1
|
Yuan X, Guo Y, Yi H, Hou X, Zhao Y, Wang Y, Jia H, Baba SS, Li M, Huo F. Hemoglobin α-derived peptides VD-hemopressin (α) and RVD-hemopressin (α) are involved in electroacupuncture inhibition of chronic pain. Front Pharmacol 2024; 15:1439448. [PMID: 39411061 PMCID: PMC11473328 DOI: 10.3389/fphar.2024.1439448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Knee osteoarthritis (KOA) is a chronic degenerative bone metabolic disease that primarily affects older adults, leading to chronic pain and disability that affect patients' daily activities. Electroacupuncture (EA) is a commonly used method for the treatment of chronic pain in clinical practice. Previous studies indicate that the endocannabinoid system is involved in EA analgesia, but whether endocannabinopeptide VD-hemopressin (α) and RVD-hemopressin (α) derived from hemoglobin chains are involved in EA analgesia is unclear. Methods RNA-seq technology was used to screen which genes involved in EA analgesia. The expression of hemoglobin α chain and 26S proteasome were determined by Western blotting. The level of VD-hemopressin (α) and RVD-hemopressin (α) were measured by UPLC-MS/MS. Microinjection VD-Hemopressin (α), RVD-Hemopressin (α) and 26S proteasome inhibitor MG-132 into vlPAG, then observe mechanical and thermal pain thresholds. Results Therefore, we used RNA-seq to obtain differentially expressed genes Hba-a1 and Hba-a2 involved in EA analgesia in the periaqueductal gray (PAG), which were translated into the hemoglobin α chain. EA significantly increased the expression of the hemoglobin α chain and the level of hemopressin (α) and RVD-hemopressin (α). Microinjection of VD-hemopressin (α) and RVD-hemopressin (α) into the ventrolateral periaqueductal gray (vlPAG) mimicked the analgesic effect of EA, while CB1 receptor antagonist AM251 reversed this effect. EA significantly increased the expression of 26S proteasome in KOA mice. Microinjection of 26S proteasome inhibitor MG132 before EA prevented both the anti-allodynic effect and upregulation of the concentration of RVD-hemopressin (α) by EA treatment and upregulated the expression of the hemoglobin α chain. Discussion Our data suggest that EA upregulated the concentration of VD-hemopressin (α) and RVD-hemopressin (α) through enhancement of the hemoglobin α chain degradation by 26S proteasome in the PAG, then activated the CB1 receptor, thereby exerting inhibition of chronic pain in a mouse model of KOA. These results provide new insights into the EA analgesic mechanisms and reveal possible targets for EA treatment of chronic pain.
Collapse
Affiliation(s)
- Xiaocui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Yixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Huiyuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Xuemei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Yulong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Yuying Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Sani Sa’idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Neuroscience and pathophysiology unit, Department of Human physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
2
|
Xu B, Zhang Q, Chen D, Zhang M, Zhang R, Zhao W, Qiu Y, Xu K, Xiao J, Niu J, Shi Y, Li N, Fang Q. OCP002, a Mixed Agonist of Opioid and Cannabinoid Receptors, Produces Potent Antinociception With Minimized Side Effects. Anesth Analg 2023; 136:373-386. [PMID: 36638515 DOI: 10.1213/ane.0000000000006266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Increasing attention has been attracted to the development of bifunctional compounds to minimize the side effects of opioid analgesics. Pharmacological studies have verified the functional interaction between opioid and cannabinoid systems in pain management, suggesting that coactivation of the opioid and cannabinoid receptors may provide synergistic analgesia with fewer adverse reactions. Herein, we developed and characterized a novel bifunctional compound containing the pharmacophores of the mu-opioid receptor agonist DALDA and the cannabinoid peptide VD-Hpα-NH2, named OCP002. METHODS The opioid and cannabinoid agonistic activities of OCP002 were investigated in calcium mobilization and western blotting assays, respectively. Moreover, the central and peripheral antinociceptive effects of OCP002 were evaluated in mouse preclinical models of tail-flick test, carrageenan-induced inflammatory pain, and acetic acid-induced visceral pain, respectively. Furthermore, the potential opioid and cannabinoid side effects of OCP002 were systematically investigated in mice after intracerebroventricular (ICV) and subcutaneous (SC) administrations. RESULTS OCP002 functioned as a mixed agonist toward mu-opioid, kappa-opioid, and cannabinoid CB1 receptors in vitro. ICV and SC injections of OCP002 produced dose-dependent antinociception in mouse models of nociceptive (the median effective dose [ED50] values with 95% confidence interval [CI] are 0.14 [0.12-0.15] nmol and 0.32 [0.29-0.35] μmol/kg for ICV and SC injections, respectively), inflammatory (mechanical stimulation: ED50 values [95% CI] are 0.76 [0.64-0.90] nmol and 1.23 [1.10-1.38] μmol/kg for ICV and SC injections, respectively; thermal stimulation: ED50 values [95% CI] are 0.13 [0.10-0.17] nmol and 0.23 [0.08-0.40] μmol/kg for ICV and SC injections, respectively), and visceral pain (ED50 values [95% CI] are 0.0069 [0.0050-0.0092] nmol and 1.47 [1.13-1.86] μmol/kg for ICV and SC injections, respectively) via opioid and cannabinoid receptors. Encouragingly, OCP002 cannot cross the blood-brain barrier and exerted nontolerance-forming analgesia over 6-day treatment at both supraspinal and peripheral levels. Consistent with these behavioral results, repeated OCP002 administration did not elicit microglial hypertrophy and proliferation, the typical features of opioid-induced tolerance, in the spinal cord. Furthermore, at the effective analgesic doses, SC OCP002 exhibited minimized opioid and cannabinoid side effects on motor performance, body temperature, gastric motility, physical and psychological dependence, as well as sedation in mice. CONCLUSIONS This study demonstrates that OCP002 produces potent and nontolerance-forming antinociception in mice with reduced opioid- and cannabinoid-related side effects, which strengthen the candidacy of bifunctional drugs targeting opioid/cannabinoid receptors for translational-medical development to replace or assist the traditional opioid analgesics.
Collapse
Affiliation(s)
- Biao Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Dan Chen
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Run Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Weidong Zhao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- School of Medicine' Shanghai Jiao Tong University' Shanghai, China
| | - Kangtai Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jian Xiao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jiandong Niu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yonghang Shi
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Ning Li
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Quan Fang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
4
|
Glasmacher S, Gertsch J. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 2021; 80:100808. [PMID: 33799079 DOI: 10.1016/j.jbior.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Hemopressins ((x)-PVNFKLLSH) or peptide endocannabinoids (pepcans) can bind to cannabinoid receptors. RVD-hemopressin (pepcan-12) was shown to act as endogenous allosteric modulator of cannabinoid receptors, with opposite effects on CB1 and CB2, respectively. Moreover, the N-terminally elongated pepcan-23 was detected in different tissues and was postulated to be the pro-peptide of RVD-hemopressin. Currently, data about the pharmacokinetics, tissue distribution and stability of hemopressin-type peptides are lacking. Here we investigated the secondary structure and physiological role of pepcan-23 as precursor of RVD-hemopressin. We assessed the metabolic stability of these peptides, including hemopressin. Using LC-ESI-MS/MS, pepcan-23 was measured in mouse tissues and human whole blood (~50 pmol/mL) and in plasma was the most stable endogenous peptide containing the hemopressin sequence. Using peptide spiked human whole blood, mouse adrenal gland and liver homogenates demonstrate that pepcan-23 acts as endogenous pro-peptide of RVD-hemopressin. Furthermore, administered pepcan-23 converted to RVD-hemopressin in mice. In circular dichroism spectroscopy, pepcan-23 showed a helix-unordered-helix structure and efficiently formed complexes with divalent metal ions, in particular Cu(II) and Ni(II). Hemopressin and RVD-hemopressin were not bioavailable to the brain and showed poor stability in plasma, in agreement with their overall poor biodistribution. Acute hemopressin administration (100 mg/kg) did not modulate endogenous RVD-hemopressin/pepcan-23 levels or influence the endocannabinoid lipidome but increased 1-stearoyl-2-arachidonoyl-sn-glycerol. Overall, we show that pepcan-23 is a biological pro-peptide of RVD-hemopressin and divalent metal ions may regulate this process. Given the lack of metabolic stability of hemopressins, administration of pepcan-23 as pro-peptide may be suitable in pharmacological experiments as it is converted to RVD-hemopressin in vivo.
Collapse
Affiliation(s)
- Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
5
|
Heimann AS, Dale CS, Guimarães FS, Reis RAM, Navon A, Shmuelov MA, Rioli V, Gomes I, Devi LL, Ferro ES. Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 2021; 183:108406. [PMID: 33212113 PMCID: PMC8609950 DOI: 10.1016/j.neuropharm.2020.108406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.
Collapse
Affiliation(s)
| | - Camila S Dale
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil
| | - Ricardo A M Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Federal University, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal A Shmuelov
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, 05503-900, Brazil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Lakshmi L Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Emer S Ferro
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Pharmacology, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Xu B, Xiao J, Xu K, Zhang Q, Chen D, Zhang R, Zhang M, Zhu H, Niu J, Zheng T, Li N, Zhang X, Fang Q. VF-13, a chimeric peptide of VD-hemopressin(α) and neuropeptide VF, produces potent antinociception with reduced cannabinoid-related side effects. Neuropharmacology 2020; 175:108178. [PMID: 32544481 DOI: 10.1016/j.neuropharm.2020.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/13/2023]
Abstract
Pharmacological evidence indicated a functional interaction between neuropeptide FF (NPFF) and cannabinoid systems, and the cannabinoids combined with the NPFF receptor agonist neuropeptide VF (NPVF) produced antinociception without tolerance. In the present study, VF-13, a chimeric peptide containing the pharmacophores of the endogenous cannabinoid peptide VD-hemopressin(α) (VD-Hpα) and NPVF, was synthesized and pharmacologically evaluated. In vitro, VF-13 significantly upregulated the phosphorylated level of extracellular signal-regulated kinase 1/2 (ERK1/2) in CHO cells stably expressing CB1 receptors and inhibited forskolin-induced cAMP accumulation in HEK293 cells stably expressing NPFF1 or NPFF2 receptors. Moreover, VF-13 induced neurite outgrowth in Neuro 2A cells via CB1 and NPFF receptors. These results suggest that VF-13 exhibits multifunctional agonism at CB1, NPFF1 and NPFF2 receptors in vitro. Interestingly, intracerebroventricular VF-13 produced dose-dependent antinociception in mouse models of tail-flick and carrageenan-induced inflammatory pain via the TRPV1 receptor. In contrast, the reference compound (m)VD-Hpα-NH2 induced CB1 receptor-mediated supraspinal antinociception. Additionally, subcutaneous injection of (m)VD-Hpα-NH2 and VF-13 produced significant antinociception in carrageenan-induced inflammatory pain model. In the tetrad assay, our data demonstrated that VF-13 elicited hypothermia, but not catalepsy and hypoactivity after intracerebroventricular injection. Notably, VF-13 produced non-tolerance forming antinociception over 6 days treatment in both acute and inflammatory pain models. Furthermore, VF-13 had no apparent effects on gastrointestinal transit, pentobarbitone-induced sedation, food intake, and motor coordination at the supraspinal level. In summary, VF-13, a novel chimeric peptide of VD-Hpα and NPVF, produced non-tolerance forming antinociception in preclinical pain models with reduced cannabinoid-related side effects.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
8
|
Wei F, Zhao L, Jing Y. Signaling molecules targeting cannabinoid receptors: Hemopressin and related peptides. Neuropeptides 2020; 79:101998. [PMID: 31831183 DOI: 10.1016/j.npep.2019.101998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022]
Abstract
Cannabinoid receptors (CBRs) are part of the endocannabinoid system, which is involved in various physiological processes such as nociception, inflammation, appetite, stress, and emotion regulation. Many studies have linked the endocannabinoid system to neuroinflammatory and neurodegenerative disorders such as Parkinson's disease, Huntington's chorea, Alzheimer's disease, and multiple sclerosis. Hemopressin [Hp; a fragment of the hemoglobin α1 chain (95-103 amino acids)] and related peptides [VD-Hpα and RVD-Hpα] are peptides that bind to CBRs. Hp acts as an inverse agonist to CB1 receptor (CB1R), VD-Hpα acts as an agonist to CB1R, and RVD-Hpα acts as a negative allosteric modulator of CB1R and a positive allosteric modulator of CB2R. Because of the critical roles of CBRs in numerous physiological processes, it is appealing to use Hp and related peptides for therapeutic purposes. This review discusses their discovery, structure, metabolism, brain exposure, self-assembly characteristics, pharmacological characterization, and pharmacological activities.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
9
|
He C, Li H, Zhang J, Zhou L, Dong S. In vitro and in vivo characterization of the bifunctional μ- and δ- opioid receptors ligand MCRT on mouse gastrointestinal motility. Neuropeptides 2019; 74:82-87. [PMID: 30738575 DOI: 10.1016/j.npep.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/29/2018] [Accepted: 01/29/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Chimeric opioid MCRT was a novel multi-target ligand based on morphiceptin and PFRTic-NH2, and produced potent analgesia (ED50 = 0.03 nmol/mouse) with less upper gastrointestinal dysmotility. In this study, we sought to perform the tests to evaluate the pharmacological effects of MCRT on distal colon motility and defecation function. Moreover, opioid receptor antagonists and neuropeptide FF (NPFF) receptor antagonists were utilized to explore the mechanisms. METHODS Isolated mouse colon bioassay and colonic bead expulsion were to characterize MCRT-induced inhibition of colonic motility in vitro and in vivo, respectively. Fecal pellet output was to evaluate the defecation function. RESULTS (1) In vitro, MCRT increased colonic contraction via μ- and δ- opioid receptors (MOR and DOR). (2) In vivo, MCRT delayed colonic bead expulsion (ED50 = 1.1 nmol/mouse) independent of opioid and NPFF receptors. (3) In vivo, MCRT inhibited fecal number (ED50 = 1.43 nmol/mouse) and dry weight (ED50 = 1.63 nmol/mouse), which was mediated by DOR partially but not MOR. CONCLUSIONS (1) Data indicated that MCRT was less prone to induce gastrointestinal dysmotility at analgesic doses, and provided a possibility for safer opioid analgesic. (2) Based on the mechanism explorations, we speculated on the existence of such an opioid receptor subtype or MOR/DOR heterodimer, which was involved in the central analgesia and the in vitro colonic contractions but not the central colonic dysmotility.
Collapse
Affiliation(s)
- Chunbo He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Hailan Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jing Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Lanxia Zhou
- The Central Laboratory, The First Hospital, Lanzhou University, 1 Donggang West Road, Lanzhou 730000, China.
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
10
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
11
|
Wang P, Zheng T, Zhang M, Xu B, Zhang R, Zhang T, Zhao W, Shi X, Zhang Q, Fang Q. Antinociceptive effects of the endogenous cannabinoid peptide agonist VD-hemopressin(β) in mice. Brain Res Bull 2018; 139:48-55. [DOI: 10.1016/j.brainresbull.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
12
|
Zheng T, Zhang R, Zhang T, Zhang MN, Xu B, Song JJ, Li N, Tang HH, Wang P, Wang R, Fang Q. CB 1 cannabinoid receptor agonist mouse VD-hemopressin(α) produced supraspinal analgesic activity in the preclinical models of pain. Brain Res 2017; 1680:155-164. [PMID: 29274880 DOI: 10.1016/j.brainres.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 10/15/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
Abstract
Mouse VD-hemopressin(α) (VD-Hpα) is an undecapeptide that selectively activates CB1 cannabinoid receptor in in vitro functional tests, and exerts CB1-mediated central antinociception in the mouse tail-flick assay. The aim of the present study was to further investigate the analgesic properties of supraspinal mouse VD-Hpα in a range of preclinical pain models. Our results indicated that the classical cannabinoid agonist WIN 55,212-2 produced supraspinal analgesia in preclinical pain models, which was selectively antagonized by the CB1 antagonist/inverse agonist AM251, but not by the CB2 antagonist AM630. In contrast, in post-operative pain model and phase I of formalin test, intracerebroventricular administration of mouse VD-Hpα induced dose-related analgesia in mice, which were markedly reduced by pretreatment with the CB1 neutral antagonist AM4113, but not AM251, AM630 and the selective antagonists of opioid and Transient Receptor Potential Vanilloid Type 1 (TRPV1) receptors. Furthermore, in the acetic acid-induced visceral pain model, supraspinal administration of mouse VD-Hpα dose-dependently produced analgesic activities and the effects were significantly antagonized by both AM4113 and the TRPV1 receptor antagonist SB366791, but not AM251, AM630 and naloxone. In addition, central injection of mouse VD-Hpα did not have significant effect in phase II of formalin test. Taken together, the present work suggests that the CB1 receptor peptidic agonist mouse VD-Hpα produces supraspinal analgesia in preclinical pain models via a novel CB1 receptor-mediated mechanism, in a manner pharmacologically dissociable from WIN 55,212-2. In addition, TRPV1 receptor might also be involved in mouse VD-Hpα-induced analgesia in a visceral pain model.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jing-Jing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Pei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
13
|
Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:437-475. [PMID: 28826543 DOI: 10.1016/bs.apha.2017.05.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pain Pathophysiology, Krakow, Poland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
14
|
Fabisiak A, Fichna J. Cannabinoids as gastrointestinal anti-inflammatory drugs. Neurogastroenterol Motil 2017; 29. [PMID: 28239924 DOI: 10.1111/nmo.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/08/2023]
Abstract
In this mini-review, we focus on the potential of the endocannabinoid system as a target for novel therapies to treat gastrointestinal (GI) inflammation. We discuss the organization of the endocannabinoid signaling and present possible pharmacological sites in the endocannabinoid system. We also refer to recent clinical findings in the field. Finally, we point at the potential use of cannabinoids at low, non-psychoactive doses to counteract non-inflammatory pathological events in the GI tract, like chemotherapy-induced diarrhea, as evidenced by Abalo et al. in the rat model.
Collapse
Affiliation(s)
- A Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|