1
|
Ferreira JDCP, Soley BS, Pawloski PL, Moreira CG, Pesquero JB, Bader M, Calixto JB, Cabrini DA, Otuki MF. Role of kinin receptors in skin pigmentation. Eur J Pharmacol 2024; 973:176537. [PMID: 38604546 DOI: 10.1016/j.ejphar.2024.176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Previous studies have shown that all kinin system is constitutively expressed in the normal and inflamed skin, with a potential role in both physiological and pathological processes. However, the understanding regarding the involvement of the kinin system in skin pigmentation and pigmentation disorders remains incomplete. In this context, the present study was designed to determine the role of kinins in the Monobenzone (MBZ)-induced vitiligo-like model. Our findings showed that MBZ induces higher local skin depigmentation in kinin receptors knockout mice (KOB1R, KOB2R and KOB1B2R) than in wild type (WT). Remarkably, lower levels of melanin content and reduced ROS generation were detected in KOB1R and KOB2R mice treated with MBZ. In addition, both KOB1R and KOB2R show increased dermal cell infiltrate in vitiligo-like skin, when compared to WT-MBZ. Additionally, lack of B1R was associated with greater skin accumulation of IL-4, IL-6, and IL-17 by MBZ, while KOB1B2R presented lower levels of TNF and IL-1. Of note, the absence of both kinin B1 and B2 receptors demonstrates a protective effect by preventing the increase in polymorphonuclear and mononuclear cell infiltrations, as well as inflammatory cytokine levels induced by MBZ. In addition, in vitro assays confirm that B1R and B2R agonists increase intracellular melanin synthesis, while bradykinin significantly enhanced extracellular melanin levels and proliferation of B16F10 cells. Our findings highlight that the lack of kinin receptors caused more severe depigmentation in the skin, as well as genetic deletion of both B1/B2 receptors seems to be linked with changes in levels of constitutive melanin levels, suggesting the involvement of kinin system in crucial skin pigmentation pathways.
Collapse
Affiliation(s)
| | - Bruna Silva Soley
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - João Batista Calixto
- Center of Innovation and Preclinical Studies (CIENP), Florianópolis, SC, Brazil.
| | | | - Michel Fleith Otuki
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Ballonová L, Souček P, Slanina P, Réblová K, Zapletal O, Vlková M, Hakl R, Bíly V, Grombiříková H, Svobodová E, Kulíšková P, Štíchová J, Sobotková M, Zachová R, Hanzlíková J, Vachová M, Králíčková P, Krčmová I, Jeseňák M, Freiberger T. Myeloid lineage cells evince distinct steady-state level of certain gene groups in dependence on hereditary angioedema severity. Front Genet 2023; 14:1123914. [PMID: 37470035 PMCID: PMC10352584 DOI: 10.3389/fgene.2023.1123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare genetic disorder with variable expressivity even in carriers of the same underlying genetic defect, suggesting other genetic and epigenetic factors participate in modifying HAE severity. Recent knowledge indicates the role of immune cells in several aspects of HAE pathogenesis, which makes monocytes and macrophages candidates to mediate these effects. Here we combined a search for HAE phenotype modifying gene variants with the characterization of selected genes' mRNA levels in monocyte and macrophages in a symptom-free period. While no such gene variant was found to be associated with a more severe or milder disease, patients revealed a higher number of dysregulated genes and their expression profile was significantly altered, which was typically manifested by changes in individual gene expression or by strengthened or weakened relations in mutually co-expressed gene groups, depending on HAE severity. SERPING1 showed decreased expression in HAE-C1INH patients, but this effect was significant only in patients carrying mutations supposedly activating nonsense-mediated decay. Pro-inflammatory CXC chemokine superfamily members CXCL8, 10 and 11 were downregulated, while other genes such as FCGR1A, or long non-coding RNA NEAT1 were upregulated in patients. Co-expression within some gene groups (such as an NF-kappaB function related group) was strengthened in patients with a severe and/or mild course compared to controls. All these findings show that transcript levels in myeloid cells achieve different activation or depression levels in HAE-C1INH patients than in healthy controls and/or based on disease severity and could participate in determining the HAE phenotype.
Collapse
Affiliation(s)
- Lucie Ballonová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Peter Slanina
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ondřej Zapletal
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Roman Hakl
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Allergology and Clinical Immunology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Viktor Bíly
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Hana Grombiříková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Eliška Svobodová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kulíšková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Julie Štíchová
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Allergology and Clinical Immunology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Marta Sobotková
- Department of Immunology, Second Medical School Charles University and University Hospital Motol, Brno, Czechia
| | - Radana Zachová
- Department of Immunology, Second Medical School Charles University and University Hospital Motol, Brno, Czechia
| | - Jana Hanzlíková
- Department of Immunology and Allergology, University Hospital Pilsen, Pilsen, Czechia
| | - Martina Vachová
- Department of Immunology and Allergology, University Hospital Pilsen, Pilsen, Czechia
- Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavlína Králíčková
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia
| | - Irena Krčmová
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia
| | - Miloš Jeseňák
- National Centre for Hereditary Angioedema, Department of Pediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Depatment of Clinical Immunology and Allergology, Comenius University in Bratislava, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
Soley BDS, Silva LM, Mendes DAGB, Báfica A, Pesquero JB, Bader M, Witherden DA, Havran WL, Calixto JB, Otuki MF, Cabrini DA. B 1 and B 2 kinin receptor blockade improves psoriasis-like disease. Br J Pharmacol 2020; 177:3535-3551. [PMID: 32335893 DOI: 10.1111/bph.15077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The entire kallikrein-kinin system is present in the skin, and it is thought to exert a relevant role in cutaneous diseases, including psoriasis. The present study was designed to evaluate the relevance of kinin receptors in the development and progression of a model of psoriasis in mice. EXPERIMENTAL APPROACH The effects of kinin B1 and B2 receptor knockout and of kinin receptor antagonists (SSR240612C or FR173657) were assessed in a model of psoriasis induced by imiquimod in C57BL/6 mice. Severity of psoriasis was assessed by histological and immunohistochemical assays of skin, along with objective scores based on the clinical psoriasis area and severity index. KEY RESULTS Both kinin receptors were up-regulated following 6 days of imiquimod treatment. Kinin B1 and B2 receptor deficiency and the use of selective antagonists show morphological and histological improvement of the psoriasis hallmarks. This protective effect was associated with a decrease in undifferentiated and proliferating keratinocytes, decreased cellularity (neutrophils, macrophages, and CD4+ T lymphocytes), reduced γδ T cells, and lower accumulation of IL-17. The lack of B2 receptors resulted in reduced CD8+ T cells in the psoriatic skin. Relevantly, blocking kinin receptors reflected the improvement of psoriasis disease in the well-being behaviour of the mice. CONCLUSIONS AND IMPLICATIONS Kinins exerted critical roles in imiquimod-induced psoriasis. Both B1 and B2 kinin receptors exacerbated the disease, influencing keratinocyte proliferation and immunopathology. Antagonists of one or even both kinin receptors might constitute a new strategy for the clinical treatment of psoriasis.
Collapse
Affiliation(s)
| | | | | | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Institute for Biology, University of Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Deborah A Witherden
- Immunology and Microbiology, Scripps Research Institute, La Jolla, California, USA
| | - Wendy L Havran
- Immunology and Microbiology, Scripps Research Institute, La Jolla, California, USA
| | - João B Calixto
- Center of Innovation and Preclinical Studies (CIENP), Florianópolis, Brazil
| | | | | |
Collapse
|
4
|
Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G, Christodoulou I, Zoumpourlis V. Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review). Int J Mol Med 2018; 41:1177-1186. [PMID: 29328364 PMCID: PMC5819898 DOI: 10.3892/ijmm.2018.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The tissue kallikrein-kinin system (KKS) is an endogenous multiprotein metabolic cascade which is implicated in the homeostasis of the cardiovascular, renal and central nervous system. Human tissue kallikrein (KLK1) is a serine protease, component of the KKS that has been demonstrated to exert pleiotropic beneficial effects in protection from tissue injury through its anti-inflammatory, anti-apoptotic, anti-fibrotic and anti-oxidative actions. Mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs) constitute populations of well-characterized, readily obtainable multipotent cells with special immunomodulatory, migratory and paracrine properties rendering them appealing potential therapeutics in experimental animal models of various diseases. Genetic modification enhances their inherent properties. MSCs or EPCs are competent cellular vehicles for drug and/or gene delivery in the targeted treatment of diseases. KLK1 gene delivery using adenoviral vectors or KLK1 protein infusion into injured tissues of animal models has provided particularly encouraging results in attenuating or reversing myocardial, renal and cerebrovascular ischemic phenotype and tissue damage, thus paving the way for the administration of genetically modified MSCs or EPCs with the human tissue KLK1 gene. Engraftment of KLK1-modified MSCs and/or KLK1-modified EPCs resulted in advanced beneficial outcome regarding heart and kidney protection and recovery from ischemic insults. Collectively, findings from pre-clinical studies raise the possibility that tissue KLK1 may be a novel future therapeutic target in the treatment of a wide range of cardiovascular, cerebrovascular and renal disorders.
Collapse
Affiliation(s)
- Marina Devetzi
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nicolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
5
|
Marketou ME, Kontaraki J, Zacharis E, Parthenakis F, Maragkoudakis S, Gavras I, Gavras H, Vardas PE. Differential gene expression of bradykinin receptors 1 and 2 in peripheral monocytes from patients with essential hypertension. J Hum Hypertens 2014; 28:450-5. [PMID: 24401952 DOI: 10.1038/jhh.2013.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 12/26/2022]
Abstract
Bradykinin participates in various hypertensive processes, exerted via its type 1 and type 2 receptors (BKR1 and BKR2). The aim of the study was to investigate BKR1 and BK2R gene expression in peripheral monocytes in patients with essential hypertension compared with healthy individuals. Seventeen hypertensive patients (9 males, age 56 ± 7 years) and 12 healthy individuals (7 males, age 55 ± 6) participated. Mononuclear cells isolated using anti-CD14+ antibodies and mRNAs of BKR1 and BKR2 were estimated by real-time quantitative reverse transcription-PCR. Both BKR1 and BKR2 showed significantly upregulated gene expression in the group of hypertensive patients. Specifically, BKR1 gene expression was 142.1 ± 42.2 in hypertensives versus 20.2 ± 8 in controls (P = 0.024) and BKR2 was 1222.2 ± 361.6 in hypertensives versus 259.5 ± 99.1 in controls (P = 0.038). Antihypertensive treatment resulted in a decrease in BKR1 (from 142.1 ± 42.2 to 55.2 ± 17.1, P = 0.065) and in BKR2 (from 1222.2 ± 361.6 to 256.8 ± 81.8, P = 0.014) gene expression. BKR1 and BKR2 gene expression on peripheral monocytes is upregulated in essential hypertension. This may lead to functional changes in monocytes and contribute to the development of target organ damage in hypertensive patients.
Collapse
Affiliation(s)
- M E Marketou
- Cardiology Department, Heraklion University Hospital, Crete, Greece
| | - J Kontaraki
- Cardiology Department, Heraklion University Hospital, Crete, Greece
| | - E Zacharis
- Cardiology Department, Heraklion University Hospital, Crete, Greece
| | - F Parthenakis
- Cardiology Department, Heraklion University Hospital, Crete, Greece
| | - S Maragkoudakis
- Cardiology Department, Heraklion University Hospital, Crete, Greece
| | - I Gavras
- Hypertension and Atherosclerosis Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - H Gavras
- Hypertension and Atherosclerosis Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - P E Vardas
- Cardiology Department, Heraklion University Hospital, Crete, Greece
| |
Collapse
|
6
|
Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 2013; 18:279-96. [PMID: 23672534 DOI: 10.3109/1354750x.2013.787544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinin-kallikrein system (KKS) is an endogenous multiprotein cascade, the activation of which leads to triggering of the intrinsic coagulation pathway and enzymatic hydrolysis of kininogens with the consequent release of bradykinin-related peptides. This system plays a crucial role in inflammation, vasodilation, smooth muscle contraction, cardioprotection, vascular permeability, blood pressure control, coagulation and pain. In this review, we will outline the physiology and pathophysiology of the KKS and also highlight the association of this system with carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Elena Kashuba
- Postgraduate Medical Institute, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
7
|
A survey of putative anxiety-associated genes in panic disorder patients with and without bladder symptoms. Psychiatr Genet 2013; 22:271-8. [PMID: 23018769 DOI: 10.1097/ypg.0b013e3283586248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND We have previously described a subtype of panic disorder (PD) that we termed 'bladder syndrome', characterized by urological and bladder symptoms (and possibly interstitial cystitis) in the patients and/or their family members and confirmed the validity of this subset in family linkage and association analysis. In this study, we determine (a) whether 20 single-nucleotide polymorphisms (SNPs) reported in the literature can be replicated in a new PD dataset and (b) whether dividing the sample into those with and without the 'bladder syndrome' can help to resolve the genetic heterogeneity within this new sample. METHODS We selected 20 putative associated SNPs from the literature, taken from studies published since 2004. We tested these SNPs for association in a sample of 351 PD patients and 552 controls, and then divided them into subgroups of 92 patients from bladder families and 259 from nonbladder families. RESULTS (a) When analyzed in all PD patients, none of the 20 SNPs appeared to be replicated (except for SLC6A4 from our previous study, but in a sample that overlaps substantially with that in our previous report). (b) However, some intriguing findings emerged when we separated bladder from nonbladder families: SLC6A4, reported by us previously, yielded stronger evidence than before (P=0.0018) when examined only in nonbladder families, and in contrast, is not statistically significant in bladder families. Two other markers yielded nominally significant results in bladder families - rs5751876 in ADORA2A (P=0.046) and rs12579350 in TMEM16B (P=0.035) - but were not significant in nonbladder families. (c) Two markers had noticeably lower P-values when we differentiated the women and analyzed them separately - rs12579350 in TMEM16B (P-value decreased from 0.035, as above, to 0.00055) and a different SNP in ADORA2A, rs4822492 (P-value decreases from 0.07 to 0.028). SIGNIFICANCE Our results indicate that most of the 20 reported associations do not hold up when PD is analyzed as one group. However, our findings provide further evidence that PD with bladder symptoms may be genetically different from PD without bladder. We suggest that it is worth pursuing SLC6A4 in nonbladder PD, and ADORA2A and TMEM16B in bladder PD. Also, the possibility of a male-female difference in PD is worth pursuing. We also briefly discuss issues of replication and multiple tests.
Collapse
|