1
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Zeng YS, Ding Y, Xu HY, Zeng X, Lai BQ, Li G, Ma YH. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature. CNS Neurosci Ther 2022; 28:635-647. [PMID: 35174644 PMCID: PMC8981476 DOI: 10.1111/cns.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro‐acupuncture (GV‐EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell‐derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments—for example, electro‐acupuncture (EA) with adult stem cell transplantation—appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV‐EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene‐related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin‐3 (NT‐3), which mediates the survival and differentiation of donor stem cells overexpressing the NT‐3 receptor, at the injury/graft site of the SC. Increased local production of NT‐3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor‐evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV‐EA and adult stem cell transplantation for the treatment of SCI.
Collapse
Affiliation(s)
- Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
The mechanism of AMPA receptor subunit GluR1 in electroacupuncture treatment of acute spinal cord injury in rats. Brain Res 2022; 1783:147848. [DOI: 10.1016/j.brainres.2022.147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Effects and Mechanisms of Acupuncture Combined with Mesenchymal Stem Cell Transplantation on Neural Recovery after Spinal Cord Injury: Progress and Prospects. Neural Plast 2020; 2020:8890655. [PMID: 33061954 PMCID: PMC7533022 DOI: 10.1155/2020/8890655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a structural event with devastating consequences worldwide. Due to the limited intrinsic regenerative capacity of the spinal cord in adults, the neural restoration after SCI is difficult. Acupuncture is effective for SCI-induced neurologic deficits, and the potential mechanisms responsible for its effects involve neural protection by the inhibition of inflammation, oxidation, and apoptosis. Moreover, acupuncture promotes neural regeneration and axon sprouting by activating multiple cellular signal transduction pathways, such as the Wnt, Notch, and Rho/Rho kinase (ROCK) pathways. Several studies have demonstrated that the efficacy of combining acupuncture with mesenchymal stem cells (MSCs) transplantation is superior to either procedure alone. The advantage of the combined treatment is dependent on the ability of acupuncture to enhance the survival of MSCs, promote their differentiation into neurons, and facilitate targeted migration of MSCs to the spinal cord. Additionally, the differentiation of MSCs into neurons overcomes the problem of the shortage of endogenous neural stem cells (NSCs) in the acupuncture-treated SCI patients. Therefore, the combination of acupuncture and MSCs transplantation could become a novel and effective strategy for the treatment of SCI. Such a possibility needs to be verified by basic and clinical research.
Collapse
|
6
|
Xiao LY, Wang XR, Yang Y, Yang JW, Cao Y, Ma SM, Li TR, Liu CZ. Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System. Neuromodulation 2018; 21:762-776. [PMID: 29111577 DOI: 10.1111/ner.12724] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. MATERIALS AND METHODS We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. RESULTS Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. CONCLUSIONS The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Beijing University of Chinese Medicine, Beijing, China
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Ye Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Si-Ming Ma
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Tian-Ran Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cun-Zhi Liu
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Wei Z, Zhao W, Schachner M. Electroacupuncture Restores Locomotor Functions After Mouse Spinal Cord Injury in Correlation With Reduction of PTEN and p53 Expression. Front Mol Neurosci 2018; 11:411. [PMID: 30505267 PMCID: PMC6250832 DOI: 10.3389/fnmol.2018.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Background: We previously showed that electroacupuncture (EA) at Jiaji points promotes expression of adhesion molecule L1 in spinal cord tissue after mouse spinal cord injury (SCI) and contributes to recovery of neural functions. Objective: We investigated the effects of EA on downstream signaling molecules of L1 and molecules relevant to apoptosis with the aim to understand the underlying molecular mechanisms. Methods: Female C57BL/6 mice were divided into a sham group, injury group, injury+acupuncture (AP) group and injury+EA group. We investigated the changes in cognate L1-triggered signaling molecules after SCI by immunofluorescence staining and immunoblot analysis. Results: Protein levels of phosphatase and tensin homolog (PTEN) and p53 were decreased by EA at different time points after injury, whereas the levels of phosphorylated mammalian target of rapamycin (pmTOR), p-Akt and phosphorylated extracellular signal-regulatedkinase (p-Erk) were increased. Also, levels of myelin basic protein (MBP) were increased by EA. AP alone showed less pronounced changes in expression of the investigated molecules, when compared to EA. Conclusion: We propose that EA contributes to neuroprotection by inhibiting PTEN and p53 expression and by increasing the levels of pmTOR/Akt/Erk and of MBP after SCI. These observations allow novel insights into the beneficial effects of EA via L1-triggered signaling molecules after injury.
Collapse
Affiliation(s)
- Zhe Wei
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Faculty of Medicine and Health, Lishui University, Lishui, China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner
| |
Collapse
|
8
|
Wang X, Ju S, Chen S, Gao W, Ding J, Wang G, Cao H, Tian H, Li X. Effect of Electro-Acupuncture on Neuroplasticity of Spinal Cord-Transected Rats. Med Sci Monit 2017; 23:4241-4251. [PMID: 28865235 PMCID: PMC5592974 DOI: 10.12659/msm.903056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of electro-acupuncture (EA) on neuroplasticity associated with the expressions of neurotrophic factors (NTFs) and their receptors in rats subjected to spinal cord transection (SCT). MATERIAL AND METHODS A total of 144 rats were randomly divided into 3 groups (n=48 per group): sham-operated group, SCT group, and EA (electro-acupuncture) group. Rats in SCT and EA groups received spinal cord transection at T10-T11 vertebral levels. Then, EA group rats received EA treatment. Reverse transcription polymerase chain reaction was used to detect NTFs and receptors at the mRNA level. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect the expression of NTFs and their receptors. Basso, Beattie, Bresnahan (BBB) scores and cortical somato-sensory evoked potentials (CSEP) were evaluated to assess the recovery of motor and sensory functions. We also measured BDA (Biotinylated dextran amine) axonal tracing, CGRP (Calcitonin gene-related peptide), GAP-43 (Growth-associated protein), and synaptophysin immunohistochemistry (IHC). RESULTS EA treatment led to obvious improvement in hindlimb locomotor and sensory functions. CNTF, FGF-2, and TrkB mRNA were significantly upregulated, while NGF, PDGF, TGF-b1, IGF-1, TrkA, and TrkC mRNA were concomitantly downregulated in the caudal spinal segment (CSS) following EA. Immunohistochemistry demonstrated an increased number of CGRP fibers, GAP-43, and synaptophysin profiles in the CSS in the EA rats. CONCLUSIONS EA may promote the recovery of neuroplasticity in rats subjected to SCT. This could be attributed to the systematic regulation of NTFs and their receptors after EA.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Shiming Ju
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Wenwei Gao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Gan Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Heli Cao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China (mainland)
| | - Xiaoli Li
- Department of Neurology, ZhongDa Hospital, Neuropsychiatric Institute, Medical School of Southeast University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
9
|
Zhao J, Wang L, Li Y. Electroacupuncture Alleviates the Inflammatory Response via Effects on M1 and M2 Macrophages after Spinal Cord Injury. Acupunct Med 2017; 35:224-230. [PMID: 28077367 DOI: 10.1136/acupmed-2016-011107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2016] [Indexed: 01/09/2023]
Abstract
Background Macrophages/microglia are important effector cells at the site of spinal cord injury (SCI). M1-type macrophages facilitate innate immunity to remove foreign microbes and wound debris from the injury site. M2-type macrophages exhibit tissue repair properties and attenuate production of pro-inflammatory cytokines. Regulation of the polarisation of M1/M2 macrophages may affect the inflammatory response in SCI and may be related to neurotrophin-3 (NT-3). Electroacupuncture (EA) at GV acupuncture points can be used as an adjuvant therapy for SCI. Aim To investigate the effects of EA on Basso, Beattie and Bresnahan (BBB) functional evaluation and inflammatory cytokines (tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10), and on the proportions of M1/M2 macrophages, and to provide a greater understanding of the mechanisms underlying the potential clinical treatment of SCI. Methods A rat SCI model was induced by spinal segment transection at T10 in 16 Sprague-Dawley rats. A further eight rats were included as a Control group. Ten surviving SCI model rats were divided into two groups (n=5 each): an SCI group that remained untreated; and an SCI+EA group that received EA at GV6 and GV9. Results EA improved BBB scores, inhibited the proportion of M1 macrophages and TNF-α, IL-1β and IL-6 levels, and downregulated the M1 marker CD86. By contrast, EA enhanced IL-10, the proportion of M2 macrophages and upregulated the M2 marker CD206 and NT-3 expression. Conclusions EA had a positive impact on SCI model rats. This may be related to the neuroprotective effect of NT-3, which may increase the polarisation of M2 microglia/macrophages.
Collapse
Affiliation(s)
- Jiagui Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Likui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuanhai Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
10
|
Fang B, Qin M, Li Y, Li X, Tan W, Zhang Y, Ma H. Electroacupuncture preconditioning and postconditioning inhibit apoptosis and neuroinflammation induced by spinal cord ischemia reperfusion injury through enhancing autophagy in rats. Neurosci Lett 2017; 642:136-141. [PMID: 28188848 DOI: 10.1016/j.neulet.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
Electroacupuncture (EA) has beneficial effects on spinal cord ischemia reperfusion (I/R) injury, but the underlying mechanisms are not fully understood. This study aimed to investigate the role of autophagy in the protection of EA preconditioning and postconditioning against spinal cord I/R injury. For this, spinal cord I/R injury was induced by 14min occlusion of the aortic arch, and rats were treated with EA for 20min before or after the surgery. The expression of autophagy components, light chain 3 and Beclin 1, was assessed by Western blot. The hind-limb motor function was assessed using the Basso-Beattie-Bresnahan (BBB) criteria, and motor neurons in the ventral gray matter were counted by histological examination. The apoptosis of neurocyte was assessed by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. The expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and matrix metalloproteinase-9 (MMP-9) was also measured using Western blot or enzyme-linked immunosorbent assay (ELISA). Either EA preconditioning or postconditioning enhanced autophagy, and minimized the neuromotor dysfunction and histopathological deficits after spinal cord I/R injury. In addition, EA suppressed I/R-induced apoptosis and increased in the expression of TNF-α, IL-1β, and MMP-9. In contrast, the autophagic inhibitor (3-methyladenine, 3-MA) inhibited the neuroprotective effects of EA. Moreover, 3-MA increased the apoptosis and the expression of TNF-α, IL-1β, and MMP-9. In summary, these findings suggested that EA preconditioning and postconditioning could alleviate spinal cord I/R injury, which was partly mediated by autophagy upregulation-induced inhibition of apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, North Nanjing Street, No. 155, Shenyang, Liaoning, PR China.
| | - Meiman Qin
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, North Nanjing Street, No. 155, Shenyang, Liaoning, PR China
| | - Yun Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, North Nanjing Street, No. 155, Shenyang, Liaoning, PR China
| | - Xiaoqian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, North Nanjing Street, No. 155, Shenyang, Liaoning, PR China
| | - Wenfei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, North Nanjing Street, No. 155, Shenyang, Liaoning, PR China
| | - Ying Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, North Nanjing Street, No. 155, Shenyang, Liaoning, PR China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, North Nanjing Street, No. 155, Shenyang, Liaoning, PR China
| |
Collapse
|
11
|
Wei Z, Wang Y, Zhao W, Schachner M. Electro-Acupuncture Modulates L1 Adhesion Molecule Expression After Mouse Spinal Cord Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:37-52. [PMID: 28068836 DOI: 10.1142/s0192415x17500045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal cord injury is a devastating neurological disease in desperate need of a cure. We have previously shown that overexpression of the adhesion molecule L1 contributes to locomotor recovery after injury and were therefore interested in how electro-acupuncture would influence the expression of this molecule. Here, we investigated the effects of electro-acupuncture at "Jiaji" points (EX-B2), newly established by us, in young adult mice to determine whether improved recovery via electro-acupuncture could be due to enhanced L1 expression. Locomotor function, as evaluated by the Basso Mouse Scale score and by catwalk gait parameters, was improved by electro-acupuncture at different time points after injury in parallel with enhanced levels of L1 expression. Interestingly, the levels of the astrocytic marker glial fibrillary acidic protein (GFAP) were also increased, but only in the early phase after injury, being reduced at later stages during recovery. Acupuncture alone showed less pronounced changes in expression of these molecules. We propose that electro-acupuncture improves regeneration in part by promoting the L1 expression and beneficial activation of stem cells, and by differentially modulating the expression of GFAP by promoting regeneration-conductive astrocytic responses at initial stages and reducing regeneration-adversive activation in the secondary stages. Expression of the stem cell marker nestin was upregulated by electro-acupuncture in the acute stage. The combined observations show for the first time in mice the beneficial functions of electro-acupuncture at Jiaji points in the spinal cord injury mouse model and provide novel insights into some molecular mechanisms underlying electro-acupuncture in spinal cord injury.
Collapse
Affiliation(s)
- Zhe Wei
- 1 Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, P.R. China
| | - Yan Wang
- 1 Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, P.R. China
| | - Weijiang Zhao
- 1 Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, P.R. China
| | - Melitta Schachner
- 1 Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
12
|
Wang X, Shi SH, Yao HJ, Jing QK, Mo YP, Lv W, Song LY, Yuan XC, Li ZG, Qin LN. Electroacupuncture at Dazhui (GV14) and Mingmen (GV4) protects against spinal cord injury: the role of the Wnt/β-catenin signaling pathway. Neural Regen Res 2016; 11:2004-2011. [PMID: 28197199 PMCID: PMC5270441 DOI: 10.4103/1673-5374.197145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Electroacupuncture at Dazhui (GV14) and Mingmen (GV4) on the Governor Vessel has been shown to exhibit curative effects on spinal cord injury; however, the underlying mechanism remains poorly understood. In this study, we established rat models of spinal cord injury using a modified Allen's weight-drop method. Ninety-nine male Sprague-Dawley rats were randomly divided into three equal groups: sham (only laminectomy), SCI (induction of spinal cord injury at T10), and EA (induction of spinal cord injury at T10 and electroacupuncture intervention at GV14 and GV4 for 20 minutes once a day). Rats in the SCI and EA groups were further randomly divided into the following subgroups: 1-day (n = 11), 7-day (n = 11), and 14-day (n = 11). At 1, 7, and 14 days after electroacupuncture treatment, the Basso, Beattie and Bresnahan locomotor rating scale showed obvious improvement in rat hind limb locomotor function, hematoxylin-eosin staining showed that the histological change of injured spinal cord tissue was obviously alleviated, and immunohistochemistry and western blot analysis showed that Wnt1, Wnt3a, β-catenin immunoreactivity and protein expression in the injured spinal cord tissue were greatly increased compared with the sham and SCI groups. These findings suggest that electroacupuncture at GV14 and GV4 upregulates Wnt1, Wnt3a, and β-catenin expression in the Wnt/β-catenin signaling pathway, exhibiting neuroprotective effects against spinal cord injury.
Collapse
Affiliation(s)
- Xin Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Su-Hua Shi
- Department of Rehabilitation, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Jiang Yao
- Treatment Center of Traditional Chinese Medicine, Beijing Bo'ai Hospital, Chinese Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Quan-Kai Jing
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ping Mo
- Department of Rehabilitation, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Wei Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Yu Song
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Chen Yuan
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhi-Gang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Qin
- Department of Rehabilitation, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|