2024; 11:nwae168. [PMID: 39071100 PMCID: PMC11275469 DOI: 10.1093/nsr/nwae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 07/30/2024] Open
Abstract
Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, China
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad 45500, Pakistan
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig D-38124, Germany
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Kamlesh Jangid
- Bioenergy Group, MACS Collection of Microorganisms, Agharkar Research Institute, Pune 411004, India
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Edward R B Moore
- Department of Infectious Disease, Institute for Biomedicine, and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40234, Sweden
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Aharon Oren
- The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles 070190, Spain
| | - Bhagwan Narayan Rekadwad
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Nimaichand Salam
- National Agri-Food Biotechnology Institute, Knowledge City, Mohali 140306, India
| | - Wensheng Shu
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Wee Fei Aaron Teo
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Martha E Trujillo
- Microbiology and Genetics Department, University of Salamanca, Salamanca 37008, Spain
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Guoping Zhao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
4
|
van Lill M, Venter SN, Muema EK, Palmer M, Chan WY, Beukes CW, Steenkamp ET. SeqCode facilitates naming of South African rhizobia left in limbo. Syst Appl Microbiol 2024; 47:126504. [PMID: 38593622 DOI: 10.1016/j.syapm.2024.126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
South Africa is well-known for the diversity of its legumes and their nitrogen-fixing bacterial symbionts. However, in contrast to their plant partners, remarkably few of these microbes (collectively referred to as rhizobia) from South Africa have been characterised and formally described. This is because the rules of the International Code of Nomenclature of Prokaryotes (ICNP) are at odds with South Africa's National Environmental Management: Biodiversity Act and its associated regulations. The ICNP requires that a culture of the proposed type strain for a novel bacterial species be deposited in two international culture collections and be made available upon request without restrictions, which is not possible under South Africa's current national regulations. Here, we describe seven new Mesorhizobium species obtained from root nodules of Vachellia karroo, an iconic tree legume distributed across various biomes in southern Africa. For this purpose, 18 rhizobial isolates were delineated into putative species using genealogical concordance, after which their plausibility was explored with phenotypic characters and average genome relatedness. For naming these new species, we employed the rules of the recently published Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode), which utilizes genome sequences as nomenclatural types. The work presented in this study thus provides an illustrative example of how the SeqCode allows for a standardised approach for naming cultivated organisms for which the deposition of a type strain in international culture collections is currently problematic.
Collapse
Affiliation(s)
- Melandré van Lill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Esther K Muema
- Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
5
|
Pragya K, Sreya P, Vighnesh L, Mahima D, Sushmita M, Sasikala C, Venkata Ramana C. Phylogenomic analysis of metagenome-assembled genomes indicates new taxa in the order Spirochaetales and proposal of Thalassospirochaeta sargassi gen. nov. sp. nov. from seaweeds. Syst Appl Microbiol 2024; 47:126502. [PMID: 38458136 DOI: 10.1016/j.syapm.2024.126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Six metagenome-assembled genomes (JB008Ts, JB007, JB015, JB003, JB004, and JB002) belonging to the order Spirochaetales were generated from seaweed samples collected from the Gulf of Mannar, India. The binned genomes JB008Ts and JB007 shared highest 16S rRNA gene identity of 94.9 % and 92.2-93.4 %, respectively with uncultivated Spirochaetaceae family members, and < 90 % identity with Marispirochaeta aestuari JC444T. While, the bin JB015 showed 99.1 % identity with Pleomorphochaeta naphthae SEBR 4209T. The phylogenomic and 16S rRNA gene-based phylogenetic analysis of the binned genomes JB007 and JB008Ts confirmed that these members belong to the family Spirochaetaceae and bins JB015, JB002, JB003, and JB004 belong to the genus Pleomorphochaeta within the family Sphaerochaetaceae. The AAI values of the binned genomes JB007 and JB008Ts compared to other members of the Spirochaetaceae family were between 53.9- 56.8 % and 53.8-57.1 %, respectively. Furthermore, the comparison of ANI, dDDH, and POCP metrics of the binned genomes JB007 and JB008Ts, both among themselves and with the members of Spirochaetaceae, was also below the suggested thresholds for genera delineation. Consequently, the binned genome JB008Ts is proposed as a new genus according to the guidelines of code of nomenclature of prokaryotes described from sequence data (SeqCode) with the name Thalassospirochaeta sargassi gen. nov. sp. nov., in the family Spirochaetaceae while the bin JB007 could not be proposed as novel taxa due to low-quality estimates. The bin JB015 and its additional genomes form a distinct clade, but their taxonomic status remains ambiguous due to the absence of genomic evidence from other Pleomorphochaeta members.
Collapse
Affiliation(s)
- Kohli Pragya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Pannikurungottu Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Lakshmanan Vighnesh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Dhurka Mahima
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Mallick Sushmita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India.
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| |
Collapse
|
6
|
Whitman WB, Chuvochina M, Hedlund BP, Konstantinidis KT, Palmer M, Rodriguez‐R LM, Sutcliffe I, Wang F. Why and how to use the SeqCode. MLIFE 2024; 3:1-13. [PMID: 38827511 PMCID: PMC11139209 DOI: 10.1002/mlf2.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 06/04/2024]
Abstract
The SeqCode, formally called the Code of Nomenclature of Prokaryotes Described from Sequence Data, is a new code of nomenclature in which genome sequences are the nomenclatural types for the names of prokaryotic species. While similar to the International Code of Nomenclature of Prokaryotes (ICNP) in structure and rules of priority, it does not require the deposition of type strains in international culture collections. Thus, it allows for the formation of permanent names for uncultured prokaryotes whose nearly complete genome sequences have been obtained directly from environmental DNA as well as other prokaryotes that cannot be deposited in culture collections. Because the diversity of uncultured prokaryotes greatly exceeds that of readily culturable prokaryotes, the SeqCode is the only code suitable for naming the majority of prokaryotic species. The start date of the SeqCode was January 1, 2022, and the online Registry (https://seqco.de/) was created to ensure valid publication of names. The SeqCode recognizes all names validly published under the ICNP before 2022. After that date, names validly published under the SeqCode compete with ICNP names for priority. As a result, species can have only one name, either from the SeqCode or ICNP, enabling effective communication and the creation of unified taxonomies of uncultured and cultured prokaryotes. The SeqCode is administered by the SeqCode Committee, which is comprised of the SeqCode Community and elected administrative components. Anyone with an interest in the systematics of prokaryotes is encouraged to join the SeqCode Community and participate in the development of this resource.
Collapse
Affiliation(s)
| | - Maria Chuvochina
- School of Chemistry and Molecular Biosciences, Australian Centre for EcogenomicsThe University of QueenslandSt LuciaAustralia
| | | | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Marike Palmer
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
- School of Life SciencesUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Luis M. Rodriguez‐R
- Department of Microbiology and Digital Science Center (DiSC)University of InnsbruckInnsbruckAustria
| | - Iain Sutcliffe
- Faculty of Health & Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Fengping Wang
- School of Oceanography, International Center for Deep Life InvestigationShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Jiménez DJ, Rosado AS. SeqCode in the golden age of prokaryotic systematics. THE ISME JOURNAL 2024; 18:wrae109. [PMID: 38896025 PMCID: PMC11384910 DOI: 10.1093/ismejo/wrae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
The SeqCode is a new code of prokaryotic nomenclature that was developed to validate taxon names using genome sequences as the type material. The present article provides an independent view about the SeqCode, highlighting its history, current status, basic features, pros and cons, and use to date. We also discuss important topics to consider for validation of novel prokaryotic taxon names using genomes as the type material. Owing to significant advances in metagenomics and cultivation methods, hundreds of novel prokaryotic species are expected to be discovered in the coming years. This manuscript aims to stimulate and enrich the debate around the use of the SeqCode in the upcoming golden age of prokaryotic taxon discovery and systematics.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Arahal D, Bisgaard M, Christensen H, Clermont D, Dijkshoorn L, Duim B, Emler S, Figge M, Göker M, Moore ERB, Nemec A, Nørskov-Lauritsen N, Nübel U, On SLW, Vandamme P, Ventosa A. The best of both worlds: a proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180015 DOI: 10.1099/ijsem.0.006188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same format of names but assigns different nomenclatural status values to the names. The resulting nomenclatural confusion is not beneficial to the wider scientific community. Such ambiguity is expected to result from the establishment of the 'Code of Nomenclature of Prokaryotes Described from DNA Sequence Data' ('SeqCode'), which is in general and specific conflict with the ICNP and the ICN. Shortcomings in the interpretation of the ICNP may have exacerbated the incompatibility between the codes. It is reiterated as to why proposals to accept sequences as nomenclatural types of species and subspecies with validly published names, now implemented in the SeqCode, have not been implemented by the International Committee on Systematics of Prokaryotes (ICSP), which oversees the ICNP. The absence of certain regulations from the ICNP for the naming of as yet uncultivated prokaryotes is an acceptable scientific argument, although it does not justify the establishment of a separate code. Moreover, the proposals rejected by the ICSP are unnecessary to adequately regulate the naming of uncultivated prokaryotes. To provide a better service to the wider scientific community, an alternative proposal to emend the ICNP is presented, which would result in Candidatus names being regulated analogously to validly published names. This proposal is fully consistent with previous ICSP decisions, preserves the essential unity of nomenclature and avoids the expected nomenclatural confusion.
Collapse
Affiliation(s)
- David Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | | | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, CRBIP, CIP-Collection of Institut Pasteur, F-75015 Paris, France
| | - Lenie Dijkshoorn
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, Leiden / Torensteelaan 68, 3281 MA Numansdorp, Netherlands
| | - Birgitta Duim
- Department Biomolecular Health Sciences, Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CS Utrecht, Netherlands
| | - Stefan Emler
- SmartGene Services SARL, EPFL Innovation Park, PSE-C, CH-1015 Lausanne, Switzerland
| | - Marian Figge
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8 3584 CT, Utrecht, Netherlands
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Edward R B Moore
- Department of Infectious Disease and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-402 34 Gothenburg, Sweden
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Srobarova 48, 100 00 Prague 10, Czech Republic
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, V Úvalu 84, 150 06 Prague 5, Czechia
| | | | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Faculty of Agricultural Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Peter Vandamme
- BCCM/LMG, Laboratorium voor Microbiologie, Universiteit Gent (UGent) K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, C/. Prof. Garcia Gonzalez 2, ES-41012 Sevilla, Spain
| |
Collapse
|
9
|
Kirdat K, Tiwarekar B, Sathe S, Yadav A. From sequences to species: Charting the phytoplasma classification and taxonomy in the era of taxogenomics. Front Microbiol 2023; 14:1123783. [PMID: 36970684 PMCID: PMC10033645 DOI: 10.3389/fmicb.2023.1123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Phytoplasma taxonomy has been a topic of discussion for the last two and half decades. Since the Japanese scientists discovered the phytoplasma bodies in 1967, the phytoplasma taxonomy was limited to disease symptomology for a long time. The advances in DNA-based markers and sequencing improved phytoplasma classification. In 2004, the International Research Programme on Comparative Mycoplasmology (IRPCM)- Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group provided the description of the provisional genus ‘Candidatus Phytoplasma’ with guidelines to describe the new provisional phytoplasma species. The unintentional consequences of these guidelines led to the description of many phytoplasma species where species characterization was restricted to a partial sequence of the 16S rRNA gene alone. Additionally, the lack of a complete set of housekeeping gene sequences or genome sequences, as well as the heterogeneity among closely related phytoplasmas limited the development of a comprehensive Multi-Locus Sequence Typing (MLST) system. To address these issues, researchers tried deducing the definition of phytoplasma species using phytoplasmas genome sequences and the average nucleotide identity (ANI). In another attempts, a new phytoplasma species were described based on the Overall Genome relatedness Values (OGRI) values fetched from the genome sequences. These studies align with the attempts to standardize the classification and nomenclature of ‘Candidatus’ bacteria. With a brief historical account of phytoplasma taxonomy and recent developments, this review highlights the current issues and provides recommendations for a comprehensive system for phytoplasma taxonomy until phytoplasma retains ‘Candidatus’ status.
Collapse
Affiliation(s)
- Kiran Kirdat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Bhavesh Tiwarekar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Amit Yadav
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- *Correspondence: Amit Yadav, ,
| |
Collapse
|
10
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
11
|
Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P, Alfenas-Zerbini P, Bao Y, Barylski J, Drosten C, Duffy S, Duprex WP, Dutilh BE, Elena SF, García ML, Junglen S, Katzourakis A, Koonin EV, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Lood C, Mahony J, Meier-Kolthoff JP, Mushegian AR, Oksanen HM, Poranen MM, Reyes-Muñoz A, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Siddell S, Skern T, Smith DB, Sullivan MB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, Varsani A, Vasilakis N. Four principles to establish a universal virus taxonomy. PLoS Biol 2023; 21:e3001922. [PMID: 36780432 PMCID: PMC9925010 DOI: 10.1371/journal.pbio.3001922] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nicola G. A. Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences—BRTA, Derio, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - W. Paul Duprex
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, United States of America
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Reyes-Muñoz
- Max Planck Tandem Group in Computational Biology, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, UOS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Stuart Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tim Skern
- Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Nikos Vasilakis
- Department of Pathology, Center of Vector-Borne and Zoonotic Diseases, Institute for Human Infection and Immunity and World Reference Center for Emerging Viruses and Arboviruses, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
Göker M, Moore ERB, Oren A, Trujillo ME. Status of the SeqCode in the International Journal of Systematic and Evolutionary Microbiology. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748408 DOI: 10.1099/ijsem.0.005754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent publication of an alternative nomenclatural code that targets prokaryotes, the Code of Nomenclature of Prokaryotes Described from DNA Sequence Data (SeqCode), raises questions about how to treat names 'validly published' under that code in the International Journal of Systematic and Evolutionary Microbiology (IJSEM). Here, it is reiterated that the IJSEM must function in accordance with the International Code of Nomenclature of Prokaryotes (ICNP). It is also reiterated that the ICNP covers all prokaryotes and that it accordingly assigns a nomenclatural status to all names of prokaryotic taxa. This implies that the ICNP also assigns a status to names that are only 'validly published' under the SeqCode. It follows that the IJSEM must treat such names as not validly published, since 'validly published under the SeqCode' is not a nomenclatural status, under the ICNP. Such names should be marked accordingly as Candidatus names or printed in quotation marks. The same measures would need to be taken by other journals which intend to adhere to the ICNP.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Edward R B Moore
- Department of Infectious Disease and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-402 34 Gothenburg, Sweden
| | - Aharon Oren
- The Hebrew University of Jerusalem, The Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, 9190401 Jerusalem, Israel
| | - Martha E Trujillo
- University of Salamanca, Dpto de Microbiología y Genética, Campus Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Phylogenomic analysis of a metagenome-assembled genome indicates a new taxon of an anoxygenic phototroph bacterium in the family Chromatiaceae and the proposal of “Candidatus Thioaporhodococcus” gen. nov. Arch Microbiol 2022; 204:688. [DOI: 10.1007/s00203-022-03298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
14
|
Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, Parks DH, Probst AJ, Reysenbach AL, Rodriguez-R LM, Rossello-Mora R, Sutcliffe IC, Venter SN, Whitman WB. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 2022; 7:1702-1708. [PMID: 36123442 PMCID: PMC9519449 DOI: 10.1038/s41564-022-01214-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/25/2022] [Indexed: 01/03/2023]
Abstract
Most prokaryotes are not available as pure cultures and therefore ineligible for naming under the rules and recommendations of the International Code of Nomenclature of Prokaryotes (ICNP). Here we summarize the development of the SeqCode, a code of nomenclature under which genome sequences serve as nomenclatural types. This code enables valid publication of names of prokaryotes based upon isolate genome, metagenome-assembled genome or single-amplified genome sequences. Otherwise, it is similar to the ICNP with regard to the formation of names and rules of priority. It operates through the SeqCode Registry ( https://seqco.de/ ), a registration portal through which names and nomenclatural types are registered, validated and linked to metadata. We describe the two paths currently available within SeqCode to register and validate names, including Candidatus names, and provide examples for both. Recommendations on minimal standards for DNA sequences are provided. Thus, the SeqCode provides a reproducible and objective framework for the nomenclature of all prokaryotes regardless of cultivability and facilitates communication across microbiological disciplines.
Collapse
Affiliation(s)
- Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | | | - Alison E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Donovan H Parks
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Iain C Sutcliffe
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
15
|
Whitman WB, Chuvochina M, Hedlund BP, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, Parks DH, Probst AJ, Reysenbach AL, Rodriguez-R LM, Rossello-Mora R, Sutcliffe I, Venter SN. Development of the SeqCode: A proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Syst Appl Microbiol 2022; 45:126305. [PMID: 36049255 PMCID: PMC9489671 DOI: 10.1016/j.syapm.2022.126305] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022]
Abstract
Over the last fifteen years, genomics has become fully integrated into prokaryotic systematics. The genomes of most type strains have been sequenced, genome sequence similarity is widely used for delineation of species, and phylogenomic methods are commonly used for classification of higher taxonomic ranks. Additionally, environmental genomics has revealed a vast diversity of as-yet-uncultivated taxa. In response to these developments, a new code of nomenclature, the Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), has been developed over the last two years to allow naming of Archaea and Bacteria using DNA sequences as the nomenclatural types. The SeqCode also allows naming of cultured organisms, including fastidious prokaryotes that cannot be deposited into culture collections. Several simplifications relative to the International Code of Nomenclature of Prokaryotes (ICNP) are implemented to make nomenclature more accessible, easier to apply and more readily communicated. By simplifying nomenclature with the goal of a unified classification, inclusive of both cultured and uncultured taxa, the SeqCode will facilitate the naming of taxa in every biome on Earth, encourage the isolation and characterization of as-yet-uncultivated taxa, and promote synergies between the ecological, environmental, physiological, biochemical, and molecular biological disciplines to more fully describe prokaryotes.
Collapse
Affiliation(s)
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Australia
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Australia
| | | | - Alison E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Donovan H Parks
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Australia
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innrain 15 / 01-05, Innsbruck 6020, Austria
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Iain Sutcliffe
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|