1
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
2
|
Chen Z, Lv M, Liang J, Yang K, Li F, Zhou Z, Qiu M, Chen H, Cai Z, Cui W, Li Z. Neuropeptide Y-Mediated Gut Microbiota Alterations Aggravate Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303015. [PMID: 37857552 PMCID: PMC10667841 DOI: 10.1002/advs.202303015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/15/2023] [Indexed: 10/21/2023]
Abstract
Postmenopausal osteoporosis (PMO) is often accompanied by neuroendocrine changes in the hypothalamus, which closely associates with the microbial diversity, community composition, and intestinal metabolites of gut microbiota (GM). With the emerging role of GM in bone metabolism, a potential neuroendocrine signal neuropeptide Y (NPY) mediated brain-gut-bone axis has come to light. Herein, it is reported that exogenous overexpression of NPY reduced bone formation, damaged bone microstructure, and up-regulated the expressions of pyroptosis-related proteins in subchondral cancellous bone in ovariectomized (OVX) rats, but Y1 receptor antagonist (Y1Ra) reversed these changes. In addition, it is found that exogenous overexpression of NPY aggravated colonic inflammation, impaired intestinal barrier integrity, enhanced intestinal permeability, and increased serum lipopolysaccharide (LPS) in OVX rats, and Y1Ra also reversed these changes. Most importantly, NPY and Y1Ra modulated the microbial diversity and changed the community composition of GM in OVX rats, and thereby affecting the metabolites of GM (e.g., LPS) entering the blood circulation. Moreover, fecal microbiota transplantation further testified the effect of NPY-mediated GM changes on bone. In vitro, LPS induced pyroptosis, reduced viability, and inhibited differentiation of osteoblasts. The study demonstrated the existence of NPY-mediated brain-gut-bone axis and it might be a novel emerging target to treat PMO.
Collapse
Affiliation(s)
- Zhijie Chen
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Mengyuan Lv
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jing Liang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Kai Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Fan Li
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
| | - Zhi Zhou
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
| | - Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Haoyi Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhanchun Li
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
| |
Collapse
|
3
|
Wang R, Jiang C, Wu Z, Wang Z, Peng Y, Li Z, Zhang Z, Lin H, Chen Z. Fecal Microbiota Transplantation Revealed a Pain-related Gut Microbiota Community in Ovariectomized Mice. THE JOURNAL OF PAIN 2023; 24:1203-1212. [PMID: 36796501 DOI: 10.1016/j.jpain.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Higher sensitivity to pain is a common clinical symptom in postmenopausal females. The gut microbiota (GM) has recently been identified as participating in various pathophysiological processes and may change during menopause and contribute to multiple postmenopausal symptoms. Here, we investigated the possible correlation between GM alteration and allodynia in ovariectomized (OVX) mice. Results showed that OVX mice exhibited allodynia from 7 weeks after surgery compared with sham-operated (SHAM) mice by comparing pain-related behaviors. Fecal microbiota transplantation (FMT) from OVX mice induced allodynia in normal mice while FMT from SHAM mice alleviated allodynia in OVX mice. Microbiome 16S rRNA sequencing and linear discriminant analysis revealed alteration of the GM after OVX. Furthermore, Spearman's correlation analysis showed associations between pain-related behaviors and genera, and further verification identified the possible pain-related genera complex. Our findings provide new insights into the underlying mechanisms of postmenopausal allodynia, and suggest pain-related microbiota community as a promising therapeutic target. PERSPECTIVE: This article provided the evidence of gut microbiota playing essential roles in postmenopausal allodynia. This work intended to offer a guidance for further mechanism investigation into gut-brain axis and probiotics screening for postmenopausal chronic pain.
Collapse
Affiliation(s)
- Renyuan Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Peng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuoxuan Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyang Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haodong Lin
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Wank I, Niedermair T, Kronenberg D, Stange R, Brochhausen C, Hess A, Grässel S. Influence of the Peripheral Nervous System on Murine Osteoporotic Fracture Healing and Fracture-Induced Hyperalgesia. Int J Mol Sci 2022; 24:510. [PMID: 36613952 PMCID: PMC9820334 DOI: 10.3390/ijms24010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP -/-), SP-deficient (Tac1-/-) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures.
Collapse
Affiliation(s)
- Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149 Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149 Münster, Germany
| | | | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susanne Grässel
- Centre for Medical Biotechnology (ZMB), Department of Orthopedic Surgery, Experimental Orthopedics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Li F, Xie W, Chen Z, Zhou Z, Wang Z, Xiao J, Li Z. Neuropeptide Y and receptors are associated with the pyroptosis of nucleus pulposus in aging and degenerative intervertebral discs of rats. Neuropeptides 2022; 96:102284. [PMID: 36027700 DOI: 10.1016/j.npep.2022.102284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
The neuropeptide Y(NPY) mediates bone metabolism and the degradation of cartilage in the peripheral nervous system. However, its role in the intervertebral disc degeneration (IDD) is less clear and warrant further study. The process of IDD has always been accompanied by inflammatory response and pyroptosis of nucleus pulposus cells (NPCs). The aim of this study was to investigate the relationship between NPY, Y1R, Y2R and pyroptosis in aging and degenerative discs and the direct effect of NPY on NPCs. First, we have assessed NPY, Y1R, Y2R and the expression of pyroptosis related protein in the immature (6 weeks), mature (16 weeks), aged (54 weeks), and degenerated discs. As part of our studies, we also have evaluated pyroptotic changes in the NPCs, induced by exposure to NPY. Our results suggested that compared with natural aging discs, the degenerative discs showed the high expression of NPY, Y1R and Y2R. Correlation analysis showed that the level of NPY and Y1R in degenerative discs were positively correlated with GSDMD, whereas there was no significant correlation between Y2R and GSDMD. In vitro, NPY treatment stimulated the activation of caspase-1-dependent pyroptosis of NPCs. However, Y1R antagonist inhibited NPY-induced pyroptosis of NPCs. Western blot confirmed that Y1R antagonist decreased the level of cleaved.GSDMD and caspase-1 in NPCs. In conclusion, our results indicated that compared with natural aging discs, the degenerated discs showed the high expression of NPY, Y1R and Y2R. NPY-Y1R involve the IDD development by the regulation of pyroptosis in the NPCs. Regulating the function of NPY may be a promising strategy for IDD treatment.
Collapse
Affiliation(s)
- Fan Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Weixin Xie
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhijie Chen
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhi Zhou
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhenwei Wang
- Department of clinical laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
6
|
Calcitonin Gene-Related Peptide Is Potential Therapeutic Target OF Osteoporosis. Heliyon 2022; 8:e12288. [DOI: 10.1016/j.heliyon.2022.e12288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
|
7
|
YUAN W, YUE JX, WANG Q, WU N, LI YF, YANG XH, QIAO HF. Role of peptidergic neurons in modulating acupoint sensitization caused by neck acute inflammatory pain in rats 肽能神经元对颈部急性炎性痛模型大鼠穴位敏化的调节作用. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Yan W, Liu W, Wu J, Wu L, Xuan S, Wang W, Shang A. Neuropeptide Y in the amygdala contributes to neuropathic pain-like behaviors in rats via the neuropeptide Y receptor type 2/mitogen-activated protein kinase axis. Bioengineered 2022; 13:8101-8114. [PMID: 35313782 PMCID: PMC9162000 DOI: 10.1080/21655979.2022.2051783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neuropeptide Y (NPY) is a highly conserved endogenous peptide in the central and peripheral nervous systems, which has been implicated in nociceptive signaling in neuropathic pain. However, downstream mechanistic actions remain uncharacterized. In this study, we sought to investigate the mechanism of NPY and its receptor NPY2R in the amygdala in rats with neuropathic pain-like behaviors induced by chronic constriction injury (CCI) of the sciatic nerve. The expression of NPY and NPY2R was found to be aberrantly up-regulated in neuropathic pain-related microarray dataset. Further, NPY was found to act on NPY2R in the basolateral amygdala (BLA). As reflected by the decrease in mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) as well as the increase of NPY expression in the amygdala of rats with neuropathic pain-like behaviors, NPY was closely related to the effect of amygdala nerve activity in neuropathic pain. Subsequently, mechanistic investigations indicated that NPY2R activated the MAPK signaling pathway in the amygdala. NPY2R-induced decrease of MWT and TWL were also restored in the presence of MAPK signaling pathway antagonist. Moreover, it was revealed that NPY2R overexpression promoted the viability while inhibiting the apoptosis of microglia. Taken together, NPY in the amygdala interacts with NPY2R to activate the MAPK signaling pathway, thereby promoting the occurrence of neuropathic pain.
Collapse
Affiliation(s)
- Wenhui Yan
- Department of Laboratory Medicine Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, P.R. China.,Department of Laboratory Medicine, Tinghu People's Hospital, Yancheng, P.R. China
| | - Wuchao Liu
- Department of Neurorehabilitation, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, P.R. China
| | - Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Lipei Wu
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, P.R. China
| | - Shihai Xuan
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, P.R. China
| | - Weiwei Wang
- Department of Pathology, Tinghu People's Hospital, Yancheng, P.R. China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
9
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
10
|
Zhang RH, Zhang XB, Lu YB, Hu YC, Chen XY, Yu DC, Shi JT, Yuan WH, Wang J, Zhou HY. Calcitonin gene-related peptide and brain-derived serotonin are related to bone loss in ovariectomized rats. Brain Res Bull 2021; 176:85-92. [PMID: 34418462 DOI: 10.1016/j.brainresbull.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Postmenopausal osteoporosis (PMO) and osteoporotic fracture seriously impair human health in developed countries. The present study aims to explore whether sensory nerves, calcitonin gene-related peptide (CGRP), and brain-derived serotonin are related to bone loss in ovariectomized (OVX) rats. METHODS Female rats were grouped into the ovariectomized (OVX) and sham surgery (SHAM) groups. Immunocytochemistry, western blotting, and qPCR were performed to detect CGRP expression in the femurs. The expression levels of serotonin and CGRP in the spinal cord and brainstem were estimated using western blotting, immunofluorescence, and qPCR. ELISA was used to evaluate the serum biomarkers of bone formation and resorption. Bone mineral density was measured using dual-energy X-ray (DXA) analysis. Femur microstructure was imaged by Micro CT. P values less than 0.05 were considered statistically significant. RESULTS ELISA showed that serum bone alkaline phosphatase (BALP), tartrate-resistant acid phosphatase (TRAP), β-crosslaps, and β-ctx were increased in the OVX group. In the OVX group, in vivo bone mineral density, trabecular bone mineral density, bone volume fraction (BV/TV), and trabecular number (Tb. N) were significantly decreased, while trabecular spacing (Tb. Sp) and trabecular bone pattern factor (Tb. Pf) were markedly increased. In the OVX group, the expression levels of CGRP of the femur were significantly downregulated. In contrast, CGRP and serotonin expression was increased in the spinal cord of the OVX group. Serotonin expression was increased in the brainstem, brainstem nucleus raphe magnus (RMG), and nucleus raphe dorsalis (DRN). CONCLUSION Our results indicated that the activation of osteoclast triggered the release of CGRP from nociceptive sensory nerve fibers and transmitted this painful stimulus to the dorsal horn of the spinal cord to release increased CGRP. The descending serotonergic inhibitory system was activated by increased CGRP levels of the spinal cord and promoted serotonin release in the brainstem RMG, DRN, and the spinal cord, contributing to the decreased CGRP level in bone tissue, which revealed a novel mechanism of bone loss in PMO.
Collapse
Affiliation(s)
- Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Yu-Bao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, PR China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Wen-Huan Yuan
- Baotou First Affiliated Hospital of Inner Mongolia University of Science and Technology, Baotou, 014000, PR China
| | - Jing Wang
- The People's Hospital of Baoan District, Shenzhen, 518000, PR China.
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Lanzhou Xigu District People's Hospital, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
11
|
Wei H, Bi Y, Li Y, Zhang H, Li J, Zhang R, Bao J. Low dietary phosphorus impairs keel bone health and quality in laying hens. Br Poult Sci 2021; 63:73-81. [PMID: 34309436 DOI: 10.1080/00071668.2021.1960951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. Phosphorus (P) is a necessary nutrient for egg production and bone quality in poultry diets. To investigate the effects of low dietary available P (avP) on keel bone, 180 laying hens were fed either a control (C, 0.3% avP) or low phosphorus (LP, 0.15% avP) diet from 20-36 weeks of age (WOA). Each diet was replicated in six cages with 15 birds per cage. Keel samples were collected at 24, 28, 32, and 36 WOA to measure indicators.2. The incidence of keel bone damage in the LP group was higher than C group and increased with age throughout the experiment period. Keel bone length from laying hens in the LP group was shorter than C group (P < 0.05) at 32 and 36 WOA.3. The mRNA expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and ratio of RANKL to osteoprotegerin (OPG) were upregulated (P < 0.05), and that of sclerostin and OPG was downregulated (P < 0.05) in the LP group in comparison to hens in the C group. Meanwhile, mRNA expression of the integrin-binding sialoprotein was increased at 24 and 28 WOA (P < 0.05), and decreased at 32 and 38 WOA (P < 0.05) in the LP group.4. Laying hens in LP group had increased trabecular separation and bone surface fraction (P < 0.05), decreased bone volume, bone volume fraction, trabecular number and thickness, and bone mineral density (P < 0.05) at 32 WOA. The LP-fed hens had increased K, Ti, Mn, Fe, Zn, Se, Sr and Pb bone concentrations (P < 0.05), and decreased P and TI bone concentrations (P < 0.05) at 36 WOA.5. Feeding hens a P-deficient diet with 0.15% avP and 3.37% Ca during the laying period impaired keel bone quality, which could be related to the osteoporosis.
Collapse
Affiliation(s)
- H Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Y Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Y Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - H Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - J Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - R Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - J Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of "brain-gut-bone" axis. Food Funct 2021; 12:5703-5718. [PMID: 34048514 DOI: 10.1039/d0fo03468a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
14
|
Lin ST, Li YZ, Sun XQ, Chen QQ, Huang SF, Lin S, Cai SQ. Update on the Role of Neuropeptide Y and Other Related Factors in Breast Cancer and Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:705499. [PMID: 34421823 PMCID: PMC8377469 DOI: 10.3389/fendo.2021.705499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023] Open
Abstract
Breast cancer and osteoporosis are common diseases that affect the survival and quality of life in postmenopausal women. Women with breast cancer are more likely to develop osteoporosis than women without breast cancer due to certain factors that can affect both diseases simultaneously. For instance, estrogen and the receptor activator of nuclear factor-κB ligand (RANKL) play important roles in the occurrence and development of these two diseases. Moreover, chemotherapy and hormone therapy administered to breast cancer patients also increase the incidence of osteoporosis, and in recent years, neuropeptide Y (NPY) has also been found to impact breast cancer and osteoporosis.Y1 and Y5 receptors are highly expressed in breast cancer, and Y1 and Y2 receptors affect osteogenic response, thus potentially highlighting a potential new direction for treatment strategies. In this paper, the relationship between breast cancer and osteoporosis, the influence of NPY on both diseases, and the recent progress in the research and treatment of these diseases are reviewed.
Collapse
Affiliation(s)
- Shu-ting Lin
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yi-zhong Li
- Department of Bone, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiao-qi Sun
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qian-qian Chen
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shun-fa Huang
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Si-qing Cai, ; Shu Lin,
| | - Si-qing Cai
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Si-qing Cai, ; Shu Lin,
| |
Collapse
|