1
|
Şuekinci Yılmaz A, Uluçam G. Novel N-benzyl-2-oxo-1,2-dihydrofuro [3,4-d]pyrimidine-3(4H)-carboxamide as anticancer agent: Synthesis, drug-likeness, ADMET profile, DFT and molecular modelling against EGFR target. Heliyon 2023; 9:e12948. [PMID: 36711281 PMCID: PMC9876965 DOI: 10.1016/j.heliyon.2023.e12948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
A novel compound N-benzyl-2-oxo-1,2-dihydrofuro [3,4-d]pyrimidine-3(4H)-carboxamide (DHFP) was synthesized by addition, rearrangement, and intramolecular cyclization reactions. The three-dimensional geometry of DHFP has been determined by density functional theory calculations in the gas phase. Thus, the geometrical properties of DHFP such as the bond lengths, bond angles, and dihedral bond angles have been determined in the optimized molecular configuration. Also, the HOMO-LUMO energies were calculated. The charge distribution of the DHFP has been calculated by Natural Population Analysis (NPA) approach. NMR and FTIR spectra were calculated and compared with their experimental corresponding to confirm the synthesis of the DHFP. The anticancer activities of the DHFP were also determined on human colon cancer (HT29) and prostate cancer (DU145) cell lines. Molecular docking studies of the DHFP with EGFR tyrosine kinase, which is responsible for cancer cell proliferation and growth, were performed and it was observed that docking interaction took place. The DHFP has the potential to be a drug, as it is determined that DHFP obeys Lipinski's five rules, can cross the blood-brain barrier, and can be rapidly absorbed from the gastrointestinal wall.
Collapse
Affiliation(s)
- Ayşen Şuekinci Yılmaz
- Corresponding author. Chemistry Department, Faculty of Science, Trakya University, 22030, Edirne, Turkey.
| | | |
Collapse
|
2
|
The Unique Pharmacometrics of Small Molecule Therapeutic Drug Tracer Imaging for Clinical Oncology. Cancers (Basel) 2020; 12:cancers12092712. [PMID: 32971780 PMCID: PMC7563483 DOI: 10.3390/cancers12092712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary New clinical radiology scans using trace amounts of therapeutic cancer drugs labeled with radioisotope injected into patients can provide oncologists with fundamentally unique insights about drug delivery to tumors. This new application of radiology aims to improve how cancer drugs are used, towards improving patient outcomes. The article reviews published clinical research in this important new field. Abstract Translational development of radiolabeled analogues or isotopologues of small molecule therapeutic drugs as clinical imaging biomarkers for optimizing patient outcomes in targeted cancer therapy aims to address an urgent and recurring clinical need in therapeutic cancer drug development: drug- and target-specific biomarker assays that can optimize patient selection, dosing strategy, and response assessment. Imaging the in vivo tumor pharmacokinetics and biomolecular pharmacodynamics of small molecule cancer drugs offers patient- and tumor-specific data which are not available from other pharmacometric modalities. This review article examines clinical research with a growing pharmacopoeia of investigational small molecule cancer drug tracers.
Collapse
|
3
|
Li P, He H, Zhang Y, Yang R, Xu L, Chen Z, Huang Y, Bao L, Xiao G. Glycosyl ortho-(1-phenylvinyl)benzoates versatile glycosyl donors for highly efficient synthesis of both O-glycosides and nucleosides. Nat Commun 2020; 11:405. [PMID: 31964883 PMCID: PMC6972911 DOI: 10.1038/s41467-020-14295-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Both of O-glycosides and nucleosides are important biomolecules with crucial rules in numerous biological processes. Chemical synthesis is an efficient and scalable method to produce well-defined and pure carbohydrate-containing molecules for deciphering their functions and developing therapeutic agents. However, the development of glycosylation methods for efficient synthesis of both O-glycosides and nucleosides is one of the long-standing challenges in chemistry. Here, we report a highly efficient and versatile glycosylation method for efficient synthesis of both O-glycosides and nucleosides, which uses glycosyl ortho-(1-phenylvinyl)benzoates as donors. This glycosylation protocol enjoys the various features, including readily prepared and stable donors, cheap and readily available promoters, mild reaction conditions, good to excellent yields, and broad substrate scopes. In particular, the applications of the current glycosylation protocol are demonstrated by one-pot synthesis of several bioactive oligosaccharides and highly efficient synthesis of nucleosides drugs capecitabine, galocitabine and doxifluridine.
Collapse
Affiliation(s)
- Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Limei Bao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Ferraboschi P, Ciceri S, Grisenti P. Synthesis of Antitumor Fluorinated Pyrimidine Nucleosides. ORG PREP PROCED INT 2017. [DOI: 10.1080/00304948.2017.1290994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Tran HA, Zheng Z, Wen X, Manivannan S, Pastor A, Kaiser M, Brun R, Snyder FF, Back TG. Synthesis and activity of nucleoside-based antiprotozoan compounds. Bioorg Med Chem 2017; 25:2091-2104. [PMID: 28284860 DOI: 10.1016/j.bmc.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Parasitic protozoa employ a salvage pathway to synthesize purines and generate essential active nucleotides, whereas mammals are capable of their de novo biosynthesis. This difference provides opportunity for the design of potential new antiprotozoan compounds. A series of 47 adenosine analogues was prepared with modifications at the 2-, 6- and 5'-positions, based on the hypothesis that such compounds would serve as substrates for protozoan nucleoside salvage enzymes, while remaining refractory in mammalian cells. The nucleosides were designed to produce toxic metabolites upon cleavage to the corresponding purine base by the parasite. Three 7-deazaguanosine derivatives were prepared with similar objectives. All of these compounds were tested in vitro against T. brucei (African sleeping sickness), T. cruzi (Chagas' disease), L. donovani (leishmaniasis) and P. falciparum (malaria). In order to determine the therapeutic selectivity indices (SI) of the antiprotozoan nucleosides, their cytotoxicities toward a rat myoblast cell line were also determined. One adenosine derivative proved highly effective against P. falciparum (IC50=110nM and SI=1010, while a modified guanosine displayed potent activities against L. donovani (IC50=60nM, SI=2720) and T. brucei (IC50=130nM, SI=1250), as well as moderate activity against T. cruzi (IC50=3.4µM, SI=48). These results provide proof of concept for the nucleoside-based antiprotozoan strategy, as well as potential lead compounds for further optimization and validation.
Collapse
Affiliation(s)
- Huu-Anh Tran
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhaoyan Zheng
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Xianghui Wen
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Srinivasan Manivannan
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Arnaud Pastor
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Floyd F Snyder
- Departments of Medical Genetics & Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada.
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
6
|
Zheng Z, Tran HA, Manivannan S, Wen X, Kaiser M, Brun R, Snyder FF, Back TG. Novel nucleoside-based antimalarial compounds. Bioorg Med Chem Lett 2016; 26:2861-2865. [PMID: 27156774 DOI: 10.1016/j.bmcl.2016.04.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 11/19/2022]
Abstract
The malaria-causing parasite Plasmodium falciparum employs a salvage pathway for the biosynthesis of nucleotides, in contrast to de novo biosynthesis that is utilized by the human host. A series of twenty-two 2-, 6- and 5'-modified adenosine ribonucleosides was synthesized, with the expectation that these compounds would generate toxic metabolites instead of active nucleotides by the pathogen, while remaining inert in host cells. Bioassays with P. falciparum (K1 strain) indicated IC50 values as low as 110nM and a selectivity index with respect to cytotoxicity toward an L6 rat myoblast cell line of >1000 for the most potent analogue.
Collapse
Affiliation(s)
- Zhaoyan Zheng
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Huu-Anh Tran
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Srinivasan Manivannan
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Xianghui Wen
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Floyd F Snyder
- Biochemical Genetics Lab, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, Alberta T3B 6A9, Canada.
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
7
|
Mekala N, Moturu MVRK, Dammalapati RVLN, Parimi AR. Safe and Alternate Process for the Reductions of Methanesulfonates: Application in the Synthesis of 1,2,3-Triacetyl-5-deoxy-d-ribofuranoside. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.5b00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nagaraju Mekala
- Oncology Division,
Process Development Laboratories, Laurus Laboratories Private Limited, ICICI Knowledge Park, Turkapally,
Shameerpet, Hyderabad-500 078, Telangana, India
- Department of Organic Chemistry, Food, Drugs & Water, School of Chemistry, Andhra University, Visakhapatnam-530 003, Andhra Pradesh, India
| | - Murthy V. R. K. Moturu
- Oncology Division,
Process Development Laboratories, Laurus Laboratories Private Limited, ICICI Knowledge Park, Turkapally,
Shameerpet, Hyderabad-500 078, Telangana, India
| | - Rao V. L. N. Dammalapati
- Oncology Division,
Process Development Laboratories, Laurus Laboratories Private Limited, ICICI Knowledge Park, Turkapally,
Shameerpet, Hyderabad-500 078, Telangana, India
| | - Atchuta R. Parimi
- Department of Organic Chemistry, Food, Drugs & Water, School of Chemistry, Andhra University, Visakhapatnam-530 003, Andhra Pradesh, India
| |
Collapse
|
8
|
Ciceri S, Ciuffreda P, Grisenti P, Ferraboschi P. Synthesis of the antitumoral nucleoside capecitabine through a chemo-enzymatic approach. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Yagi Y, Kimura H, Arimitsu K, Ono M, Maeda K, Kusuhara H, Kajimoto T, Sugiyama Y, Saji H. The synthesis of [18F]pitavastatin as a tracer for hOATP using the Suzuki coupling. Org Biomol Chem 2015; 13:1113-21. [DOI: 10.1039/c4ob01953a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorine-18 labeled radiotracers, such as [18F]fluorodeoxyglucose, can be used as practical diagnostic agents in positron emission tomography (PET).
Collapse
Affiliation(s)
- Yusuke Yagi
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Kenji Arimitsu
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tetsuya Kajimoto
- Research Organization of Science and Technology
- Research Center for Drug Discovery and Pharmaceutical Development Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Yuichi Sugiyama
- Laboratory of Molecular Pharmacokinetics
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
10
|
Kovaliov M, Weitman M, Major DT, Fischer B. Phenyl-imidazolo-cytidine Analogues: Structure–Photophysical Activity Relationship and Ability To Detect Single DNA Mismatch. J Org Chem 2014; 79:7051-62. [DOI: 10.1021/jo5011944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marina Kovaliov
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Michal Weitman
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Bilha Fischer
- Department of Chemistry,
Gonda-Goldschmied Medical Research Center and the Lise-Meitner-Minerva
Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
11
|
Kovaliov M, Segal M, Fischer B. Fluorescent p-substituted-phenyl-imidazolo-cytidine analogues. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Shen B, Jamison TF. Rapid Continuous Synthesis of 5′-Deoxyribonucleosides in Flow via Brønsted Acid Catalyzed Glycosylation. Org Lett 2012; 14:3348-51. [DOI: 10.1021/ol301324g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Shen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy F. Jamison
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Antunes IF, Haisma HJ, Elsinga PH, Sijbesma JWA, Waarde AV, Willemsen ATM, Dierckx RA, de Vries EFJ. In vivo evaluation of [18F]FEAnGA-Me: a PET tracer for imaging β-glucuronidase (β-GUS) activity in a tumor/inflammation rodent model. Nucl Med Biol 2012; 39:854-63. [PMID: 22445742 DOI: 10.1016/j.nucmedbio.2012.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/02/2012] [Accepted: 02/11/2012] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The PET tracer, 1-O-(4-(2-fluoroethyl-carbamoyloxymethyl)-2-nitrophenyl)-O-β-d-glucopyronuronate ([(18)F]FEAnGA), was recently developed for PET imaging of extracellular β-glucuronidase (β-GUS). However, [(18)F]FEAnGA exhibited rapid renal clearance, which resulted in a relatively low tracer uptake in the tumor. To improve the pharmacokinetics of [(18)F]FEAnGA, we developed its more lipophilic methyl ester analog, [(18)F]FEAnGA-Me. METHODS [(18)F]FEAnGA-Me was obtained by alkylation of the O-protected glucuronide methyl ester precursor with [(18)F]-fluoroethylamine ([(18)F]FEA), followed by removal of the acetate protecting groups with NaOMe/MeOH. The PET tracer was evaluated by in vitro and in vivo studies. RESULTS [(18)F]FEAnGA-Me was obtained in 5%-10% overall radiochemical yield. It is 10-fold less hydrophilic than [(18)F]FEAnGA and it is stable in PBS and in the presence of β-GUS for 1 h. However, in the presence of esterase or plasma [(18)F]FEAnGA-Me is converted to [(18)F]FEAnGA, and subsequently converted to [(18)F]FEA by β-GUS. MicroPET studies in Wistar rats bearing a C6 glioma and a sterile inflammation showed similar uptake in tumors after injection of either [(18)F]FEAnGA-Me or [(18)F]FEAnGA. Both tracers had a rapid two-phase clearance of total plasma radioactivity with a half-life of 1 and 8 min. The [(18)F]FEAnGA fraction generated from [(18)F]FEAnGA-Me by in vivo hydrolysis had a circulation half-life of 1 and 11 min in plasma. Similar distribution volume in the viable part of the tumor was found after injection of either [(18)F]FEAnGA-Me or [(18)F]FEAnGA. CONCLUSION The imaging properties of [(18)F]FEAnGA-Me were not significantly better than those of [(18)F]FEAnGA. Therefore, other strategies should be applied in order to improve the kinetics of these tracers.
Collapse
Affiliation(s)
- Inês F Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gao M, Wang M, Mock BH, Glick-Wilson BE, Yoder KK, Hutchins GD, Zheng QH. An improved synthesis of dopamine D2/D3 receptor radioligands [11C]fallypride and [18F]fallypride. Appl Radiat Isot 2010; 68:1079-86. [DOI: 10.1016/j.apradiso.2009.09.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/11/2009] [Accepted: 09/07/2009] [Indexed: 11/29/2022]
|
15
|
Akizawa H, Zhao S, Takahashi M, Nishijima KI, Kuge Y, Tamaki N, Seki KI, Ohkura K. In vitro and in vivo evaluations of a radioiodinated thymidine phosphorylase inhibitor as a tumor diagnostic agent for angiogenic enzyme imaging. Nucl Med Biol 2010; 37:427-32. [PMID: 20447553 DOI: 10.1016/j.nucmedbio.2010.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 01/25/2010] [Accepted: 01/31/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Hiromichi Akizawa
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Nimmagadda S, Shields AF. The role of DNA synthesis imaging in cancer in the era of targeted therapeutics. Cancer Metastasis Rev 2008; 27:575-87. [PMID: 18512023 DOI: 10.1007/s10555-008-9148-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non-specific targets such as DNA and microtubules have been the mainstay of cancer therapeutics and the most effective clinical agents until a decade ago. Advances in genetics, molecular and cellular biology over the past decade led to the development of a new generation of agents that are far more specific and effective. In contrast to progress seen with therapeutic agents, general monitoring targets such as proliferation imaging are just gaining momentum and targeted imaging is still in its infancy. In these paradoxical times, this review assesses the role of proliferation imaging in monitoring the efficacy of targeted therapeutics.
Collapse
Affiliation(s)
- Sridhar Nimmagadda
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| | | |
Collapse
|
18
|
Wang M, Cooley B, Gao M, Miller KD, Sledge GW, Hutchins GD, Zheng QH. Synthesis of new carbon-11 labeled naphthalene-sulfonamides for PET imaging of human CCR8. Appl Radiat Isot 2008; 66:1406-13. [DOI: 10.1016/j.apradiso.2008.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/05/2008] [Accepted: 03/18/2008] [Indexed: 11/29/2022]
|
19
|
Gao M, Wang M, Hutchins GD, Zheng QH. Synthesis of new carbon-11 labeled benzoxazole derivatives for PET imaging of 5-HT3 receptor. Eur J Med Chem 2008; 43:1570-4. [DOI: 10.1016/j.ejmech.2007.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/26/2022]
|
20
|
Gao M, Wang M, Miller KD, Sledge GW, Zheng QH. Synthesis and preliminary biological evaluation of new carbon-11 labeled tetrahydroisoquinoline derivatives as SERM radioligands for PET imaging of ER expression in breast cancer. Eur J Med Chem 2008; 43:2211-9. [PMID: 18272256 DOI: 10.1016/j.ejmech.2008.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 12/18/2007] [Accepted: 01/02/2008] [Indexed: 11/25/2022]
Abstract
The estrogen receptors (ERs) are attractive targets in the treatment of breast cancer and the development of receptor-based breast cancer imaging agents for diagnostic use in biomedical imaging technique positron emission tomography (PET). Tetrahydroisoquinoline derivatives are a class of selective estrogen receptor modulators (SERMs) with high binding affinity and specificity exhibiting up to 50 folds for ERalpha over ERbeta. New carbon-11 labeled tetrahydroisoquinoline derivatives, [11C]methyl 1-(2-(4-(2-(4-fluorophenyl)-6-hydroxy-1-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phenoxy)ethyl)piperidine-4-carboxylate ([11C]10a) and [11C]methyl 1-(2-(4-(2-(4-chlorophenyl)-6-hydroxy-1-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phenoxy)ethyl)piperidine-4-carboxylate ([11C]10b), have been first designed, synthesized and evaluated. The target tracers were prepared by O-[11C]methylation of their corresponding precursors using [11C]CH3OTf and isolated by solid-phase extraction (SPE) purification procedure in 40-60% radiochemical yields, which were decay corrected to the end of bombardment (EOB), based on [11C]CO2. The overall synthesis time was 15-20 min from EOB. The radiochemical purity was >99%, and specific activity was in a range of 74-111GBq/micromol at the end of synthesis (EOS). Preliminary findings from in vitro biological assay indicate that the synthesized derivatives displayed similar potencies in the MCF-7 human breast cancer cell line in comparison with 4-hydroxytamoxifen, a well-known potent SERM. These results encourage further in vivo evaluation of carbon-11 labeled tetrahydroisoquinoline derivatives as new potential SERM radioligands for PET imaging of ER expression in breast cancer.
Collapse
Affiliation(s)
- Mingzhang Gao
- Department of Radiology, Indiana University School of Medicine, 1345 West 16th Street, L3-208, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
21
|
Wang M, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of carbon-11 labeled biaryl 1,2,3,4-tetrahydroisoquinoline derivatives and conformationally flexible analogues as new potential PET glioma tumor imaging agents. Appl Radiat Isot 2007; 65:1152-9. [PMID: 17604635 DOI: 10.1016/j.apradiso.2007.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/14/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Carbon-11 labeled biaryl 1,2,3,4-tetrahydroisoquinoline derivatives and conformationally flexible analogues, 2-(2-(biphenyl-4-yl)ethyl)-6-[(11)C]methoxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline ([(11)C]3); 1-(biphenyl-4-yl)methyl-6,7-dimethoxy-2-[(11)C]methyl-1,2,3,4-tetrahydroisoquinoline (N-[(11)C]7) and 1-(biphenyl-4-yl)methyl-6-[(11)C]methoxy-7-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (O-[(11)C]7); and 2-(biphenyl-4-yl)-N-(3,4-dimethoxy-phenethyl)-N-[(11)C]methyl-ethanamine (N-[(11)C]10) and 2-(biphenyl-4-yl)-N-(3-methoxy-4-[(11)C]methoxy-phenethyl)-N-methyl-ethanamine (O-[(11)C]10), have been synthesized as new potential positron emission tomography (PET) glioma tumor imaging agents, either by O-[(11)C]methylation or by N-[(11)C]methylation of the appropriate precursors using [(11)C]CH(3)OTf and isolated either by a simplified solid-phase extraction (SPE) purification procedure or by HPLC method in 30-55% radiochemical yields decay corrected to EOB, 15-25 min overall synthesis time, and 4.0-6.0 Ci/mumol specific activity at EOB.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology, Indiana University School of Medicine, 1345 West 16th Street, L-3 Room 202, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
22
|
Wang M, Lacy G, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of carbon-11 labeled sulfonanilide analogues as new potential PET agents for imaging of aromatase in breast cancer. Bioorg Med Chem Lett 2007; 17:332-6. [PMID: 17095221 DOI: 10.1016/j.bmcl.2006.10.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/19/2006] [Accepted: 10/23/2006] [Indexed: 11/29/2022]
Abstract
Aromatase is a particularly good target in the treatment of estrogen receptor positive breast cancer. Novel carbon-11 labeled sulfonanilide analogues, N-[11C]methyl-N-(2-alkyloxy-4-nitrophenyl)-methanesulfonamides ([11C]3a-f, alkyl=propyl, isopropyl, 1-ethyl-propyl, cyclopentyl, cyclohexyl, and cyclohexylethyl), were designed and synthesized as potential PET agents for imaging of aromatase in breast cancer.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tafra L. Positron Emission Tomography (PET) and Mammography (PEM) for Breast Cancer: Importance to Surgeons. Ann Surg Oncol 2006; 14:3-13. [PMID: 17066235 DOI: 10.1245/s10434-006-9019-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lorraine Tafra
- The Breast Center, Anne Arundel Medical Center, 2002 Medical Parkway, Suite 120, Annapolis, MD 21401, USA.
| |
Collapse
|
24
|
Wang JQ, Miller KD, Sledge GW, Zheng QH. Synthesis of [18F]SU11248, a new potential PET tracer for imaging cancer tyrosine kinase. Bioorg Med Chem Lett 2005; 15:4380-4. [PMID: 16019210 DOI: 10.1016/j.bmcl.2005.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/08/2005] [Accepted: 06/09/2005] [Indexed: 11/17/2022]
Abstract
N-[2-(Diethylamino)ethyl]-5-[(Z)-(5-[18F]fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide, a new potential positron emission tomography tracer for imaging cancer tyrosine kinase, has been prepared by the nucleophilic substitution of the nitro-precursor N-[2-(diethylamino)ethyl]-5-[(Z)-(5-nitro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide with K18F/Kryptofix 2.2.2 followed by a simple chromatography methodology combined solid-phase extraction with high-performance liquid chromatography purification procedures in 15-25% radiochemical yields.
Collapse
Affiliation(s)
- Ji-Quan Wang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
Wang JQ, Pollok KE, Cai S, Stantz KM, Hutchins GD, Zheng QH. PET imaging and optical imaging with D-luciferin [11C]methyl ester and D-luciferin [11C]methyl ether of luciferase gene expression in tumor xenografts of living mice. Bioorg Med Chem Lett 2005; 16:331-7. [PMID: 16246550 DOI: 10.1016/j.bmcl.2005.09.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 09/26/2005] [Accepted: 09/29/2005] [Indexed: 01/17/2023]
Abstract
New carbon-11 labeled D-luciferin analogs D-luciferin [(11)C]methyl ester ([(11)C]LMEster, [(11)C]1) and D-luciferin [(11)C]methyl ether ([(11)C]LMEther, [(11)C]2) were synthesized in 25-55% radiochemical yield. PET studies with [(11)C]LMEster and [(11)C]LMEther demonstrate a lower retention of the C-11 label at 45 min post-injection in luciferase expression tumor. Optical imaging with unlabeled substrate D-luciferin and radiotracers [(11)C]LMEster and [(11)C]LMEther gave tumor luciferase images within a few minutes of photon counting.
Collapse
Affiliation(s)
- Ji-Quan Wang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang JQ, Kreklau EL, Bailey BJ, Erickson LC, Zheng QH. Synthesis and preliminary biological evaluation of O6-[4-(2-[18F]fluoroethoxymethyl)benzyl]guanine as a novel potential PET probe for the DNA repair protein O6-alkylguanine-DNA alkyltransferase in cancer chemotherapy. Bioorg Med Chem 2005; 13:5779-86. [PMID: 15993610 DOI: 10.1016/j.bmc.2005.05.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 05/26/2005] [Indexed: 11/29/2022]
Abstract
A novel fluorine-18-labeled O6-benzylguanine (O6-BG) derivative, O6-[4-(2-[18F]fluoroethoxymethyl)benzyl]guanine (O6-[18F]FEMBG, [18F]1), has been synthesized for evaluation as a potential positron emission tomography (PET) probe for the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in cancer chemotherapy. The appropriate radiolabeling precursor N(2,9)-bis(p-anisyldiphenylmethyl)-O6-[4-(hydroxymethyl)benzyl]guanine (6) and reference standard O6-[4-(2-fluoroethoxymethyl)benzyl]guanine (O6-FEMBG, 1) were synthesized from 1,4-benzenedimethanol and 2-amino-6-chloropurine in four or six steps, respectively, with moderate to excellent chemical yields. The target tracer O6-[18F]FEMBG was prepared in 20-35% radiochemical yields by reaction of MTr-protected precursor 6 with [18F]fluoroethyl bromide followed by quick deprotection reaction and purification with a simplified Silica Sep-Pak method. Total synthesis time was 60-70 min from the end of bombardment. Radiochemical purity of the formulated product was >95%, with a specific radioactivity of >1.0 Ci/micromol at the end of synthesis. The activity of unlabeled O6-FEMBG was evaluated via an in vitro AGT oligonucleotide assay. Preliminary findings from biological assay indicate that the synthesized analogue has similarly strong inhibiting effect on AGT in comparison with O6-BG and O6-4-fluorobenzylguanine (O6-FBG). The results warrant further in vivo evaluation of O6-[18F]FEMBG as a new potential PET probe for AGT.
Collapse
Affiliation(s)
- Ji-Quan Wang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
28
|
Gao M, Miller KD, Sledge GW, Zheng QH. Radiosynthesis of carbon-11-labeled camptothecin derivatives as potential positron emission tomography tracers for imaging of topoisomerase I in cancers. Bioorg Med Chem Lett 2005; 15:3865-9. [PMID: 15993064 DOI: 10.1016/j.bmcl.2005.05.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 11/22/2022]
Abstract
Four carbon-11-labeled camptothecin derivatives, 9-[11C]methoxy-20(S)-camptothecin ([11C]5), 10-[11C]methoxy-20(S)-camptothecin ([11C]7), 9-nitro-10-[11C]methoxy-20(S)-camptothecin ([11C]9), and 9-[([11C]trimethylamino)methyl]-10-hydroxy-20(S)-camptothecin ([11C]11), have been synthesized as potential positron emission tomography tracers for imaging of topoisomerase I in cancers.
Collapse
Affiliation(s)
- Mingzhang Gao
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|