1
|
Dhiman A, Choudhary D, Mehan S, Maurya PK, Sharma AK, Kumar A, Mukherjee R, Gupta S, Khan Z, Gupta GD, Narula AS. Therapeutic potential of Baicalin against experimental obsessive compulsive disorder: Evidence from CSF, blood plasma, and brain analysis. J Neuroimmunol 2025; 403:578598. [PMID: 40168745 DOI: 10.1016/j.jneuroim.2025.578598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Obsessive-Compulsive Disorder (OCD) is a complex neuropsychiatric condition characterized by recurrent obsessions and compulsions, significantly impacting an individual's functionality and quality of life. This study aimed to explore the neuroprotective and therapeutic potential of baicalin, a flavonoid with known antioxidant, anti-inflammatory, and neurotropic properties, in an animal model of OCD induced by 8-OH-DPAT (8HPAT). The research utilized in silico docking studies and in vivo experiments to assess baicalin's interactions with key intracellular targets: SIRT-1, Nrf2, HO-1, and PPAR-gamma, and its effects on neurochemical, neurobehavioral, and histopathological parameters. In silico results indicated a strong binding affinity of baicalin for SIRT-1, Nrf2, HO-1, and PPAR-gamma, suggesting potential regulatory roles in antioxidant and anti-inflammatory pathways. In-vivo findings demonstrated that baicalin, administered at doses of 50 mg/kg and 100 mg/kg, significantly alleviated OCD-like behaviours, including excessive lever pressing, marble burying, and compulsive checking. Baicalin treatment normalized serotonin and dopamine levels and reduced glutamate levels in the brain, restoring neurotransmitter balance. Furthermore, baicalin decreased inflammatory cytokines (TNF-alpha and IL-1 beta), improved complete blood count profile, and gross morphological and histopathological alterations by restoring neuronal density and cellular integrity in affected brain regions. Combining baicalin with fluvoxamine (10 mg/kg) showed synergistic effects, further enhancing neuroprotective outcomes. These results suggest that baicalin holds promise as a potential therapeutic agent for OCD, warranting further clinical investigation to explore its efficacy and underlying mechanisms in human subjects. The findings underscore the importance of targeting intracellular pathways and neurotransmitter systems in developing effective treatments for OCD and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abhinay Dhiman
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India.
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Arun Kumar Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Khan MS, Khan Z, Jabir NR, Mehan S, Suhail M, Zaidi SK, Zughaibi TA, Abid M, Tabrez S. Synthesis and Neurobehavioral Evaluation of a Potent Multitargeted Inhibitor for the Treatment of Alzheimer's Disease. Mol Neurobiol 2025; 62:1558-1576. [PMID: 39009798 DOI: 10.1007/s12035-024-04351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) poses a significant health challenge worldwide, affecting millions of individuals, and projected to increase further as the global population ages. Current pharmacological interventions primarily target acetylcholine deficiency and amyloid plaque formation, but offer limited efficacy and are often associated with adverse effects. Given the multifactorial nature of AD, there is a critical need for novel therapeutic approaches that simultaneously target multiple pathological pathways. Targeting key enzymes involved in AD pathophysiology, such as acetylcholinesterase, butyrylcholinesterase, beta-site APP cleaving enzyme 1 (BACE1), and gamma-secretase, is a potential strategy to mitigate disease progression. To this end, our research group has conducted comprehensive in silico screening to identify some lead compounds, including IQ6 (SSZ), capable of simultaneously inhibiting the enzymes mentioned above. Building upon this foundation, we synthesized SSZ, a novel multitargeted ligand/inhibitor to address various pathological mechanisms underlying AD. Chemically, SSZ exhibits pharmacological properties conducive to AD treatment, featuring pyrrolopyridine and N-cyclohexyl groups. Preclinical experimental evaluation of SSZ in AD rat model showed promising results, with notable improvements in behavioral and cognitive parameters. Specifically, SSZ treatment enhanced locomotor activity, ameliorated gait abnormalities, and improved cognitive function compared to untreated AD rats. Furthermore, brain morphological analysis demonstrated the neuroprotective effects of SSZ, attenuating Aβ-induced neuronal damage and preserving brain morphology. Combined treatment of SSZ and conventional drugs (DON and MEM) showed synergistic effects, suggesting a potential therapeutic strategy for AD management. Overall, our study highlights the efficacy of multitargeted ligands like SSZ in combating AD by addressing the complex etiology of the disease. Further research is needed to elucidate the full therapeutic potential of SSZ and the exploration of similar compounds in clinical settings, offering hope for an effective AD treatment in the future.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zuber Khan
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India.
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Hussein MH, Alameen AA, Ansari MA, AlSharari SD, Ahmad SF, Attia MSM, Sarawi WS, Nadeem A, Bakheet SA, Attia SM. Semaglutide ameliorated autism-like behaviors and DNA repair efficiency in male BTBR mice by recovering DNA repair gene expression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111091. [PMID: 39032854 DOI: 10.1016/j.pnpbp.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by impaired social interactions, and increased repetitive behaviors. There is evidence of genetic changes in ASD, and several of these altered genes are linked to the process of DNA repair. Therefore, individuals with ASD must have improved DNA repair efficiency to mitigate risks associated with ASD. Despite numerous milestones in ASD research, the disease remains incurable, with a high occurrence rate and substantial financial burdens. This motivates scientists to search for new drugs to manage the disease. Disruption of glucagon-like peptide-1 (GLP-1) signaling, a regulator in neuronal development and maintains homeostasis, has been associated with the pathogenesis and progression of several neurological disorders, such as ASD. Our study aimed to assess the impact of semaglutide, a new GLP-1 analog antidiabetic medication, on behavioral phenotypes and DNA repair efficiency in the BTBR autistic mouse model. Furthermore, we elucidated the underlying mechanism(s) responsible for the ameliorative effects of semaglutide against behavioral problems and DNA repair deficiency in BTBR mice. The current results demonstrate that repeated treatment with semaglutide efficiently decreased autism-like behaviors in BTBR mice without affecting motor performance. Semaglutide also mitigated spontaneous DNA damage and enhanced DNA repair efficiency in the BTBR mice as determined by comet assay. Moreover, administering semaglutide recovered oxidant-antioxidant balance in BTBR mice. Semaglutide restored the disrupted DNA damage/repair pathways in the BTBR mice by reducing Gadd45a expression and increasing Ogg1 and Xrcc1 expression at both the mRNA and protein levels. This suggests that semaglutide holds great potential as a novel therapeutic candidate for treating ASD traits.
Collapse
Affiliation(s)
- Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Kumar S, Mehan S, Khan Z, Das Gupta G, Narula AS. Guggulsterone Selectively Modulates STAT-3, mTOR, and PPAR-Gamma Signaling in a Methylmercury-Exposed Experimental Neurotoxicity: Evidence from CSF, Blood Plasma, and Brain Samples. Mol Neurobiol 2024; 61:5161-5193. [PMID: 38170440 DOI: 10.1007/s12035-023-03902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disease that damages the brain and spinal cord motor neurons. Several clinical and preclinical studies have found that methylmercury (MeHg+) causes ALS. In ALS, MeHg+-induced neurotoxicity manifests as oligodendrocyte destruction; myelin basic protein (MBP) deficiency leads to axonal death. ALS development has been connected to an increase in signal transducer and activator of transcription-3 (STAT-3), a mammalian target of rapamycin (mTOR), and a decrease in peroxisome proliferator-activated receptor (PPAR)-gamma. Guggulsterone (GST), a plant-derived chemical produced from Commiphorawhighitii resin, has been found to protect against ALS by modulating these signaling pathways. Vitamin D3 (VitD3) deficiency has been related to oligodendrocyte precursor cells (OPC) damage, demyelination, and white matter deterioration, which results in motor neuron death. As a result, the primary goal of this work was to investigate the therapeutic potential of GST by altering STAT-3, mTOR, and PPAR-gamma levels in a MeHg+-exposed experimental model of ALS in adult rats. The GST30 and 60 mg/kg oral treatments significantly improved the behavioral, motor, and cognitive dysfunctions and increased remyelination, as proven by the Luxol Fast Blue stain (LFB), and reduced neuroinflammation as measured by histological examinations. Furthermore, the co-administration of VitD3 exhibits moderate efficacy when administered in combination with GST60. Our results show that GST protects neurons by decreasing STAT-3 and mTOR levels while increasing PPAR-gamma protein levels in ALS rats.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
6
|
Shen J, Liu L, Yang Y, Zhou M, Xu S, Zhang W, Zhang C. Insulin-Like Growth Factor 1 Has the Potential to Be Used as a Diagnostic Tool and Treatment Target for Autism Spectrum Disorders. Cureus 2024; 16:e65393. [PMID: 39188438 PMCID: PMC11346671 DOI: 10.7759/cureus.65393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Autism spectrum disorder (ASD), a heterogeneous group of neurodevelopmental disorders, is characterized by social impairment and repetitive and stereotypic behaviors. Because of the lack of approved laboratory diagnostic markers and effective therapeutic medications, it is one of the most challenging diseases. Therefore, it is urgent to explore potential diagnosis markers or therapeutic targets. Insulin-like growth factor 1 (IGF-1) is a neurotrophic growth factor that enhances brain development. IGF-1 levels in body fluids are lower in preschool children with ASD than in typically developing children, which may serve as a potential diagnostic marker. In various ASD models associated with genetic or environmental exposure, IGF-1 treatment can improve core symptoms or pathological changes, including neuronal development, neural cell survival, balance of synaptic excitation and inhibition, neuroimmunology, and oxidative stress status. In March 2023 an IGF-1 derivative was approved as the first drug for treating Rett syndrome, an ASD-related neurodevelopmental disorder, to improve fundamental symptoms such as social communication. Thus, in this review, we present accumulating evidence of altered IGF-1 levels in ASD patients and the possible mechanisms, as well as evidence that IGF-1 treatment improves the pathophysiology in various ASD models. IGF-1 has the potential to be an early diagnosis marker and an effective therapeutic for ASD.
Collapse
Affiliation(s)
- Jiamin Shen
- Department of Children Health Care, Jingmen Maternity and Child Health Care Hospital, Jingmen, CHN
| | - Lijuan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, CHN
| | - Yifan Yang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Miao Zhou
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Shan Xu
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Wanqing Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| |
Collapse
|
7
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
8
|
Chhabra S, Mehan S, Khan Z, Gupta GD, Narula AS. Matrine mediated neuroprotective potential in experimental multiple sclerosis: Evidence from CSF, blood markers, brain samples and in-silico investigations. J Neuroimmunol 2023; 384:578200. [PMID: 37774554 DOI: 10.1016/j.jneuroim.2023.578200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) is a debilitating, inflammatory, and demyelinating disease of the central nervous system influenced by environmental and genetic factors. Around 2.8 million people worldwide are affected by MS due to its challenging diagnosis and treatment. Our study investigates the role of the JAK/STAT and PPAR-gamma signaling pathways in the progression of multiple sclerosis. Inflammation and demyelination can be caused by dysregulation of these pathways. Modulating the STAT-3, mTOR, and PPAR-gamma signaling pathways may offer therapeutic potential for multiple sclerosis. Matrine (40 and 80 mg/kg, i.p.), a quinolizidine alkaloid derived from Sophora flavescens, has been investigated for its therapeutic potential in our laboratory. Matrine has been studied for its neuroprotective effect in neurodegenerative diseases. It inhibits inflammatory responses and promotes regeneration of damaged myelin sheaths, indicating its potential efficacy in treating multiple sclerosis. Matrine exerts its neuroprotective effect by inhibiting STAT-3 and mTOR and promoting PPAR-gamma expression.GW9662, a PPAR-gamma antagonist (2 mg/kg, i.p.), was administered to evaluate the involvement of PPAR-gamma and to compare the efficacy of matrine's potential neuroprotective effect. Matrine's interaction with the STAT-3, mTOR, and PPAR-gamma pathways in multiple Sclerosis was also validated and confirmed through insilico investigation. In addition, matrine altered the CBC profile, intensifying the clinical presentation of multiple sclerosis. In addition, we evaluated the diagnostic potential of various biological samples, including CSF, blood plasma, and brain homogenates (striatum, cortex, hippocampus, and midbrain). These samples were used to evaluate the neurochemical changes caused by neurobehavioral alterations during the progression of multiple sclerosis. These results indicate that matrine treatment ameliorated multiple sclerosis and that the mechanism underlying these effects may be closely related to the modulation of the STAT-3/mTOR/PPAR-gamma signaling pathway.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
9
|
Giri A, Mehan S, Khan Z, Gupta GD, Narula AS. Melatonin-mediated IGF-1/GLP-1 activation in experimental OCD rats: Evidence from CSF, blood plasma, brain and in-silico investigations. Biochem Pharmacol 2023; 217:115831. [PMID: 37777162 DOI: 10.1016/j.bcp.2023.115831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition characterized by intrusive, repetitive thoughts and behaviors. Our study uses a validated 8-OH-DPAT-induced experimental model of OCD in rodents. We focus on the modulatory effects of Insulin-like growth factor-1 (IGF-1) and glucagon-like peptide-1 (GLP-1), which are linked to neurodevelopment and survival. Current research investigates melatonin, a molecule with neuroprotective properties and multiple functions. Melatonin has beneficial effects on various illnesses, including Alzheimer's, Parkinson's, and depression, indicating its potential efficacy in treating OCD. In the present study, we employed two doses of melatonin, 5 mg/kg and 10 mg/kg, demonstrating a dose-dependent effect on 8-OH-DPAT-induced rat changes. In addition, the melatonin antagonist luzindole 5 mg/kg was utilized to compare and validate the efficacy of melatonin. In-silico studies alsocontribute to understanding the activation of IGF-1/GLP-1 pathways by melatonin. Current research indicates restoring neurochemical measurements on various biological samples (brain homogenates, CSF, and blood plasma) and morphological and histological analyses. In addition, the current research seeks to increase understanding of OCD and investigate potential new treatment strategies. Therefore, it is evident from the aforementioned research that the protective effect of melatonin can serve as a strong basis for developing a new OCD treatment by upregulating IGF-1 and GLP-1 levels. The primary focus of current study revolves around the examination of melatonin as an activator of IGF-1/GLP-1, with the aim of potentially mitigating behavioral, neurochemical, and histopathological abnormalities in an experimental model of obsessive-compulsive disorder caused by 8-OH-DPAT in adult Wistar rats.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|