1
|
Nakamura T, Hiraoka K, Harada R, Matsuzawa T, Ishikawa Y, Funaki Y, Yoshikawa T, Tashiro M, Yanai K, Okamura N. Brain histamine H 1 receptor occupancy after oral administration of desloratadine and loratadine. Pharmacol Res Perspect 2019; 7:e00499. [PMID: 31338198 PMCID: PMC6624455 DOI: 10.1002/prp2.499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/27/2023] Open
Abstract
Some histamine H1 receptor (H1R) antagonists induce adverse sedative reactions caused by blockade of histamine transmission in the brain. Desloratadine is a second-generation antihistamine for treatment of allergic disorders. Its binding to brain H1Rs, which is the basis of sedative property of antihistamines, has not been examined previously in the human brain by positron emission tomography (PET). We examined brain H1R binding potential ratio (BPR), H1R occupancy (H1RO), and subjective sleepiness after oral desloratadine administration in comparison to loratadine. Eight healthy male volunteers underwent PET imaging with [11C]-doxepin, a PET tracer for H1Rs, after a single oral administration of desloratadine (5 mg), loratadine (10 mg), or placebo in a double-blind crossover study. BPR and H1RO in the cerebral cortex were calculated, and plasma concentrations of loratadine and desloratadine were measured. Subjective sleepiness was quantified by the Line Analogue Rating Scale (LARS) and the Stanford Sleepiness Scale (SSS). BPR was significantly lower after loratadine administration than after placebo (0.504 ± 0.074 vs 0.584 ± 0.059 [mean ± SD], P < 0.05), but BPR after desloratadine administration was not significantly different from BPR after placebo (0.546 ± 0.084 vs 0.584 ± 0.059, P = 0.250). The plasma concentration of loratadine was negatively correlated with BPR in subjects receiving loratadine, but that of desloratadine was not correlated with BPR. Brain H1ROs after desloratadine and loratadine administration were 6.47 ± 10.5% and 13.8 ± 7.00%, respectively (P = 0.103). Subjective sleepiness did not significantly differ among subjects receiving the two antihistamines and placebo. At therapeutic doses, desloratadine did not bind significantly to brain H1Rs and did not induce any significant sedation.
Collapse
Affiliation(s)
- Tadaho Nakamura
- Division of Pharmacology, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kotaro Hiraoka
- Cyclotron and Radioisotope CenterTohoku UniversitySendaiJapan
| | - Ryuichi Harada
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takuro Matsuzawa
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope CenterTohoku UniversitySendaiJapan
| | | | - Takeo Yoshikawa
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Manabu Tashiro
- Cyclotron and Radioisotope CenterTohoku UniversitySendaiJapan
| | - Kazuhiko Yanai
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
2
|
Auvity S, Chapy H, Goutal S, Caillé F, Hosten B, Smirnova M, Declèves X, Tournier N, Cisternino S. Diphenhydramine as a selective probe to study H +-antiporter function at the blood-brain barrier: Application to [ 11C]diphenhydramine positron emission tomography imaging. J Cereb Blood Flow Metab 2017; 37:2185-2195. [PMID: 27488910 PMCID: PMC5464711 DOI: 10.1177/0271678x16662042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diphenhydramine, a sedative histamine H1-receptor (H1R) antagonist, was evaluated as a probe to measure drug/H+-antiporter function at the blood-brain barrier. In situ brain perfusion experiments in mice and rats showed that diphenhydramine transport at the blood-brain barrier was saturable, following Michaelis-Menten kinetics with a Km = 2.99 mM and Vmax = 179.5 nmol s-1 g-1. In the pharmacological plasma concentration range the carrier-mediated component accounted for 77% of diphenhydramine influx while passive diffusion accounted for only 23%. [14C]Diphenhydramine blood-brain barrier transport was proton and clonidine sensitive but was influenced by neither tetraethylammonium, a MATE1 (SLC47A1), and OCT/OCTN (SLC22A1-5) modulator, nor P-gp/Bcrp (ABCB1a/1b/ABCG2) deficiency. Brain and plasma kinetics of [11C]diphenhydramine were measured by positron emission tomography imaging in rats. [11C]Diphenhydramine kinetics in different brain regions were not influenced by displacement with 1 mg kg-1 unlabeled diphenhydramine, indicating the specificity of the brain positron emission tomography signal for blood-brain barrier transport activity over binding to any central nervous system target in vivo. [11C]Diphenhydramine radiometabolites were not detected in the brain 15 min after injection, allowing for the reliable calculation of [11C]diphenhydramine brain uptake clearance (Clup = 0.99 ± 0.18 mL min-1 cm-3). Diphenhydramine is a selective and specific H+-antiporter substrate. [11C]Diphenhydramine positron emission tomography imaging offers a reliable and noninvasive method to evaluate H+-antiporter function at the blood-brain barrier.
Collapse
Affiliation(s)
- Sylvain Auvity
- 1 Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France.,2 Variabilité de réponse aux psychotropes, INSERM, U1144, Paris, France; Université Paris Descartes, Faculté de pharmacie, UMR-S 1144, Paris, F-75006, France. Université Paris Diderot, UMR-S 1144, Paris, F-75013, France
| | - Hélène Chapy
- 2 Variabilité de réponse aux psychotropes, INSERM, U1144, Paris, France; Université Paris Descartes, Faculté de pharmacie, UMR-S 1144, Paris, F-75006, France. Université Paris Diderot, UMR-S 1144, Paris, F-75013, France
| | - Sébastien Goutal
- 1 Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Fabien Caillé
- 1 Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Benoit Hosten
- 2 Variabilité de réponse aux psychotropes, INSERM, U1144, Paris, France; Université Paris Descartes, Faculté de pharmacie, UMR-S 1144, Paris, F-75006, France. Université Paris Diderot, UMR-S 1144, Paris, F-75013, France
| | - Maria Smirnova
- 2 Variabilité de réponse aux psychotropes, INSERM, U1144, Paris, France; Université Paris Descartes, Faculté de pharmacie, UMR-S 1144, Paris, F-75006, France. Université Paris Diderot, UMR-S 1144, Paris, F-75013, France
| | - Xavier Declèves
- 2 Variabilité de réponse aux psychotropes, INSERM, U1144, Paris, France; Université Paris Descartes, Faculté de pharmacie, UMR-S 1144, Paris, F-75006, France. Université Paris Diderot, UMR-S 1144, Paris, F-75013, France
| | - Nicolas Tournier
- 1 Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Salvatore Cisternino
- 1 Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France.,2 Variabilité de réponse aux psychotropes, INSERM, U1144, Paris, France; Université Paris Descartes, Faculté de pharmacie, UMR-S 1144, Paris, F-75006, France. Université Paris Diderot, UMR-S 1144, Paris, F-75013, France
| |
Collapse
|
3
|
Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull 2014; 30:777-811. [PMID: 25172118 DOI: 10.1007/s12264-014-1460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
Collapse
|
4
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
5
|
Funke U, Vugts DJ, Janssen B, Spaans A, Kruijer PS, Lammertsma AA, Perk LR, Windhorst AD. 11C-labeled and18F-labeled PET ligands for subtype-specific imaging of histamine receptors in the brain. J Labelled Comp Radiopharm 2013; 56:120-9. [DOI: 10.1002/jlcr.3038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Affiliation(s)
| | - Danielle J. Vugts
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Bieneke Janssen
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | | | - Perry S. Kruijer
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Adriaan A. Lammertsma
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Lars R. Perk
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Albert D. Windhorst
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| |
Collapse
|
7
|
Ishiwata K, Kimura Y, Oda K, Ishii K, Sakata M, Kawasaki K, Nariai T, Suzuki Y, Ishibashi K, Mishina M, Hashimoto M, Ishikawa M, Toyohara J. Development of PET radiopharmaceuticals and their clinical applications at the Positron Medical Center. Geriatr Gerontol Int 2010; 10 Suppl 1:S180-96. [PMID: 20590833 DOI: 10.1111/j.1447-0594.2010.00594.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Positron Medical Center has developed a large number of radiopharmaceuticals and 36 radiopharmaceuticals have been approved for clinical use for studying aging and geriatric diseases, especially brain functions. Positron emission tomography (PET) has been used to provide a highly advanced PET-based diagnosis. The current status of the development of radiopharmaceuticals, and representative clinical and methodological results are reviewed.
Collapse
Affiliation(s)
- Kiichi Ishiwata
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Suzuki A, Tashiro M, Kimura Y, Mochizuki H, Ishii K, Watabe H, Yanai K, Ishiwata K, Ishii K. Use of reference tissue models for quantification of histamine H1 receptors in human brain by using positron emission tomography and [11C]doxepin. Ann Nucl Med 2005; 19:425-33. [PMID: 16248378 DOI: 10.1007/bf02985569] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study is to evaluate the validity of the simplified reference tissue model (SRTM) and of Logan graphical analysis with reference tissue (LGAR) for quantification of histamine H1 receptors (H1Rs) by using positron emission tomography (PET) with [11C]doxepin. These model-based analytic methods (SRTM and LGAR) are compared to Logan graphical analysis (LGA) and to the one-tissue model (1TM), using complete datasets obtained from 5 healthy volunteers. Since HIR concentration in the cerebellum can be regarded as negligibly small, the cerebellum was selected as the reference tissue in the present study. The comparison of binding potential (BP) values estimated by LGAR and 1TM showed good agreement; on the other hand, SRTM turned out to be unstable concerning parameter estimation in several regions of the brain. By including the results of noise analysis, LGAR became a reliable method for parameter estimation of [11C]doxepin data in the cortical regions.
Collapse
Affiliation(s)
- Atsuro Suzuki
- Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|