1
|
Lacoste B, Prat A, Freitas-Andrade M, Gu C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol 2025; 17:a041422. [PMID: 38951020 PMCID: PMC12047665 DOI: 10.1101/cshperspect.a041422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Moises Freitas-Andrade
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
| | - Chenghua Gu
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Mo Y, Fan D, Wang W, Wang S, Yan Y, Zhao Z. Identification of inflammation-related genes signature to establish a prognostic model in MGMT unmethylated glioblastoma patients. Discov Oncol 2025; 16:154. [PMID: 39932605 DOI: 10.1007/s12672-025-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Patients with unmethylated O6-methylguanine-DNA methyltransferase promoter (uMGMT) glioblastoma (GBM) have a poor prognosis. Inflammatory response can affect the prognosis, for it may have a significant impact on the tumor microenvironment (TME). This study aims to identify a prognostic signature of inflammation-related genes, which can predict the prognosis of uMGMT GBM patients. METHODS We examined the gene expression, somatic mutations, and overall survival of 159 GBM patients with uMGMT using the TCGA and CGGA databases. We identified molecular subtypes of uMGMT GBM patients based on the expression of inflammation-related genes. Furthermore, we determined principal component analysis (PCA), gene ontology (GO) analysis, pathway analysis and immune infiltration analysis between high and low-inflammation subtypes. We also examined the spatial and longitudinal heterogeneity of these two subtypes. The LASSO-Cox analyses were used to develop an inflammation-related prognostic model. RESULTS Our findings indicate that patients with uMGMT GBM can be divided into high-inflammation and low-inflammation subtypes. Patients with high levels of inflammation are more likely to develop an immunosuppressive microenvironment, which stimulates the production of immunosuppressive cytokines, immune checkpoints, and immunosuppressive cells. Nine inflammation-related genes (EREG, BDKRB1, DCBLD2, CD14, AHR, CLEC5A, LTA, SLC4A4, and LY6E) were found to have excellent predictive potential for patient survival in the prognostic model. CONCLUSIONS In conclusion, we created a new prognostic model including 9 inflammation-related genes. This model has produced meaningful results in evaluating patient prognosis, which may help with future therapeutic strategies for patients with uMGMT GBM.
Collapse
Affiliation(s)
- Yunzhao Mo
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Dandan Fan
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Wei Wang
- Department of Pathology, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Shenchuan Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Yingyu Yan
- Quality Management Department, The 921st Hospital of the Joint Logistics Support Force, Changsha, 410008, China
| | - Zhenyu Zhao
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China.
| |
Collapse
|
3
|
Chen Z, Wei D, Zhao M, Shi J, Ma C, Zhang C, Lin H, Huo W, Wang C, Fan C, Mao Z. Associations of serum glucocorticoid levels on hypertension and blood pressure-related indicators: a nested case-control study in rural China. J Hypertens 2024; 42:1555-1565. [PMID: 38747439 DOI: 10.1097/hjh.0000000000003758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
BACKGROUND The relationship between glucocorticoids and hypertension has shown inconsistent findings in previous studies. To address this, our study employed a nested case-control design in rural areas to further investigate the association between serum glucocorticoid levels and hypertension, and blood pressure-related indicators. METHODS This study employed a nested case-control design, involving 560 pairs of hypertensive cases and matched controls. The concentrations of serum cortisol (F), cortisone (E) and 11-deoxycortisol (S) were determined using liquid chromatography-tandem mass spectrometry. We employed various methods, including generalized linear model (GLM), conditional logistic regression model, restricted cubic spline regression, subgroup analysis, interaction, and joint effects, with adjustments for multiple covariates to analyze the relationships between glucocorticoids, hypertension, and blood pressure-related indicators. RESULTS After multivariable adjustments, ln-F, ln-F/E, and ln-S were positively associated with SBP, DBP, pulse pressure (PP), and mean arterial pressure (MAP), while ln-E was negatively associated with DBP and MAP ( P < 0.05). Interestingly, ln-S showed no statistically significant association with hypertension prevalence ( P > 0.05), whereas ln-F and ln-F/E were positively associated with it ( P < 0.05). The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 1.153 (1.011-1.315) for ln-F and 2.072 (1.622-2.645) for ln-F/E, respectively. In contrast, ln-E exhibited a negative association with hypertension prevalence (adjusted OR = 0.837, 95% CI 0.714-0.982). Moreover, a significant association was observed between the combined use of high-dose F/E and high-dose S with hypertension prevalence (adjusted OR = 3.273, 95% CI 2.013-5.321). Blood pressure indicators and hypertension prevalence significantly increased with elevated serum F and F/E concentrations ( P < 0.05). Interaction analysis further revealed that among women, the positive association between F/E and hypertension prevalence was more pronounced than in men ( P < 0.05), and S exhibited a more significant positive association with hypertension prevalence in the overweight population ( P < 0.05). CONCLUSION Serum F/E and S levels demonstrated positive associations with hypertension and blood pressure-related indicators, and their combined influence exhibited a synergistic effect on hypertension. Notably, F, F/E, and S were associated with heightened hypertension risk, warranting particular attention in women and overweight populations.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| | - Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat Sen University, Guangzhou
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| | - Caini Fan
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan
| |
Collapse
|
4
|
Pinkiewicz M, Pinkiewicz M, Walecki J, Zaczyński A, Zawadzki M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood-Brain Barrier Disruption. Cancers (Basel) 2024; 16:236. [PMID: 38201663 PMCID: PMC10778052 DOI: 10.3390/cancers16010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The blood-brain barrier (BBB) poses a significant challenge to drug delivery for brain tumors, with most chemotherapeutics having limited permeability into non-malignant brain tissue and only restricted access to primary and metastatic brain cancers. Consequently, due to the drug's inability to effectively penetrate the BBB, outcomes following brain chemotherapy continue to be suboptimal. Several methods to open the BBB and obtain higher drug concentrations in tumors have been proposed, with the selection of the optimal method depending on the size of the targeted tumor volume, the chosen therapeutic agent, and individual patient characteristics. Herein, we aim to comprehensively describe osmotic disruption with intra-arterial drug administration, intrathecal/intraventricular administration, laser interstitial thermal therapy, convection-enhanced delivery, and ultrasound methods, including high-intensity focused and low-intensity ultrasound as well as tumor-treating fields. We explain the scientific concept behind each method, preclinical/clinical research, advantages and disadvantages, indications, and potential avenues for improvement. Given that each method has its limitations, it is unlikely that the future of BBB disruption will rely on a single method but rather on a synergistic effect of a combined approach. Disruption of the BBB with osmotic infusion or high-intensity focused ultrasound, followed by the intra-arterial delivery of drugs, is a promising approach. Real-time monitoring of drug delivery will be necessary for optimal results.
Collapse
Affiliation(s)
- Miłosz Pinkiewicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Mateusz Pinkiewicz
- Department of Diagnostic Imaging, Mazowiecki Regional Hospital in Siedlce, 08-110 Siedlce, Poland
| | - Jerzy Walecki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Artur Zaczyński
- Department of Neurosurgery, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Michał Zawadzki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Radiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
5
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
7
|
Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease. Int J Mol Sci 2022; 23:ijms23031222. [PMID: 35163143 PMCID: PMC8835432 DOI: 10.3390/ijms23031222] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Actions of symbiotic gut microbiota are in dynamic balance with the host’s organism to maintain homeostasis. Many different factors have an impact on this relationship, including bacterial metabolites. Several substrates for their synthesis have been established, including tryptophan, an exogenous amino acid. Many biological processes are influenced by the action of tryptophan and its endogenous metabolites, serotonin, and melatonin. Recent research findings also provide evidence that gut bacteria-derived metabolites of tryptophan share the biological effects of their precursor. Thus, this review aims to investigate the biological actions of indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan. We searched PUBMED and Google Scholar databases to identify pre-clinical and clinical studies evaluating the impact of IPA on the health and pathophysiology of the immune, nervous, gastrointestinal and cardiovascular system in mammals. IPA exhibits a similar impact on the energetic balance and cardiovascular system to its precursor, tryptophan. Additionally, IPA has a positive impact on a cellular level, by preventing oxidative stress injury, lipoperoxidation and inhibiting synthesis of proinflammatory cytokines. Its synthesis can be diminished in the presence of different risk factors of atherosclerosis. On the other hand, protective factors, such as the introduction of a Mediterranean diet, tend to increase its plasma concentration. IPA seems to be a promising new target, linking gut health with the cardiovascular system.
Collapse
|
8
|
Proczka M, Przybylski J, Cudnoch-Jędrzejewska A, Szczepańska-Sadowska E, Żera T. Vasopressin and Breathing: Review of Evidence for Respiratory Effects of the Antidiuretic Hormone. Front Physiol 2021; 12:744177. [PMID: 34867449 PMCID: PMC8637824 DOI: 10.3389/fphys.2021.744177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Vasopressin (AVP) is a key neurohormone involved in the regulation of body functions. Due to its urine-concentrating effect in the kidneys, it is often referred to as antidiuretic hormone. Besides its antidiuretic renal effects, AVP is a potent neurohormone involved in the regulation of arterial blood pressure, sympathetic activity, baroreflex sensitivity, glucose homeostasis, release of glucocorticoids and catecholamines, stress response, anxiety, memory, and behavior. Vasopressin is synthesized in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus and released into the circulation from the posterior lobe of the pituitary gland together with a C-terminal fragment of pro-vasopressin, known as copeptin. Additionally, vasopressinergic neurons project from the hypothalamus to the brainstem nuclei. Increased release of AVP into the circulation and elevated levels of its surrogate marker copeptin are found in pulmonary diseases, arterial hypertension, heart failure, obstructive sleep apnoea, severe infections, COVID-19 due to SARS-CoV-2 infection, and brain injuries. All these conditions are usually accompanied by respiratory disturbances. The main stimuli that trigger AVP release include hyperosmolality, hypovolemia, hypotension, hypoxia, hypoglycemia, strenuous exercise, and angiotensin II (Ang II) and the same stimuli are known to affect pulmonary ventilation. In this light, we hypothesize that increased AVP release and changes in ventilation are not coincidental, but that the neurohormone contributes to the regulation of the respiratory system by fine-tuning of breathing in order to restore homeostasis. We discuss evidence in support of this presumption. Specifically, vasopressinergic neurons innervate the brainstem nuclei involved in the control of respiration. Moreover, vasopressin V1a receptors (V1aRs) are expressed on neurons in the respiratory centers of the brainstem, in the circumventricular organs (CVOs) that lack a blood-brain barrier, and on the chemosensitive type I cells in the carotid bodies. Finally, peripheral and central administrations of AVP or antagonists of V1aRs increase/decrease phrenic nerve activity and pulmonary ventilation in a site-specific manner. Altogether, the findings discussed in this review strongly argue for the hypothesis that vasopressin affects ventilation both as a blood-borne neurohormone and as a neurotransmitter within the central nervous system.
Collapse
Affiliation(s)
- Michał Proczka
- Department of Experimental and Clinical Physiology, Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Przybylski
- Department of Biophysics, Physiology, and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Szczepańska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Abstract
The blood–brain barrier (BBB) is a dynamic barrier essential for central nervous system interstitial fluid separation from circulating blood. This dynamic separation ensures maintenance of neuronal microenvironment homeostasis against that of the everchanging in solutes and toxin concentration in circulating blood. The blood–brain barrier structure is complex, it has multiple contributors, such as specialised blood microvascular endothelium, neurons, astrocytes and pericytes. Transfer of essential nutrients to the brain and waste products from the brain to circulating blood is tightly regulated and facilitated by a large surface area and specialised transport systems. It is not only the physical characteristics of the barrier that assist in maintenance of neuronal microenvironment, biochemical substances and the high trans endothelial electrical resistance also play a major role.
Circumventricular organs are those parts of the central nervous system lacking the blood–brain barrier. These are essential for optimum central nervous system interaction with circulating blood directly or using neurotransmitters.
Primary or secondary central nervous system pathological states, such as infective and noninfective causes, directly or indirectly induce biochemical mediators that may disrupt and alter blood–brain barrier structure and function.
Understanding of the blood–brain barrier anatomy and physiology assists in developing treatment methods to overcome degenerative and pathological states negatively affecting the central nervous system.
Collapse
|
10
|
Quelhas P, Baltazar G, Cairrao E. The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Curr Neurovasc Res 2020; 16:502-515. [PMID: 31738142 DOI: 10.2174/1567202616666191026122642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/01/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is a physiological unit present in the brain, which is constituted by elements of the nervous system (neurons and astrocytes) and the vascular system (endothelial and mural cells). This unit is responsible for the homeostasis and regulation of cerebral blood flow. There are two major types of mural cells in the brain, pericytes and smooth muscle cells. At the arterial level, smooth muscle cells are the main components that wrap around the outside of cerebral blood vessels and the major contributors to basal tone maintenance, blood pressure and blood flow distribution. They present several mechanisms by which they regulate both vasodilation and vasoconstriction of cerebral blood vessels and their regulation becomes even more important in situations of injury or pathology. In this review, we discuss the main regulatory mechanisms of brain smooth muscle cells and their contributions to the correct brain homeostasis.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| |
Collapse
|
11
|
Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci 2020; 21:416-432. [PMID: 32636528 DOI: 10.1038/s41583-020-0322-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
To continuously process neural activity underlying sensation, movement and cognition, the CNS requires a homeostatic microenvironment that is not only enriched in nutrients to meet its high metabolic demands but that is also devoid of toxins that might harm the sensitive neural tissues. This highly regulated microenvironment is made possible by two unique features of CNS vasculature absent in the peripheral organs. First, the blood-blood barrier, which partitions the circulating blood from the CNS, acts as a gatekeeper to facilitate the selective trafficking of substances between the blood and the parenchyma. Second, neurovascular coupling ensures that, following local neural activation, regional blood flow is increased to quickly supply more nutrients and remove metabolic waste. Here, we review how neural and vascular activity act on one another with regard to these two properties.
Collapse
|
12
|
Zhang L, An J, Tian X, Liu M, Tao L, Liu X, Wang X, Zheng D, Guo X, Luo Y. Acute effects of ambient particulate matter on blood pressure in office workers. ENVIRONMENTAL RESEARCH 2020; 186:109497. [PMID: 32304927 DOI: 10.1016/j.envres.2020.109497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient particulate matter with a diameter of <2.5 μm (PM2.5) has been linked to increases in blood pressure. The aim of this study was to assess the effects of short-term exposure to PM2.5 on blood pressure in office workers in Beijing, China. A total of 4801 individuals aged 18-60 years underwent an annual medical examination between 2013 and 2017. Levels of air pollutants were obtained from 35 fixed monitoring stations and correlated with the employment location of each participant to predict personal exposure via kriging interpolation. Linear mixed-effects models were used to estimate the changes in blood pressure associated with PM2.5 exposure at various lag times. After adjusting for personal characteristics and other potential confounders, each interquartile range increase in PM2.5 was associated with a 0.413-mmHg (95% confidence interval [CI]: 0.252-0.573), 0.171-mmHg (95% CI: 0.053-0.288), 0.278-mmHg (95% CI: 0.152-0.404), and 0.241-mmHg (95% CI: 0.120-0.362) increase in systolic blood pressure, diastolic blood pressure, pulse pressure, and mean arterial pressure, respectively (p < 0.05). Men, individuals previously diagnosed with hypertension, and subjects working in the northern districts of Beijing had larger changes in blood pressure, and the effect sizes were 0.477-mmHg (95% CI: 0.286-0.669), 0.851-mmHg (95% CI: 0.306-1.397, and 0.672-mmHg (95% CI: 0.405-0.940). The findings suggested that exposure to PM2.5 had adverse effects on blood pressure, especially among males and hypertensive patients.
Collapse
Affiliation(s)
- Licheng Zhang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Ji An
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xue Tian
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Mengyang Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Lixin Tao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Deqiang Zheng
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, Youanmen Wai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
13
|
The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca 2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers (Basel) 2020; 12:cancers12030667. [PMID: 32182968 PMCID: PMC7139930 DOI: 10.3390/cancers12030667] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain tumor and is very aggressive. Rapid migration and invasion of glioblastoma cells are two typical features driving malignance of GBM. Bradykinin functionally prompts calcium influx via activation of bradykinin receptor B1/B2 (BDKRB1/2). In this study, we evaluated the roles of bradykinin in migration and invasion of glioblastoma cells and the possible mechanisms. Expressions of aquaporin 4 (AQP4) mRNA and protein were upregulated in human glioblastomas. Furthermore, exposure of human U87 MG glioblastoma cells to bradykinin specifically increased levels of BDKRB1. Successively, bradykinin stimulated influx of calcium, phosphorylation of MEK1 and extracellular signal-regulated kinase (ERK)1/2, translocation and transactivation of nuclear factor-kappaB (NF-κB), and expressions of AQP4 mRNA and protein. Concomitantly, migration and invasion of human glioblastoma cells were elevated by bradykinin. Knocking-down BDKRB1 concurrently decreased AQP4 mRNA expression and cell migration and invasion. The bradykinin-induced effects were further confirmed in murine GL261 glioblastoma cells. Therefore, bradykinin can induce AQP4 expression and subsequent migration and invasion through BDKRB1-mediated calcium influx and subsequent activation of a MEK1-ERK1/2-NF-κB pathway. The bradykinin-BDKRB1 axis and AQP4 could be precise targets for treating GBM patients.
Collapse
|
14
|
Arteriogenesis of the Spinal Cord-The Network Challenge. Cells 2020; 9:cells9020501. [PMID: 32098337 PMCID: PMC7072838 DOI: 10.3390/cells9020501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord ischemia (SCI) is a clinical complication following aortic repair that significantly impairs the quality and expectancy of life. Despite some strategies, like cerebrospinal fluid drainage, the occurrence of neurological symptoms, such as paraplegia and paraparesis, remains unpredictable. Beside the major blood supply through conduit arteries, a huge collateral network protects the central nervous system from ischemia—the paraspinous and the intraspinal compartment. The intraspinal arcades maintain perfusion pressure following a sudden inflow interruption, whereas the paraspinal system first needs to undergo arteriogenesis to ensure sufficient blood supply after an acute ischemic insult. The so-called steal phenomenon can even worsen the postoperative situation by causing the hypoperfusion of the spine when, shortly after thoracoabdominal aortic aneurysm (TAAA) surgery, muscles connected with the network divert blood and cause additional stress. Vessels are a conglomeration of different cell types involved in adapting to stress, like endothelial cells, smooth muscle cells, and pericytes. This adaption to stress is subdivided in three phases—initiation, growth, and the maturation phase. In fields of endovascular aortic aneurysm repair, pre-operative selective segmental artery occlusion may enable the development of a sufficient collateral network by stimulating collateral vessel growth, which, again, may prevent spinal cord ischemia. Among others, the major signaling pathways include the phosphoinositide 3 kinase (PI3K) pathway/the antiapoptotic kinase (AKT) pathway/the endothelial nitric oxide synthase (eNOS) pathway, the Erk1, the delta-like ligand (DII), the jagged (Jag)/NOTCH pathway, and the midkine regulatory cytokine signaling pathways.
Collapse
|
15
|
Yang YN, Tsai HL, Lin YC, Liu YP, Tung CS. Role of vasopressin V1 antagonist in the action of vasopressin on the cooling-evoked hemodynamic perturbations of rats. Neuropeptides 2019; 76:101939. [PMID: 31253439 DOI: 10.1016/j.npep.2019.101939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
We aimed to investigate the role of arginine vasopressin (AVP) acting via the AVPV1 receptor in the autonomic cardiovascular responses to cold stress (CS). The study was conducted on adult male Sprague-Dawley rats with telemetry transmitters implanted to monitor heart rate (HR) and systolic blood pressure (SBP) throughout the experiment course. Rats were divided into four groups and were given, respectively, saline (control group), AVPV1 antagonist (V1880) alone, and V1880 following the removal of sympathetic outflows using hexamethonium (HEX+V1880) or guanethidine (GUA + V1880). Rats were subjected to the CS stimuli (rapid immersion of the rat's limbs into 4 °C water). Hemodynamic responses were recorded at baseline (PreCS), during CS, and after CS. Data analysis was performed using descriptive methods and spectral and cross-spectral analysis of blood pressure variability (BPV) and heart rate variability (HRV). Key results showed that at PreCS, inhibition of AVPV1 increases SBP and HR as well as very-low-frequency BPV and low-frequency BPV, which is attenuated by hexamethonium (effect on SBP only) and guanethidine (effect on both SBP and HR). HEX+V1880 results in increased high-frequency BPV and attenuated very-low-frequency HRV, while GUA + V1880 results in increased high-frequency HRV and attenuated very-low-frequency HRV. During CS, we observed that SBP and HR, as well as very-low-frequency BPV and low-frequency BPV, were similar in the control group and the group with AVPV1 inhibition, while AVPV1 inhibition results in attenuated high-frequency BPV. Furthermore, we observed that changes produced by AVPV1 inhibition alone were affected differently by HEX+V1880 and GUA + V1880, particularly in low-frequency HRV and very-low-frequency HRV. The results support that AVPV1 mediates autonomic cardiovascular responses at both baseline and CS stimuli conditions are associated with central mechanism engagement.
Collapse
Affiliation(s)
| | - Hsien-Lung Tsai
- Department of Emergency, Cheng Hsin General Hospital, Taiwan, ROC
| | - Yu-Chieh Lin
- Department of Medical Research & Education, Cheng Hsin General Hospital, Taiwan, ROC
| | - Yia-Ping Liu
- Department of Physiology, National Defense Medical Center, Taiwan, ROC; Department of Psychiatry, Cheng Hsin General Hospital, Taiwan, ROC
| | - Che-Se Tung
- Department of Medical Research & Education, Cheng Hsin General Hospital, Taiwan, ROC.
| |
Collapse
|
16
|
Benz F, Wichitnaowarat V, Lehmann M, Germano RF, Mihova D, Macas J, Adams RH, Taketo MM, Plate KH, Guérit S, Vanhollebeke B, Liebner S. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife 2019; 8:43818. [PMID: 30932814 PMCID: PMC6481993 DOI: 10.7554/elife.43818] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/β-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific β-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5+vessels, stabilizing junctions and by reducing Plvap/Meca32+ and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis. Infections and diseases in the brain and spine can be very damaging and debilitating. Indeed, the central nervous system also needs a carefully controlled biochemical environment to survive. As such, all animals with a backbone have barriers and defenses to protect and preserve this key system. One of these is the blood-brain barrier, a physical barrier between the brain and the outside world. Where most blood vessels allow relatively free exchange of chemicals between the blood and surrounding cells, the blood-brain barrier controls what can move between the bloodstream and the brain. Yet, there are gaps in the blood-brain barrier, specifically within structures in the brain called the circumventricular organs. These leaky vessels allow the brain cells in these regions to monitor the blood and respond to changes, for example, by triggering sensations such as hunger, thirst or nausea. It is not clear what stops the blood-brain barrier from forming in these regions and what effect the presence of a barrier would have on the brains activity, or the health and behavior of the animal. Benz et al. have now used mice and zebrafish to examine the development and structure of the blood-brain barrier. The investigation revealed that the signals that induce the blood-brain barrier throughout the brain are absent in the circumventricular organs of both species. Next, by artificially activating a protein involved in cell-cell interactions in mice, Benz et al. created blood-brain barrier-like structures in circumventricular organs by converting the leaky vessels into tight ones. This change meant that the brain cells in these regions did not respond properly to water deprivation, which potentially may have affected the regulation of thirst in these mice. Understanding the blood-brain barrier could have a variety of impacts on how we treat diseases in the central nervous system. This includes stroke, brain tumors and Alzheimers disease. These findings could particularly help scientists to better understand conditions that affect basic needs like thirst and hunger.
Collapse
Affiliation(s)
- Fabienne Benz
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Viraya Wichitnaowarat
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Lehmann
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raoul Fv Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Diana Mihova
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, University of Münster, Faculty of Medicine, Münster, Germany
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Karl-Heinz Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary systems (ECCPS), Partner site Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sylvaine Guérit
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary systems (ECCPS), Partner site Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| |
Collapse
|
17
|
Ufnal M, Nowinski A. Central Administration of H 2S Donors for Studying Cardiovascular Effects of H 2S in Rats. Methods Mol Biol 2019; 2007:167-172. [PMID: 31148113 DOI: 10.1007/978-1-4939-9528-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests that hydrogen sulfide (H2S) is involved in brain mechanisms regulating the functions of the circulatory system. This appears to be mediated by cardiovascular centers located in the central nervous system. This chapter describes techniques of acute and chronic infusions into the brain cardiovascular centers in rats. Rats may be implanted either acutely or chronically with a cannula inserted into a selected cardiovascular center according to the stereotaxic coordinates. The cannula allows for the administration of the investigated compounds into a selected cardiovascular center.
Collapse
Affiliation(s)
- Marcin Ufnal
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland.
| | - Artur Nowinski
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Sharif Y, Jumah F, Coplan L, Krosser A, Sharif K, Tubbs RS. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin Anat 2018; 31:812-823. [PMID: 29637627 DOI: 10.1002/ca.23083] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the principal regulator of transport of molecules and cells into and out of the central nervous system (CNS). It comprises endothelial cells, pericytes, immune cells, astrocytes, and basement membrane, collectively known as the neurovascular unit. The development of the barrier involves many complex pathways from all the progenitors of the neurovascular unit, but the timing of its formation is not entirely known. The coordinated activities of all the components of the neurovascular unit and other tissues ensure that materials required for growth and maintenance are allowed into the CNS while extraneous ones are excluded. This review summarizes current knowledge of the anatomy, development, and physiology of the BBB, and alterations that occur in disease conditions. Clin. Anat. 31:812-823, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yousra Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Fareed Jumah
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alec Krosser
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
19
|
Castro PR, Barbosa AS, Pereira JM, Ranfley H, Felipetto M, Gonçalves CAX, Paiva IR, Berg BB, Barcelos LS. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6740408. [PMID: 30406137 PMCID: PMC6199857 DOI: 10.1155/2018/6740408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The microvasculature heterogeneity is a complex subject in vascular biology. The difficulty of building a dynamic and interactive view among the microenvironments, the cellular and molecular heterogeneities, and the basic aspects of the vessel formation processes make the available knowledge largely fragmented. The neovascularisation processes, termed vasculogenesis, angiogenesis, arteriogenesis, and lymphangiogenesis, are important to the formation and proper functioning of organs and tissues both in the embryo and the postnatal period. These processes are intrinsically related to microvascular cells, such as endothelial and mural cells. These cells are able to adjust their activities in response to the metabolic and physiological requirements of the tissues, by displaying a broad plasticity that results in a significant cellular and molecular heterogeneity. In this review, we intend to approach the microvasculature heterogeneity in an integrated view considering the diversity of neovascularisation processes and the cellular and molecular heterogeneity that contribute to microcirculatory homeostasis. For that, we will cover their interactions in the different blood-organ barriers and discuss how they cooperate in an integrated regulatory network that is controlled by specific molecular signatures.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Jousie Michel Pereira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Carlos Alberto Xavier Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Isabela Ribeiro Paiva
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Bárbara Betônico Berg
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
20
|
Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 2018; 130:172-179. [DOI: 10.1016/j.phrs.2017.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
21
|
Yin W, Hou J, Xu T, Cheng J, Wang X, Jiao S, Wang L, Huang C, Zhang Y, Yuan J. Association of individual-level concentrations and human respiratory tract deposited doses of fine particulate matter with alternation in blood pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:621-631. [PMID: 28710980 DOI: 10.1016/j.envpol.2017.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Fine particulate matter (PM2.5) contributes to the risk of cardiovascular events, partially owing to its deposition in the human respiratory tract. To investigate short-term effects of ambient PM2.5 exposure on alternation of blood pressure (BP), this study was conducted during the winter-summer period between 2014 and 2015. The study included 106 community residents in Wuhan city, China. We repeatedly monitored the household and outdoor PM2.5 concentrations as well as individual-level PM2.5 in each season, and then assessed personal PM2.5 exposure (including deposited doses of PM2.5 in the human respiratory tract) by using different methodology (such as using a dosimetry model). All participants took part in the physical examination, including the inflammatory indicators, BP and lung function parameters measurements. Subsequently, we assessed the health damage of exposure to PM2.5 using generalized additive models. We observed increased BP at 2-day lag for an interquartile range increase in ambient fixed-site, households, individual-level PM2.5 exposure and the corresponding lung deposited doses of each exposure concentration (p < 0.05), decreased BP at 3-day lag for an interquartile range increase in ambient fixed-site, households PM2.5 and the corresponding lung deposited doses of each exposure concentration (p < 0.05). The estimated deposited doses of PM2.5 by the deposition fractions in this study and the referenced deposition fractions by previous reported method were equivalent associated with alternation in BP. In conclusion, lung deposited dose of PM2.5 as a quantitative indicator may be used to assess adverse cardiovascular effects following the systemic inflammation. However, we require careful assessment of acute adverse cardiovascular effects using ambient fixed-site PM2.5 after short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Xiaoying Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Shilin Jiao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Cheng Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Youjian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
22
|
Abstract
Besides the well-known renal effects of aldosterone, the hormone is now known to have direct vascular effects. Clinical observations underline substantial adverse effects of aldosterone on cardiovascular function. The source of systemic circulating aldosterone is the adrenal gland zona glomerulosa cells through stimulus-secretion coupling involving depolarization, opening of L- and T-type calcium channels and aldosterone synthase activation. Local formation and release in peripheral tissues such as perivascular fat is recognized. Where does aldosterone affect the vasculature? Mineralocorticoid receptors (MRs) are present in endothelial and vascular smooth muscle cells, and MR-independent pathways are also involved. The vascular effects of aldosterone are complex, both concentration and temporal and spatial aspects are relevant. The acute response includes vasodilation through endothelial nitric oxide formation and vasoconstrictor effects through endothelial-contracting cyclooxygenase-derived factors and a changed calcium handling. The response to aldosterone can change within the same blood vessels depending on the exposure time and status of the endothelium. Chronic responses involve changed levels of reactive oxygen radicals, endothelial Na-influx and smooth muscle calcium channel expression. Furthermore, perivascular cells for example mast cells have also been suggested to participate in the chronic response. Moreover, the vascular effect of aldosterone depends on the status of the endothelium which is likely the cause of the very different responses to aldosterone and MR treatment observed in human studies going from increased to decreased flow depending on whether the patient had prior cardiovascular disease with endothelial dysfunction or not. A preponderance of constrictor versus dilator responses to aldosterone could therefore be involved in the detrimental vascular actions of the hormone in the setting of endothelial dysfunction and contribute to explain the beneficial action of MR blockers on blood pressure and target organ injury.
Collapse
|
23
|
Abstract
OBJECTIVES The participation of vasopressin in the mechanisms of resistant hypertension is unclear. We compared plasma copeptin concentration, a surrogate marker for vasopressin secretion, between patients with resistant hypertension and those with controlled blood pressure (CBP), in a post hoc analysis of the Prise en charge de l'Hypertension Artérielle RESistante au traitement trial. METHODS After 4-week treatment with irbesartan 300 mg/day, hydrochlorothiazide 12.5 mg/day, and amlodipine 5 mg/day (baseline), 166 patients were classified as having resistant hypertension (n = 140) or CBP (n = 26) by ambulatory BP monitoring. Patients with resistant hypertension were then randomized for 12 weeks of sequential nephron blockade (n = 74) or sequential renin-angiotensin system blockade (n = 66). Plasma copeptin concentration was measured at baseline and week 12 by immunoassay. RESULTS Baseline plasma copeptin concentration was positively associated with male sex, plasma osmolality, BP, and negatively with glomerular filtration rate. It was higher in the resistant hypertension than in the CBP group [geometric mean 5.7 (confidence interval 95% 5.1-6.4) vs. 2.9 (2.3-3.9) fmol/ml, adjusted P < 0.0001). The relationship between plasma copeptin concentration and urinary osmolality was similar in the two groups. At 12 weeks, plasma copeptin concentration in patients whose BP was controlled by sequential nephron blockade or sequential renin-angiotensin system blockade [6.8 (5.6-8.2) and 4.3 (3.0-5.9) fmol/ml, respectively) remained significantly higher than in patients with CBP at baseline (P < 0.0001 vs. both). CONCLUSION In patients with resistant hypertension, plasma copeptin concentrations were approximately two-fold higher than those of patients with CBP, after adjustment for plasma osmolality. This difference was not accounted for by renal resistance to vasopressin, suggesting a primary reset of osmostat.
Collapse
|
24
|
Paiva L, Sabatier N, Leng G, Ludwig M. Effect of Melanotan-II on Brain Fos Immunoreactivity and Oxytocin Neuronal Activity and Secretion in Rats. J Neuroendocrinol 2017; 29. [PMID: 28009464 DOI: 10.1111/jne.12454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Melanocortins stimulate the central oxytocin systems that are involved in regulating social behaviours. Alterations in central oxytocin have been linked to neurological disorders such as autism, and melanocortins have been proposed for therapeutic treatment. In the present study, we investigated how systemic administration of melanotan-II (MT-II), a melanocortin agonist, affects oxytocin neuronal activity and secretion in rats. The results obtained show that i.v., but not intranasal, administration of MT-II markedly induced Fos expression in magnocellular neurones of the supraoptic (SON) and paraventricular nuclei (PVN) of the hypothalamus, and this response was attenuated by prior i.c.v. administration of the melanocortin antagonist, SHU-9119. Electrophysiological recordings from identified magnocellular neurones of the SON showed that i.v. administration of MT-II increased the firing rate in oxytocin neurones but did not trigger somatodendritic oxytocin release within the SON as measured by microdialysis. Our data suggest that, after i.v., but not intranasal, administration of MT-II, the activity of magnocellular neurones of the SON is increased. Because previous studies showed that SON oxytocin neurones are inhibited in response to direct application of melanocortin agonists, the actions of i.v. MT-II are likely to be mediated at least partly indirectly, possibly by activation of inputs from the caudal brainstem, where MT-II also increased Fos expression.
Collapse
Affiliation(s)
- L Paiva
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - N Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - M Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Żera T, Nowiński A, Kwiatkowski P. Centrally administered TNF increases arterial blood pressure independently of nitric oxide synthase. Neuropeptides 2016; 58:67-72. [PMID: 27241175 DOI: 10.1016/j.npep.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/15/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Emerging evidence indicates that increased levels of TNF in the brain are associated with hypertension. Nitric oxide synthase (NOS) is involved in the central control of the cardiovascular system, exerting both pro- and antihypertensive effects. TNF induces hypothalamic synthesis of nitric oxide. AIM We checked if acutely administered TNF into the cerebral ventricles affects arterial blood pressure, heart rate and baroreflex sensitivity, and whether TNF actions are dependent on NOS in normotensive rats. METHODS We carried out hemodynamic measurements in 6 groups of freely moving, adult Sprague-Dawley male rats, intracerebroventricularly (ICV) infused with either: 1) saline (5μl/h); 2) TNF (200ng/5μl/h); 3) non-selective NO synthase inhibitor - l-NG-Nitroarginine Methyl Ester (l-NAME) (1mg/5μl/h); 4) TNF together with l-NAME (200ng and 1mg/5μl/h, respectively); 5) neuronal NO synthase inhibitor - 7-nitroindazole sodium salt (7-NI) (20μg/10μl/h); 6) or TNF together with 7-NI (200ng and 20μg/10μl/h, respectively). Mean arterial blood pressure (MABP), heart rate (HR) and spontaneous baroreflex sensitivity (sBRS) evaluated by the sequence method were analysed. RESULTS ICV infusion of TNF caused a significant increase in MABP accompanied by a transient increase in HR, and a decrease in sBRS. ICV infusion of l-NAME increased MABP, but it did not change HR, nor sBRS. ICV infusion of 7-NI did not affect MABP, nor HR, nor sBRS. TNF administered together with l-NAME increased MABP with a transient increase in HR without changes of sBRS. Similarly, ICV infusion of TNF with 7-NI increased MABP without changes in HR and sBRS. CONCLUSIONS Centrally administered TNF increases MABP and HR and blunts sBRS. The pressor effect of TNF appears to be independent of NOS activity in the brain. Inhibition of nNOS restores sBRS in TNF treated rats.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Artur Nowiński
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Piotr Kwiatkowski
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
26
|
Blaustein MP, Chen L, Hamlyn JM, Leenen FHH, Lingrel JB, Wier WG, Zhang J. Pivotal role of α2 Na + pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016; 594:6079-6103. [PMID: 27350568 DOI: 10.1113/jp272419] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout, cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+ /Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada, K1Y 4W7
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
27
|
Hypotensive effect of S-adenosyl-L-methionine in hypertensive rats is reduced by autonomic ganglia and KATP channel blockers. Amino Acids 2016; 48:1581-90. [PMID: 27108137 DOI: 10.1007/s00726-016-2213-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
S-adenosyl-L-methionine (SAM) is an amino acid involved in a number of physiological processes in the nervous system. Some evidence suggests a therapeutic potential of SAM in hypertension. In this study we investigated the effect of intracerebroventricular (ICV) infusions of SAM on arterial blood pressure in rats. Mean arterial blood pressure (MABP) and heart rate (HR) were measured at baseline and during ICV infusion of either SAM or vehicle (aCSF; controls) in conscious, male normotensive Wistar Kyoto rats (WKY) and Spontaneously Hypertensive Rats (SHR). MABP and HR were not affected by the vehicle. WKY rats infused with SAM (10 μM, 100 μM and 1 mM) showed a biphasic hemodynamic response i.e., mild hypotension and bradycardia followed by a significant increase in MABP and HR. On the contrary, SHR infused with SAM showed a dose-dependent hypotensive response. In separate series of experiments, pretreatment with hexamethonium, a ganglionic blocker as well as pretreatment with glibenclamide, a KATP channel blocker reduced the hemodynamic effects of SAM. SAM may affect the nervous control of arterial blood pressure via the autonomic nervous system and KATP channel-dependent mechanisms.
Collapse
|
28
|
Jia SW, Liu XY, Wang SC, Wang YF. Vasopressin Hypersecretion-Associated Brain Edema Formation in Ischemic Stroke: Underlying Mechanisms. J Stroke Cerebrovasc Dis 2016; 25:1289-300. [PMID: 27068863 DOI: 10.1016/j.jstrokecerebrovasdis.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brain edema formation is a major cause of brain damages and the high mortality of ischemic stroke. The aim of this review is to explore the relationship between ischemic brain edema formation and vasopressin (VP) hypersecretion in addition to the oxygen and glucose deprivation and the ensuing reperfusion injury. METHODS Pertinent studies involving ischemic stroke, brain edema formation, astrocytes, and VP were identified by a search of the PubMed and the Web of Science databases in January 2016. Based on clinical findings and reports of animal experiments using ischemic stroke models, this systematic review reanalyzes the implication of individual reports in the edema formation and then establishes the inherent links among them. RESULTS This systematic review reveals that cytotoxic edema and vasogenic brain edema in classical view are mainly under the influence of a continuous malfunction of astrocytic plasticity. Adaptive VP secretion can modulate membrane ion transport, water permeability, and blood-brain barrier integrity, which are largely via changing astrocytic plasticity. Maladaptive VP hypersecretion leads to disruptions of ion and water balance across cell membranes as well as the integrity of the blood-brain barrier. This review highlights our current understandings of the cellular mechanisms underlying ischemic brain edema formation and its association with VP hypersecretion. CONCLUSIONS VP hypersecretion promotes brain edema formation in ischemic stroke by disrupting hydromineral balance in the neurovascular unit; suppressing VP hypersecretion has the potential to alleviate ischemic brain edema.
Collapse
Affiliation(s)
- Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Surgery, Albany Medical Center, Albany, New York
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
29
|
Abdel-Samad D, Bkaily G, Magder S, Jacques D. ETA and ETB receptors contribute to neuropeptide Y-induced secretion of endothelin-1 in right but not left human ventricular endocardial endothelial cells. Neuropeptides 2016; 55:145-53. [PMID: 26803555 DOI: 10.1016/j.npep.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022]
Abstract
Our recent work showed that neuropeptide Y-induced secretion of endothelin-1 (ET-1) in left and right human ventricular endocardial endothelial cells (hLEECs or hREECs respectively) via the activation of neuropeptide Y2 or Y5 receptors depending on the cell type. The aim of this study was to verify whether hLEECs or hREECs secretion of ET-1 induced by NPY is due, in part, to the activation of ETA and/or ETB receptors by the secreted ET-1. Using the technique of indirect immunofluorescence coupled to real 3-D confocal microscopy, as well as ELISA, our results show that in hREECs, the NPY-induced release of ET-1 seems to be due, in part, to the activation of both ETA and ETB receptors. On the other hand, in hLEECs, ETA and ETB receptors do not contribute to the ET-1 released by NPY. Therefore, our results suggest that the NPY-induced release of ET-1 in EECRs is due to NPY receptor activation and the subsequent activation of the ETA and ETB receptors by the released ET-1. However, the release of ET-1 by NPY in hLEECs is mainly due to NPY receptor activation. Furthermore, this secretory process of ET-1 is different between the right and left ventricular cells and highlights the important tuning roles that right and left ventricular EECs possess as well as their contribution to the physiological and pathophysiological states of the underlying heart muscle.
Collapse
Affiliation(s)
- Dima Abdel-Samad
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sheldon Magder
- McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
30
|
Skrzypecki J, Ufnal M. Drug resistant hypertension – no simple way out. Kidney Blood Press Res 2016; 40:66-76. [PMID: 25791632 DOI: 10.1159/000368483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
Hypertension poses growing challenge for health policy-makers and doctors worldwide. Recently published results of Symplicity-III trial (HTN-3), the first blinded, randomized, multicenter study on the efficacy of renal denervation for the treatment of resistant hypertension did not show a significant reduction of BP in patients with resistant hypertension 6 months after renal-artery denervation, as compared with controls. In this paper we review clinical and experimental studies on renal denervation. In order to identify causes of inconsistent results in renal denervation studies we look at basic science support for renal denervation and at designs of clinical trials.
Collapse
|
31
|
H2 receptor antagonists and right ventricular morphology: the MESA right ventricle study. Ann Am Thorac Soc 2015; 11:1379-86. [PMID: 25295642 DOI: 10.1513/annalsats.201407-344oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE H2 receptor antagonist (H2RA) use is common and may act directly on the heart through myocardial H2 receptors or indirectly through changes in pulmonary vascular resistance. OBJECTIVES To determine the relationship between histamine H2RA use and right ventricular (RV) morphology. METHODS We studied 4,122 participants in the Multi-Ethnic Study of Atherosclerosis without clinical cardiovascular disease who had magnetic resonance imaging assessment of RV morphology and ascertainment of medication use. Multivariable linear regression estimated cross-sectional associations between H2RA use and RV morphology after adjusting for demographics, anthropometrics, smoking status, diabetes mellitus, and hypertension. Further adjustments for co-medication use, left ventricular parameters, lung structure and function, renal function, or inflammatory markers were considered in separate models. Analyses in a subcohort restricted to H2RA or proton pump inhibitor users accounted for confounding by the indication of gastroesophageal reflux disease. MEASUREMENTS AND MAIN RESULTS H2RA use was associated with lower RV mass (-0.7 g; 95% confidence interval, -1.2 to -0.2 g; P = 0.004) and smaller RV end-diastolic volume (-4.2 ml; 95% confidence interval, -7.2 to -1.2 ml; P = 0.006). This relationship was unchanged with adjustment for co-medication use, lung structure and function, renal function, and inflammation. The relationship with RV mass was independent of left ventricular mass. Results were similar in the smaller cohort restricted to proton pump inhibitor and H2RA users. CONCLUSIONS H2RA use was associated with lower RV mass and smaller RV end-diastolic volume. Additional study of histamine and H2 receptors in cardiopulmonary diseases affecting the RV may have direct clinical relevance.
Collapse
|
32
|
Abstract
Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
Collapse
Affiliation(s)
- Richard Daneman
- Departments of Neuroscience and Pharmacology, University of California, San Diego, San Diego, California 92093
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| |
Collapse
|
33
|
Trimethylamine-N-Oxide: A Carnitine-Derived Metabolite That Prolongs the Hypertensive Effect of Angiotensin II in Rats. Can J Cardiol 2014; 30:1700-5. [DOI: 10.1016/j.cjca.2014.09.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/02/2023] Open
|
34
|
Drapala A, Aleksandrowicz M, Zera T, Sikora M, Skrzypecki J, Kozniewska E, Ufnal M. The effect of simvastatin and pravastatin on arterial blood pressure, baroreflex, vasoconstrictor, and hypertensive effects of angiotensin II in Sprague–Dawley rats. ACTA ACUST UNITED AC 2014; 8:863-71. [DOI: 10.1016/j.jash.2014.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 01/15/2023]
|
35
|
Edebali N, Tekin IÖ, Açıkgöz B, Açıkgöz S, Barut F, Sevinç N, Sümbüloğlu V. Apoptosis and necrosis in the circumventricular organs after experimental subarachnoid hemorrhage as detected with annexin V and caspase 3 immunostaining. Neurol Res 2014; 36:1114-20. [PMID: 25137492 DOI: 10.1179/1743132814y.0000000437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The circumventricular organs (CVOs) are essential for most autonomic and endocrine functions. Trauma and bleeding can affect their function. The aim of this study was to investigate apoptosis and necrosis in CVOs in the early period after experimental subarachnoid hemorrhage (SAH) in rats, using annexin V affinity and caspase 3 immunostaining. METHODS Three experimental groups were used: Days 1 and 2 after SAH, and a control group, seven Wistar albino rats each. Subarachnoid hemorrhage was accomplished by transclival basilar artery puncture. Rats were perfused with 0.9% NaCl and 0·1M phosphate buffer pH 7.4 until heart stoppage. Apoptosis and necrosis in CVOs were measured by flow cytometry with annexin V staining, and by caspase 3 immunostaining. RESULTS Apoptosis in the organum vasculosum lamina terminalis (OVLT), median eminence (ME), and area postrema (AP) was significantly higher in the Day 1 group than in the control group. Apoptosis in the subfornicial organ (SFO), OVLT, ME, and AP was significantly higher in the Day 2 group than in the control group. There were significant differences between the Day 1 and Day 2 groups, except for AP. Necrosis in SFO and OVLT was significantly higher in the Day 2 group than in the Day 1 or control groups, whereas necrosis in the ME and AP did not differ between the three groups. Caspase 3-positive cell density was more intense in the Day 2 group than in the Day 1 and control groups. DISCUSSION Prevention of apoptosis may potentially improve impaired functions of CVOs after SAH.
Collapse
|
36
|
Sikora M, Drapala A, Ufnal M. Exogenous hydrogen sulfide causes different hemodynamic effects in normotensive and hypertensive rats via neurogenic mechanisms. Pharmacol Rep 2014; 66:751-8. [PMID: 25149977 DOI: 10.1016/j.pharep.2014.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence suggests that disturbances in H2S homeostasis may participate in the development of hypertension. In this study we compared hemodynamic responses to intracerebroventricular (ICV) infusions of sodium hydrosulfide (NaHS), a H2S donor, between normotensive rats (WKY), spontaneously hypertensive rats (SHR) and angiotensin II - induced hypertensive rats (WKY-Ang II). METHODS We tested the effects of NaHS on mean arterial blood pressure (MABP) and heart rate (HR) in 12-14-week-old, male rats. MABP and HR were continuously recorded at baseline and during ICV infusion of either vehicle (Krebs-Henseleit buffer) or NaHS. RESULTS ICV infusions of the vehicle did not affect MABP and HR. WKY rats infused with 30 nmol/h of NaHS showed a mild decrease in MABP and HR. ICV infusion of 100 nmol/h produced a biphasic response i.e. mild hypotension and bradycardia followed by an increase in MABP and HR, whereas, the infusion of 300 nmol/h of the H2S donor caused a monophasic increases in MABP and HR. In contrast, SHR rats as well as WKY-Ang II rats showed a decrease in MABP and HR during ICV infusions of NaHS. CONCLUSIONS The results provide further evidence for the involvement of H2S in the neurogenic regulation of the circulatory system and suggest that alterations in H2S signaling in the brain could be associated with hypertension.
Collapse
Affiliation(s)
- Mariusz Sikora
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warszawa, Poland
| | - Adrian Drapala
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warszawa, Poland
| | - Marcin Ufnal
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warszawa, Poland.
| |
Collapse
|
37
|
Stone S, Bibens M, Jones A, Curtis K. Running longer, running stronger: a brief review of endurance exercise and oestrogen. COMPARATIVE EXERCISE PHYSIOLOGY 2014. [DOI: 10.3920/cep140007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Athletic performance in endurance exercise is determined by an interplay among many physiological factors. Body fluid regulation, influenced by both hormonal and osmotic stimuli, is particularly important for maximising performance in endurance sports, as dehydration markedly decreases endurance. Oestrogen has a broad range of effects on the regulation of body fluid balance, as well as on aerobic capacity, metabolism, and other factors that impact endurance exercise performance, yet the role of oestrogen in endurance exercise performance has not been thoroughly examined. This review discusses the effects of oestrogen on compensatory hormonal and behavioural responses to dehydration, such as renin-angiotensin-aldosterone system activation and thirst, that restore body fluid balance and thereby affect exercise performance. Oestrogen-mediated effects and their potential consequences for endurance performance are also evaluated in the context of thermoregulation and aerobic capacity, as well as substrate utilisation during exercise. In addressing the role of oestrogen in endurance exercise, this review will examine human and animal models of endurance exercise and discuss similarities, differences, and limitations. Our aim is to integrate research from neuroscience, physiology, and exercise science to advance understanding of how oestrogen may impact exercise. Such understanding will have particularly important implications for female endurance athletes experiencing the hormonal fluctuations that occur during the reproductive cycle.
Collapse
Affiliation(s)
- S.A. Stone
- Mary Baldwin College, 318 Prospect St., Staunton, VA 24401, USA
| | - M.E. Bibens
- Oklahoma State University, Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - A.B. Jones
- Oklahoma State University, Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - K.S. Curtis
- Oklahoma State University, Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| |
Collapse
|