1
|
Detchou D, Barrie U. Circulating biomarkers literature in glioma patient populations. Neurosurg Rev 2024; 47:484. [PMID: 39187709 DOI: 10.1007/s10143-024-02738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Liquid biopsy, the process of identifying circulating biomarkers in patients with cancer, has emerged as clinically significant in population screening, tumor status & subclassification, and individualized patient treatment from tumor genotyping. While advances in genome sequencing and mass spectrometry have yielded large datasets available for mining and identified promising biomarkers in breast, melanoma, and lung cancers, among others, challenges persist in identifying biomarkers in neuro-oncology. Despite growing efforts in biomarker research and promise in their emergent clinical potential, there presently exists no validated circulating biomarker test for patients presenting with gliomas, the most common primary brain cancer.
Collapse
Affiliation(s)
- Donald Detchou
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
2
|
Galldiks N, Kaufmann TJ, Vollmuth P, Lohmann P, Smits M, Veronesi MC, Langen KJ, Rudà R, Albert NL, Hattingen E, Law I, Hutterer M, Soffietti R, Vogelbaum MA, Wen PY, Weller M, Tonn JC. Challenges, limitations, and pitfalls of PET and advanced MRI in patients with brain tumors: A report of the PET/RANO group. Neuro Oncol 2024; 26:1181-1194. [PMID: 38466087 PMCID: PMC11226881 DOI: 10.1093/neuonc/noae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 03/12/2024] Open
Abstract
Brain tumor diagnostics have significantly evolved with the use of positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the Response Assessment in Neuro-Oncology (RANO) Group, the European Association of Neuro-oncology, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g. MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations, and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | | | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Marion Smits
- Department of Radiology and Nuclear Medicine and Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | - Michael C Veronesi
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilians-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Goethe University, Department of Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Markus Hutterer
- Department of Neurology with Acute Geriatrics, Saint John of God Hospital, Linz, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neurosurgery, Moffit Cancer Center, Tampa, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, and University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Joerg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
3
|
Park SY, Lee MK, Han EJ, Jeon YW. Cerebrovascular Malformation Mimicking Recurrent Lymphoma on Dual Time-Point 18F-FDOPA PET. Clin Nucl Med 2024; 49:232-233. [PMID: 38306374 DOI: 10.1097/rlu.0000000000005023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
ABSTRACT Although 18F-FDG is the dominant radiotracer for PET imaging of hematological malignancies, radiolabeled amino acids have also been investigated to improve image quality in areas of high 18F-FDG uptake such as the central nervous system. We present a case of a 57-year-old woman who underwent an 18F-FDOPA scan for primary CNS lymphoma, which demonstrated an unexpected false-positive uptake in the right frontal lobe, due to a developmental venous anomaly.
Collapse
Affiliation(s)
| | | | - Eun Ji Han
- From the Division of Nuclear Medicine, Department of Radiology
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
4
|
Hazari PP, Yadav SK, Kumar PK, Dhingra V, Rani N, Kumar R, Singh B, Mishra AK. Preclinical and Clinical Use of Indigenously Developed 99mTc-Diethylenetriaminepentaacetic Acid-Bis-Methionine: l-Type Amino Acid Transporter 1-Targeted Single Photon Emission Computed Tomography Radiotracer for Glioma Management. ACS Pharmacol Transl Sci 2023; 6:1233-1247. [PMID: 37705592 PMCID: PMC10496141 DOI: 10.1021/acsptsci.3c00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/15/2023]
Abstract
A new era in tumor classification, diagnosis, and prognostic evaluation has begun as a consequence of recent developments in the molecular and genetic characterization of central nervous system tumors. In this newly emerging era, molecular imaging modalities are essential for preoperative diagnosis, surgical planning, targeted treatment, and post-therapy evaluation of gliomas. The radiotracers are able to identify brain tumors, distinguish between low- and high-grade lesions, confirm a patient's eligibility for theranostics, and assess post-radiation alterations. We previously synthesized and reported the novel l-type amino acid transporter 1 (LAT-1)-targeted amino acid derivative in light of the use of amino acid derivatives in imaging technologies. Further, we have developed a single vial ready to label Tc-lyophilized kit preparations of diethylenetriaminepentaacetic acid-bis-methionine [DTPA-bis(Met)], also referred to as methionine-diethylenetriaminepentaacetic acid-methionine (MDM) and evaluated its imaging potential in numerous clinical studies. This review summarizes our previous publications on 99mTc-DTPA-bis(Met) in different clinical studies such as detection of breast cancer, as a prognostic marker, in detection of recurrent/residual gliomas, for differentiation of recurrent/residual gliomas from radiation necrosis, and for comparison of 99mTc-DTPA-bis(Met) with 11C-L-methionine (11C-MET), with relevant literature on imaging modalities in glioma management.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| | - Shiv Kumar Yadav
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| | - Pardeep Kumar Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences, Bangalore-560029, India
| | - Vandana Dhingra
- All India Institute of Medical Sciences, Rishikesh-249203, India
| | - Nisha Rani
- Division of Psychiatric Neuroimaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine 600 N. Wolfe Street, Phipps 300, Baltimore, Maryland 21287, United States
| | - Rakesh Kumar
- All India Institute of Medical Sciences, Delhi-110029, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| |
Collapse
|
5
|
Celli M, Caroli P, Amadori E, Arpa D, Gurrieri L, Ghigi G, Cenni P, Paganelli G, Matteucci F. Diagnostic and Prognostic Potential of 18F-FET PET in the Differential Diagnosis of Glioma Recurrence and Treatment-Induced Changes After Chemoradiation Therapy. Front Oncol 2021; 11:721821. [PMID: 34671551 PMCID: PMC8521061 DOI: 10.3389/fonc.2021.721821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background MRI-based differential diagnosis of glioma recurrence (GR) and treatment-induced changes (TICs) remain elusive in up to 30% of treated glioma patients. We aimed to determine 18F-FET PET diagnostic performance in this clinical scenario, its outcome dependency on established prognostic factors, optimal 18F-FET semi-quantitative thresholds, and whether 18F-FET parameters may instantly predict progression-free survival (PFS) and overall survival (OS). Methods We retrospectively analyzed 45 glioma patients treated with chemoradiation therapy (32 males; mean age: 51 years, glioma grade: n=26 WHO4; n=15 WHO3; n=4 WHO2) who underwent 18F-FET PET to resolve differential diagnosis of GR and TICs raised by MRI performed in the preceding 2 weeks and depicting any of the following changes in their radiation field: volumetric increase of contrast-enhancing lesions; new contrast-enhancing lesion; significant increase in T2/FLAIR non-enhancing lesion without reducing corticosteroids. 18F-FET PET outcome relied on evaluation of maximum tumor-to-brain ratio (TBRmax), time-to-peak (TTP), and time-activity curve pattern (TAC). Metabolic tumor volume (MTV) and total tumor metabolism (TTM) were calculated for prognostic purposes. Standard of reference was repeat MRI performed 4–6 weeks after the previous MRI. Non-parametric statistics tested 18F-FET-based parameters for dependency on established prognostic markers. ROC curve analysis determined optimal cutoff values for 18F-FET semi-quantitative parameters. 18F-FET parameters and prognostic factors were evaluated for PFS and OS by Kaplan-Meier, univariate, and multivariate analyses. Results 18F-FET PET sensitivity, specificity, positive predictive value, negative predictive value were 86.2, 81.3, 89.3, 76.5%, respectively; higher diagnostic accuracy was yielded in IDH-wild-type glioma patients compared to IDH-mutant glioma patients (sensitivity: 81.8 versus 88.9%; specificity: 80.8 versus 81.8%). KPS was the only prognostic factor differing according to 18F-FET PET outcome (negative versus positive). Optimal 18F-FET cutoff values for GR were TBRmax ≥ 2.1, SUVmax ≥ 3.5, and TTP ≤ 29 min. PFS differed based on 18F-FET outcome and related metrics and according to KPS; a different OS was observed according to KPS only. On multivariate analysis, 18F-FET PET outcome was the only significant PFS factor; KPS and age the only significant OS factors. Conclusion 18F-FET PET demonstrated good diagnostic performance. 18F-FET PET outcome and metrics were significantly predictive only for PFS.
Collapse
Affiliation(s)
- Monica Celli
- Diagnostic Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Caroli
- Diagnostic Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Amadori
- Radiology MRI Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Donatella Arpa
- Radiation Therapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Lorena Gurrieri
- Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giulia Ghigi
- Radiation Therapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Patrizia Cenni
- Radiology MRI Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Paganelli
- Diagnostic Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Federica Matteucci
- Diagnostic Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
6
|
Stegmayr C, Stoffels G, Filß C, Heinzel A, Lohmann P, Willuweit A, Ermert J, Coenen HH, Mottaghy FM, Galldiks N, Langen KJ. Current trends in the use of O-(2-[ 18F]fluoroethyl)-L-tyrosine ([ 18F]FET) in neurooncology. Nucl Med Biol 2021; 92:78-84. [PMID: 32113820 DOI: 10.1016/j.nucmedbio.2020.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
The diagnostic potential of PET using the amino acid analogue O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in brain tumor diagnostics has been proven in many studies during the last two decades and is still the subject of multiple studies every year. In addition to standard magnetic resonance imaging (MRI), positron emission tomography (PET) using [18F]FET provides important diagnostic data concerning brain tumor delineation, therapy planning, treatment monitoring, and improved differentiation between treatment-related changes and tumor recurrence. The pharmacokinetics, uptake mechanisms and metabolism have been well described in various preclinical studies. The accumulation of [18F]FET in most benign lesions and healthy brain tissue has been shown to be low, thus providing a high contrast between tumor tissue and benign tissue alterations. Based on logistic advantages of F-18 labelling and convincing clinical results, [18F]FET has widely replaced short lived amino acid tracers such as L-[11C]methyl-methionine ([11C]MET) in many centers across Western Europe. This review summarizes the basic knowledge on [18F]FET and its contribution to the care of patients with brain tumors. In particular, recent studies about specificity, possible pitfalls, and the utility of [18F]FET PET in tumor grading and prognostication regarding the revised WHO classification of brain tumors are addressed.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Christian Filß
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Heinz H Coenen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Felix M Mottaghy
- Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany.
| |
Collapse
|
7
|
Renard D, Collombier L, Laurent-Chabalier S, Mura T, Le Floch A, Fertit HE, Thouvenot E, Guillamo JS. 18F-FDOPA-PET in pseudotumoral brain lesions. J Neurol 2020; 268:1266-1275. [PMID: 33084938 DOI: 10.1007/s00415-020-10269-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION 3,4-Dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) positron emission tomography (PET) is sensitive for identifying primary brain tumors. However, increased FDOPA uptake has been reported in pseudotumoral brain lesions. Our aim was to analyse FDOPA-PET in patients with pseudotumoral brain lesions and to compare them with patients with brain tumors. METHODS We retrospectively analysed consecutively recruited patients with suspected primary brain tumor (based on clinical and magnetic resonance imaging findings) referred for FDOPA-PET in our centre between November 2013 and June 2019 (n = 74). FDOPA-PET parameters (maximum and mean lesion standardised uptake values [SUV] and ratios comparing lesion with different background uptake SUV) and thresholds were evaluated to determine which offered optimal discrimination between pseudotumoral and tumoral lesions. RESULTS Overlapping PET values were observed between pseudotumoral (n = 26) and tumoral (n = 48) lesion, particularly for low-grade tumors. Based on receiver operating characteristic (ROC) analyses, the optimal PET parameters to discriminate pseudotumoral from tumoral lesions were SUVmax lesion/basal ganglia, SUVmax lesion/grey matter, SUVmean lesion/grey matter, and SUVmax lesion/mirror area in contralateral hemisphere (all ratios showing area under the curve [AUC] 0.85, 95% CI). The narrowest 95% sensitivity-95% specificity window was observed for SUVmax lesion/basal ganglia ratio, with ratio values of 0.79 and 1.35 corresponding to 95% sensitivity and 95% specificity, respectively. CONCLUSION FDOPA-PET uptake should be interpreted with caution in patients with suspected primary brain tumor, especially in patients showing low or intermediate SUV values and ratios. CLINICAL TRIAL REGISTRATION-URL: https://www.clinicaltrials.gov . Unique identifier: NCT04306484.
Collapse
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU Nîmes, University Montpellier, Nîmes, France.
| | - Laurent Collombier
- Department of Nuclear Medicine, CHU Nîmes, University Montpellier, Nîmes, France
| | - Sabine Laurent-Chabalier
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, CHU Nîmes, University Montpellier, Nîmes, France
| | - Thibault Mura
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, CHU Nîmes, University Montpellier, Nîmes, France
| | - Anne Le Floch
- Department of Neurology, CHU Nîmes, University Montpellier, Nîmes, France
| | - Hassan El Fertit
- Department of Neurosurgery, CHU Nîmes, University Montpellier, Nîmes, France
| | - Eric Thouvenot
- Department of Neurology, CHU Nîmes, University Montpellier, Nîmes, France.,Institut de Génomique Fonctionnelle, UMR5203, INSERM 1191, University Montpellier, Montpellier, France
| | | |
Collapse
|
8
|
Nabavizadeh SA, Nasrallah IM, Pryma DA. Flare Phenomenon in O-(2-[ 18F]-Fluoroethyl)-L-Tyrosine PET After Resection of Gliomas: Potential Contribution from Postoperative Ischemia. J Nucl Med 2020; 61:1851-1852. [PMID: 32646882 DOI: 10.2967/jnumed.120.251116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- S Ali Nabavizadeh
- Perelman School of Medicine of the University of Pennsylvania 3400 Spruce St. Philadelphia, PA 19104 E-mail:
| | | | | |
Collapse
|
9
|
Stegmayr C, Willuweit A, Lohmann P, Langen KJ. O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Curr Radiopharm 2020; 12:201-210. [PMID: 30636621 DOI: 10.2174/1874471012666190111111046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
In recent years, PET using radiolabelled amino acids has gained considerable interest as an additional tool besides MRI to improve the diagnosis of cerebral gliomas and brain metastases. A very successful tracer in this field is O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which in recent years has replaced short-lived tracers such as [11C]-methyl-L-methionine in many neuro-oncological centers in Western Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2- [18F]fluoro-2-deoxy-D-glucose. Many clinical studies have demonstrated that FET PET provides important diagnostic information regarding the delineation of cerebral gliomas for therapy planning, an improved differentiation of tumor recurrence from treatment-related changes and sensitive treatment monitoring. In parallel, a considerable number of experimental studies have investigated the uptake mechanisms of FET on the cellular level and the behavior of the tracer in various benign lesions in order to clarify the specificity of FET uptake for tumor tissue. Further studies have explored the effects of treatment related tissue alterations on tracer uptake such as surgery, radiation and drug therapy. Finally, the role of blood-brain barrier integrity for FET uptake which presents an important aspect for PET tracers targeting neoplastic lesions in the brain has been investigated in several studies. Based on a literature research regarding experimental FET studies and corresponding clinical applications this article summarizes the knowledge on the uptake behavior of FET, which has been collected in more than 30 experimental studies during the last two decades and discusses the role of these results in the clinical context.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany.,Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich, Germany
| |
Collapse
|
10
|
Verhoeven J, Baguet T, Piron S, Pauwelyn G, Bouckaert C, Descamps B, Raedt R, Vanhove C, De Vos F, Goethals I. 2-[ 18F]FELP, a novel LAT1-specific PET tracer, for the discrimination between glioblastoma, radiation necrosis and inflammation. Nucl Med Biol 2019; 82-83:9-16. [PMID: 31841816 DOI: 10.1016/j.nucmedbio.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Considering the need for rapid change of treatment in recurrent glioblastoma (GB), it is of utmost importance to characterize PET radiopharmaceuticals that allow early discrimination of tumor from therapy-related effects. In this study, we examined the value of 2-[18F]FELP as a LAT1 tumor-specific PET tracer in comparison with [18F]FDG and [18F]FET in a combined orthotopic rat radiation necrosis and glioblastoma model. A second experiment compared 2-[18F]FELP to [18F]FDG in a mouse glioblastoma - inflammation model. METHODS Using the small animal radiation research platform (SARRP), radiation necrosis (RN) was induced in the left frontal lobe of the rat brain. When radiation-induced changes were visible on MRI, F98 rat glioblastoma cells were stereotactically inoculated in the contralateral right frontal lobe. When tumor growth was confirmed on MRI, 2-[18F]FELP, [18F]FET and [18F]FDG PET scans were acquired on three consecutive days. In an inflammation experiment, mice were inoculated in the left thigh with U87 human glioblastoma cells. After heterotopic tumor growth was confirmed macroscopically, inflammation was induced by injection of turpentine subcutaneously in the right thigh. Subsequently, 2-[18F]FELP and [18F]FDG scans were acquired on two consecutive days. RESULTS The in vivo PET images demonstrated that 2-[18F]FELP could differentiate glioblastoma and radiation necrosis using SUVmean (p = 0.0016) and LNRmean (p = 0.009), while [18F]FET was only able to differentiate both lesions by means of the SUVmean. (p = 0.047) Delayed [18F]FDGlate PET (4 h postinjection) was also able to distinguish glioblastoma from radiation necrosis, but smaller lesion-to-normal brain ratios were observed (SUVmean: p = 0.009; LNRmean: p = 0.028). In the inflammation study, 2-[18F]FELP showed no significant uptake in the inflammation lesion when compared to the control group (SUVmean: p = 0.149; LNRmean: p = 0.083). In contrast, both conventional and delayed [18F]FDG displayed significant uptake in the turpentine-invoked lesion (SUVmean: p = 0.021; LNRmean: p = 0.021). CONCLUSION This study suggests that the 2-[18F]FELP PET is able to differentiate glioblastoma from radiation necrosis and that the 2-[18F]FELP uptake is less likely to be contaminated by the presence of inflammation than the [18F]FDG signal. ADVANCES IN KNOWLEDGE These results are clinically relevant for the differential diagnosis between tumor and radiation necrosis because radiation necrosis always contains a certain amount of inflammatory cells. Hence, 2-[18F]FELP is preferred to discriminate tumor from radiation necrosis.
Collapse
Affiliation(s)
| | - Tristan Baguet
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Sarah Piron
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Glenn Pauwelyn
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Charlotte Bouckaert
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University Hospital, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University Hospital, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Geisler S, Stegmayr C, Niemitz N, Lohmann P, Rapp M, Stoffels G, Willuweit A, Galldiks N, Filss C, Sabel MC, Coenen HH, Shah NJ, Langen KJ. Treatment-Related Uptake of O-(2-18F-Fluoroethyl)-l-Tyrosine and l-[Methyl-3H]-Methionine After Tumor Resection in Rat Glioma Models. J Nucl Med 2019; 60:1373-1379. [DOI: 10.2967/jnumed.119.225680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
|
12
|
Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougère C, Langen KJ, Lopci E, Lowe V, McConathy J, Quick HH, Sattler B, Schuster DM, Tonn JC, Weller M. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2018; 46:540-557. [PMID: 30519867 PMCID: PMC6351513 DOI: 10.1007/s00259-018-4207-9] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
These joint practice guidelines, or procedure standards, were developed collaboratively by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the working group for Response Assessment in Neurooncology with PET (PET-RANO). Brain PET imaging is being increasingly used to supplement MRI in the clinical management of glioma. The aim of these standards/guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting and reporting the results of brain PET imaging in patients with glioma to achieve a high-quality imaging standard for PET using FDG and the radiolabelled amino acids MET, FET and FDOPA. This will help promote the appropriate use of PET imaging and contribute to evidence-based medicine that may improve the diagnostic impact of this technique in neurooncological practice. The present document replaces a former version of the guidelines published in 2006 (Vander Borght et al. Eur J Nucl Med Mol Imaging. 33:1374–80, 2006), and supplements a recent evidence-based recommendation by the PET-RANO working group and EANO on the clinical use of PET imaging in patients with glioma (Albert et al. Neuro Oncol. 18:1199–208, 2016). The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, 9, Blegdamsvej, 2100-DK, Copenhagen Ø, Denmark.
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Javier Arbizu
- Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarre, Pamplona, Spain
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Julich, Julich, Germany
| | - Christian la Fougère
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Julich, Julich, Germany.,Department of Nuclear Medicine, RWTH University Aachen, Aachen, Germany
| | - Egesta Lopci
- Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Italy
| | - Val Lowe
- Department of Radiology, Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathan McConathy
- Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Bernhard Sattler
- Department for Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Jörg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Abstract
Primary central nervous system vasculitis is confined to the brain and spinal cord. While serological markers of inflammation are usually normal, conventional angiography may confirm the diagnosis. The diagnostic method of choice is central nervous system biopsy. A 57-year-old man suffered from a first generalized epileptic seizure. MRI revealed a contrast-enhancing lesion, and O-(2-[F]fluoroethyl)-L-tyrosine amino acid PET displayed increased metabolic activity, both findings highly suggestive of a malignant glioma. Surprisingly, histology obtained following stereotactic biopsy revealed small-vessel vasculitis.
Collapse
|
14
|
AIDS-Related Central Nervous System Toxoplasmosis With Increased 18F-Fluoroethyl-L-Tyrosine Amino Acid PET Uptake Due to LAT1/2 Expression of Inflammatory Cells. Clin Nucl Med 2018; 42:e506-e508. [PMID: 29076908 DOI: 10.1097/rlu.0000000000001873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report the case of a 40-year-old woman with a progressive right-sided hemiparesis. Standard MRI revealed a contrast-enhancing brain lesion within the left basal ganglia. Ffluoroethyl-L-tyrosine (F-FET) PET showed a distinct tracer uptake (lesion-to-brain ratio [LBR]: LBRmax = 2.03, LBRmean = 1.68) with a significant larger metabolic lesion volume than contrast-enhancement in MRI, indicating cerebral glioma. Surprisingly, histopathologic analysis demonstrated central nervous system toxoplasmosis with pronounced inflammatory reaction (reactive astrogliosis, microglia activation, macrophage, and T-lymphocyte infiltration), which was associated with strong LAT1/LAT2/CD98 expression. In conclusion, inflammatory brain lesions, such as cerebral toxoplasmosis, represent a potential pitfall of F-FET PET mimicking a brain tumor.
Collapse
|
15
|
Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[ 18 F]fluoroethyl)- L -tyrosine (FET). Methods 2017; 130:124-134. [DOI: 10.1016/j.ymeth.2017.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 01/01/2023] Open
|
16
|
Poulsen SH, Urup T, Grunnet K, Christensen IJ, Larsen VA, Jensen ML, Af Rosenschöld PM, Poulsen HS, Law I. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2017; 44:373-381. [PMID: 27554774 PMCID: PMC5281673 DOI: 10.1007/s00259-016-3494-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glioblastoma patients show a great variability in progression free survival (PFS) and overall survival (OS). To gain additional pretherapeutic information, we explored the potential of O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET as an independent prognostic biomarker. METHODS We retrospectively analyzed 146 consecutively treated, newly diagnosed glioblastoma patients. All patients were treated with temozolomide and radiation therapy (RT). CT/MR and FET PET scans were obtained postoperatively for RT planning. We used Cox proportional hazards models with OS and PFS as endpoints, to test the prognostic value of FET PET biological tumor volume (BTV). RESULTS Median follow-up time was 14 months, and median OS and PFS were 16.5 and 6.5 months, respectively. In the multivariate analysis, increasing BTV (HR = 1.17, P < 0.001), poor performance status (HR = 2.35, P < 0.001), O(6)-methylguanine-DNA methyltransferase protein status (HR = 1.61, P = 0.024) and higher age (HR = 1.32, P = 0.013) were independent prognostic factors of poor OS. For poor PFS, only increasing BTV (HR = 1.18; P = 0.002) was prognostic. A prognostic index for OS was created based on the identified prognostic factors. CONCLUSION Large BTV on FET PET is an independent prognostic factor of poor OS and PFS in glioblastoma patients. With the introduction of FET PET, we obtain a prognostic index that can help in glioblastoma treatment planning.
Collapse
Affiliation(s)
- Sidsel Højklint Poulsen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
- Department of Clinical Physiology, Nuclear Medicine and PET, Center of Diagnostic Investigation, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Thomas Urup
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Department of Oncology, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Kirsten Grunnet
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Department of Oncology, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Ib Jarle Christensen
- Laboratory of Gastroenterology, University of Copenhagen, Hvidovre Hospital, Kettegård Allé 30, DK-2650, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Radiology, Center of Diagnostic Investigation, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Michael Lundemann Jensen
- Department of Oncology, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Section of Radiotherapy, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Per Munck Af Rosenschöld
- Department of Oncology, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Section of Radiotherapy, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Department of Oncology, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Center of Diagnostic Investigation, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| |
Collapse
|
17
|
Hutterer M, Ebner Y, Riemenschneider MJ, Willuweit A, McCoy M, Egger B, Schröder M, Wendl C, Hellwig D, Grosse J, Menhart K, Proescholdt M, Fritsch B, Urbach H, Stockhammer G, Roelcke U, Galldiks N, Meyer PT, Langen KJ, Hau P, Trinka E. Epileptic Activity Increases Cerebral Amino Acid Transport Assessed by 18F-Fluoroethyl-l-Tyrosine Amino Acid PET: A Potential Brain Tumor Mimic. J Nucl Med 2016; 58:129-137. [PMID: 27469356 DOI: 10.2967/jnumed.116.176610] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 11/16/2022] Open
Abstract
O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET is a well-established method increasingly used for diagnosis, treatment planning, and monitoring in gliomas. Epileptic activity, frequently occurring in glioma patients, can influence MRI findings. Whether seizures also affect 18F-FET PET imaging is currently unknown. The aim of this retrospective analysis was to investigate the brain amino acid metabolism during epileptic seizures by 18F-FET PET and to elucidate the pathophysiologic background. METHODS Ten patients with 11 episodes of serial seizures or status epilepticus, who underwent MRI and 18F-FET PET, were studied. The main diagnosis was glioma World Health Organization grade II-IV (n = 8); 2 patients suffered from nonneoplastic diseases. Immunohistochemical assessment of LAT1/LAT2/CD98 amino acid transporters was performed in seizure-affected cortex (n = 2) and compared with glioma tissues (n = 3). RESULTS All patients exhibited increased seizure-associated strict gyral 18F-FET uptake, which was reversible in follow-up studies or negative shortly before and without any histologic or clinical signs of tumor recurrence. 18F-FET uptake corresponded to structural MRI changes, compatible with cortical vasogenic and cytotoxic edema, partial contrast enhancement, and hyperperfusion. Patients with prolonged postictal symptoms lasting up to 8 wk displayed intensive and widespread (≥ 1 lobe) cortical 18F-FET uptake. LAT1/LAT2/CD98 was strongly expressed in neurons and endothelium of seizure-affected brains and less in reactive astrocytosis. CONCLUSION Seizure activity, in particular status epilepticus, increases cerebral amino acid transport with a strict gyral 18F-FET uptake pattern. Such periictal pseudoprogression represents a potential pitfall of 18F-FET PET and may mimic brain tumor. Our data also indicate a seizure-induced upregulation of neuronal, endothelial, and less astroglial LAT1/LAT2/CD98 amino acid transporter expression.
Collapse
Affiliation(s)
- Markus Hutterer
- Department of Neurology, University of Regensburg Medical School, Regensburg, Germany .,Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany.,Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Yvonne Ebner
- Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Markus J Riemenschneider
- Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany.,Department of Neuropathology, University of Regensburg Medical School, Regensburg, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| | - Mark McCoy
- Department of Radiology and Division of Neuroradiology, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Barbara Egger
- Department of Nuclear Medicine, Landeskrankenhaus Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Schröder
- Department of Neurology, University of Regensburg Medical School, Regensburg, Germany
| | - Christina Wendl
- Department of Radiology and Division of Neuroradiology, University of Regensburg Medical School, Regensburg, Germany
| | - Dirk Hellwig
- Department of Nuclear Medicine, University of Regensburg Medical School, Regensburg, Germany
| | - Jirka Grosse
- Department of Nuclear Medicine, University of Regensburg Medical School, Regensburg, Germany
| | - Karin Menhart
- Department of Nuclear Medicine, University of Regensburg Medical School, Regensburg, Germany
| | - Martin Proescholdt
- Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany.,Department of Neurosurgery, University of Regensburg Medical School, Regensburg, Germany
| | - Brita Fritsch
- Department of Neurology, University Hospital Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | | | - Ulrich Roelcke
- Department of Neurology and Brain Tumor Center, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany; and
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany
| | - Peter Hau
- Department of Neurology, University of Regensburg Medical School, Regensburg, Germany.,Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany
| | - Eugen Trinka
- Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
18
|
Gempt J, Bette S, Buchmann N, Ryang YM, Förschler A, Pyka T, Wester HJ, Förster S, Meyer B, Ringel F. Volumetric Analysis of F-18-FET-PET Imaging for Brain Metastases. World Neurosurg 2015; 84:1790-7. [PMID: 26255241 DOI: 10.1016/j.wneu.2015.07.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND The knowledge of exact tumor margins is of importance for the treating neurosurgeon, radiotherapist, and oncologist alike. The aim of this study was to investigate whether tumor volume and tumor margins acquired by magnetic resonance imaging (MRI) are congruent with the findings acquired by O-(2-(18F)-fluoroethyl)-L-tyrosine-positron emission tomography (FET-PET). METHODS Patients received FET-PET and MRI before surgery for brain metastases. Metastases were quantified by calculating tumor-to-background uptake ratios using FET uptake. PET and MRI-based tumor volumes, as well as areas of intersection, were assessed. RESULTS Forty-one patients were enrolled in the study. The maximum tumor-to-background uptake ratio measured in all of our patients harboring histologically proven viable tumor tissue was >1.6. Absolute tumor volumes acquired by FET-PET and MRI were not congruent in our patient cohort, and tumors identified in FET-PET and MRI only partially overlapped. The ratio of intersection (intersection of tumor defined by MRI and tumor defined by FET-PET at the ratio of tumor defined by FET-PET) was within a range of 0.27-0.68 when applying the different thresholds. CONCLUSIONS Our study therefore indicates that treatment planning based on MRI or PET only might have a substantial risk of undertreatment at the tumor margins. These findings could have important implications for the planning of surgery as well as radiotherapy, although they have to be validated in further studies.
Collapse
Affiliation(s)
- Jens Gempt
- Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| | - Stefanie Bette
- Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Niels Buchmann
- Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Yu-Mi Ryang
- Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Annette Förschler
- Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Thomas Pyka
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Hans-Jürgen Wester
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Stefan Förster
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Bernhard Meyer
- Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Florian Ringel
- Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
19
|
Rapp M, Floeth FW, Felsberg J, Steiger HJ, Sabel M, Langen KJ, Galldiks N. Clinical value of O-(2-[(18)F]-fluoroethyl)-L-tyrosine positron emission tomography in patients with low-grade glioma. Neurosurg Focus 2015; 34:E3. [PMID: 23373448 DOI: 10.3171/2012.12.focus12336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Progress in morphological imaging has facilitated the diagnosis of low-grade glioma (LGG) and plays a decisive role in therapeutic decisions. To date, the method of choice is contrast-enhanced MRI including T1-/T2-weighted and FLAIR sequences. However, tumor delineation and the differentiation between neoplastic and normal brain tissue can be difficult when using morphological MRI and may complicate the identification of anaplastic foci for biopsy and further treatment planning. Furthermore, therapy monitoring and the differentiation of tumor recurrence from unspecific post-therapeutic changes in the tissue are challenging. Additional information about tumor metabolism may be very helpful for the diagnostic assessment of LGG and can be provided by PET. In recent years, the PET amino acid tracer O-(2-[(18)F]-fluoroethyl)-L-tyrosine ((18)F-FET) has been clinically validated for brain tumor diagnosis. This tracer has logistical advantages over the widely used PET tracer (11)C-methyl-L-methionine due to the longer half-life of the (18)F-label (109 vs 20 minutes, respectively). Additionally, it has been demonstrated that both tracers provide comparable diagnostic information. The authors provide an overview of the recent literature regarding the value of various clinical applications of (18)F-FET PET in patients with LGG.
Collapse
Affiliation(s)
- Marion Rapp
- Departments of Neurosurgery, University of Duesseldorf, Duesseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dunkl V, Cleff C, Stoffels G, Judov N, Sarikaya-Seiwert S, Law I, Bøgeskov L, Nysom K, Andersen SB, Steiger HJ, Fink GR, Reifenberger G, Shah NJ, Coenen HH, Langen KJ, Galldiks N. The usefulness of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med 2014; 56:88-92. [PMID: 25525183 DOI: 10.2967/jnumed.114.148734] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Experience regarding O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET in children and adolescents with brain tumors is limited. METHODS Sixty-nine (18)F-FET PET scans of 48 children and adolescents (median age, 13 y; range, 1-18 y) were analyzed retrospectively. Twenty-six scans to assess newly diagnosed cerebral lesions, 24 scans for diagnosing tumor progression or recurrence, 8 scans for monitoring of chemotherapy effects, and 11 scans for the detection of residual tumor after resection were obtained. Maximum and mean tumor-to-brain ratios (TBRs) were determined at 20-40 min after injection, and time-activity curves of (18)F-FET uptake were assigned to 3 different patterns: constant increase; peak at greater than 20-40 min after injection, followed by a plateau; and early peak (≤ 20 min), followed by a constant descent. The diagnostic accuracy of (18)F-FET PET was assessed by receiver-operating-characteristic curve analyses using histology or clinical course as a reference. RESULTS In patients with newly diagnosed cerebral lesions, the highest accuracy (77%) to detect neoplastic tissue (19/26 patients) was obtained when the maximum TBR was 1.7 or greater (area under the curve, 0.80 ± 0.09; sensitivity, 79%; specificity, 71%; positive predictive value, 88%; P = 0.02). For diagnosing tumor progression or recurrence, the highest accuracy (82%) was obtained when curve patterns 2 or 3 were present (area under the curve, 0.80 ± 0.11; sensitivity, 75%; specificity, 90%; positive predictive value, 90%; P = 0.02). During chemotherapy, a decrease of TBRs was associated with a stable clinical course, and in 2 patients PET detected residual tumor after presumably complete tumor resection. CONCLUSION Our findings suggest that (18)F-FET PET can add valuable information for clinical decision making in pediatric brain tumor patients.
Collapse
Affiliation(s)
- Veronika Dunkl
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Neurology, University of Cologne, Cologne, Germany
| | - Corvin Cleff
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Natalie Judov
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | | | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Lars Bøgeskov
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Karsten Nysom
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Sofie B Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Neurology, University of Cologne, Cologne, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Heinz H Coenen
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Nuclear Medicine, University of Aachen, Aachen, Germany; and
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Neurology, University of Cologne, Cologne, Germany Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Uptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomas. Nucl Med Biol 2013; 40:795-800. [DOI: 10.1016/j.nucmedbio.2013.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/05/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022]
|
22
|
Langen KJ, Galldiks N. Reply to "[18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma" by Hutterer et al. Neuro Oncol 2013; 15:816-7. [PMID: 23749786 DOI: 10.1093/neuonc/not059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Langen KJ. Replay: Being Sensitive: to Specify When Amino Acid Tracers Accumulate in a Brain Lesion. J Nucl Med 2013; 54:826-7. [DOI: 10.2967/jnumed.113.122960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Jansen NL, Suchorska B, Schwarz SB, Eigenbrod S, Lutz J, Graute V, Bartenstein P, Belka C, Kreth FW, Fougère CL. [
18
F]Fluoroethyltyrosine–Positron Emission Tomography-Based Therapy Monitoring after Stereotactic Iodine-125 Brachytherapy in Patients with Recurrent High-Grade Glioma. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nathalie L. Jansen
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bogdana Suchorska
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Silke B. Schwarz
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabina Eigenbrod
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Juergen Lutz
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vera Graute
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Bartenstein
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Claus Belka
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Friedrich W. Kreth
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian la Fougère
- From the Departments of Nuclear Medicine, Neurosurgery, Radiation Oncology, Neuropathology, and Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
25
|
Abstract
This review addresses the specific contributions of nuclear medicine techniques, and especially positron emission tomography (PET), for diagnosis and management of brain tumors. (18)F-Fluorodeoxyglucose PET has particular strengths in predicting prognosis and differentiating cerebral lymphoma from nonmalignant lesions. Amino acid tracers including (11)C-methionine, (18)F-fluoroethyltyrosine, and (18)F-L-3,4-dihydroxyphenylalanine provide high sensitivity, which is most useful for detecting recurrent or residual gliomas, including most low-grade gliomas. They also play an increasing role for planning and monitoring of therapy. (18)F-fluorothymidine can only be used in tumors with absent or broken blood-brain barrier and has potential for tumor grading and monitoring of therapy. Ligands for somatostatin receptors are of particular interest in pituitary adenomas and meningiomas. Tracers to image neovascularization, hypoxia, and phospholipid synthesis are under investigation for potential clinical use. All methods provide the maximum of information when used with image registration and fusion display with contrast-enhanced magnetic resonance imaging scans. Integration of PET and magnetic resonance imaging with stereotactic neuronavigation systems allows the targeting of stereotactic biopsies to obtain a more accurate histologic diagnosis and better planning of conformal and stereotactic radiotherapy.
Collapse
Affiliation(s)
- Karl Herholz
- School of Cancer and Enabling Sciences, The University of Manchester, Wolfson Molecular Imaging Centre, Manchester, England.
| | | | | | | |
Collapse
|
26
|
|
27
|
Tryptophan PET in pretreatment delineation of newly-diagnosed gliomas: MRI and histopathologic correlates. J Neurooncol 2013; 112:121-32. [PMID: 23299463 DOI: 10.1007/s11060-013-1043-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Pretreatment delineation of infiltrating glioma volume remains suboptimal with current neuroimaging techniques. Gadolinium-enhanced T1-weighted (T1-Gad) MR images often underestimate the true extent of the tumor, while T2-weighted images preferentially highlight peritumoral edema. Accumulation of α-[(11)C]methyl-L-tryptophan (AMT) on positron emission tomography (PET) has been shown in gliomas. To determine whether increased uptake on AMT-PET would detect tumor-infiltrated brain tissue outside the contrast-enhancing region and differentiate it from peritumoral vasogenic edema, volumes and spatial concordance of T1-Gad and T2 MRI abnormalities as well as AMT-PET abnormalities were analyzed in 28 patients with newly-diagnosed WHO grade II-IV gliomas. AMT-accumulating grade I meningiomas were used to define an AMT uptake cutoff threshold that detects the tumor but excludes peri-meningioma vasogenic edema. Tumor infiltration in AMT-accumulating areas was studied in stereotactically-resected specimens from patients with glioblastoma. In the 28 gliomas, mean AMT-PET-defined tumor volumes were greater than the contrast-enhancing volume, but smaller than T2 abnormalities. Volume of AMT-accumulating tissue outside MRI abnormalities increased with higher tumor proliferative index and was the largest in glioblastomas. Tumor infiltration was confirmed by histopathology from AMT-positive regions outside contrast-enhancing glioblastoma mass, while no or minimal tumor cells were found in AMT-negative specimens. These results demonstrate that increased AMT accumulation on PET detects glioma-infiltrated brain tissue extending beyond the contrast-enhanced tumor mass. While tryptophan uptake is low in peritumoral vasogenic edema, AMT-PET can detect tumor-infiltrated brain outside T2-lesions. Thus, AMT-PET may assist pretreatment delineation of tumor infiltration, particularly in high-grade gliomas.
Collapse
|
28
|
|
29
|
Abstract
The major application for PET imaging in clinical practice is represented by cancer imaging and (18)F-FDG is the most widely employed positron emitter compound. However, some diseases cannot be properly evaluated with this tracer and thus there is the necessity to develop more specific compounds. The last decades were a continuous factory for new radiopharmaceuticals leading to an endless list of PET tracers; however, just some of them guard diagnostic relevance in routine medical practice. This chapter describes a selected list of non-FDG PET tracers, basing on their introduction into and impact on clinical practice.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, Humanitas Cancer Center, Rozzano, MI, Italy
| | | |
Collapse
|
30
|
MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 2012; 39:1021-9. [PMID: 22491781 DOI: 10.1007/s00259-012-2109-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Since differentiation between low-grade glioma (LGG) and high-grade glioma (HGG) remains challenging according to MRI criteria alone, we investigated the discriminative value of additional dynamic FET PET in patients with MRI-suspected LGG. METHODS Included in this retrospective study were 127 patients with newly diagnosed MRI-suspected LGG and dynamic FET PET prior to histopathological assessment. FET PET lesions were visually classified as having reduced, normal, or increased tracer uptake. Maximal tumour uptake scaled to the mean background uptake (SUV(max)/BG), mean tumour uptake (SUV(mean)/BG), biological tumour volume and kinetics were evaluated and correlated with individual histopathological findings. RESULTS Histopathological analysis revealed 71 patients with LGG, 47 patients with HGG (including 5 glioblastoma multiforme), 2 patients with low-grade ganglioglioma and 7 patients with non-neoplastic lesions. Of the 127 patients, 97 had lesions with increased FET uptake, of which 93 were neoplastic. Increased uptake was found in 49/71 LGG (69 %) and 42/47 HGG (89 %). None of the conventional uptake parameters differed significantly between the HGG and LGG groups. Kinetic analysis reliably identified HGG (sensitivity 95 %, specificity 72 %, PPV 74 %, NPV 95 %). Normal tracer uptake was observed in 19 patients (15 with LGG, 1 with HGG and 3 with non-neoplastic lesions) and reduced uptake in 11 patients (7 with LGG and 4 with HGG). CONCLUSION Among the MRI-suspected LGG, kinetic but not conventional analysis of FET uptake enabled remarkably high sensitivity for detection of HGG. This held true even for lesions with low or diffuse tracer uptake. Lesions with reduced tracer uptake must be interpreted with caution, as they can also harbour HGG tissue.
Collapse
|
31
|
|
32
|
Salber D, Stoffels G, Oros-Peusquens AM, Shah NJ, Reifenberger G, Hamacher K, Coenen HH, Langen KJ. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J Nucl Med 2010; 51:790-7. [PMID: 20395334 DOI: 10.2967/jnumed.109.071423] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Radiolabeled amino acids are useful for brain tumor diagnosis, but unspecific uptake near the cerebral hematoma may complicate the differentiation of a neoplastic from a nonneoplastic origin of the hematoma. The aim of this study was to investigate the pattern and time course of O-(2-(18)F-fluorethyl)-l-tyrosine ((18)F-FET) and l-(3)H-methionine ((3)H-MET) uptake in rats with cerebral hematomas. METHODS Intracerebral hematomas were induced in the striatum of 25 Fischer 344 CDF rats by inoculation of bacterial collagenase. (18)F-FET and (3)H-MET were injected intravenously at different times up to 4 wk after bleeding. One hour after tracer injection, brains were cut in coronal sections and evaluated by dual-tracer autoradiography. Lesion-to-brain (L/B) ratios were calculated by dividing maximal uptake near the hematomas and mean uptake in normal brain tissue. An L/B ratio greater than 1.5 was considered as indicative of pathologic uptake. The autoradiograms were compared with histology and immunostainings for astrogliosis (glial fibrillary acidic protein) and macrophage infiltration (CD68). RESULTS (18)F-FET exhibited significantly increased uptake near the hematomas between 3 and 14 d after bleeding. The time course of pathologic (3)H-MET uptake was similar, but after 3-4 wk there was still borderline uptake in single animals. The L/B ratios exceeded the cutoff level of 1.5 in 10 of 23 animals for (18)F-FET and in 12 of 22 animals for (3)H-MET but did not exceed a value of 3. Immunostainings indicated that increased uptake of both tracers correlated with reactive astrogliosis, whereas (3)H-MET uptake was additionally increased in areas with macrophage infiltration. CONCLUSION (18)F-FET, like (3)H-MET, may exhibit significantly increased uptake near cerebral hematomas, especially during the first 2 wk after bleeding, complicating the differentiation between a neoplastic and a nonneoplastic origin of cerebral hematomas.
Collapse
Affiliation(s)
- Dagmar Salber
- Institute of Neuroscience and Medicine 4, Brain Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nucl Med Biol 2009; 36:779-87. [DOI: 10.1016/j.nucmedbio.2009.05.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/16/2009] [Accepted: 05/19/2009] [Indexed: 11/17/2022]
|
34
|
McConathy J, Goodman MM. Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev 2008; 27:555-73. [PMID: 18648909 DOI: 10.1007/s10555-008-9154-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amino acids are required nutrients for proliferating tumor cells, and amino acid transport is upregulated in many tumor types. Studies of radiolabeled amino acids in animals and humans demonstrate that amino acid based tracers have advantageous characteristics relative to 2-[(18)F]fluoro-2-deoxyglucose in certain tumors, particularly brain gliomas. Non-natural amino acids for tumor imaging generally have greater metabolic stability and can be labeled with longer-lived radionuclides for positron emission tomography and single photon emission computed tomography such as fluorine-18 and iodine-123. Amino acids enter cells via amino acid transport with varying selectivity based on their chemical structure. This review focuses on the rationale, biological basis, current status and future prospects of radiolabeled non-natural amino acids for tumor imaging and discusses various classes of these compounds including aromatic, alicyclic and alpha,alpha-dialkyl amino acids.
Collapse
Affiliation(s)
- Jonathan McConathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
35
|
|
36
|
Stadlbauer A, Prante O, Nimsky C, Salomonowitz E, Buchfelder M, Kuwert T, Linke R, Ganslandt O. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 2008; 49:721-9. [PMID: 18413402 DOI: 10.2967/jnumed.107.049213] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The aim of this study was to determine the spatial correlation of O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) uptake and the concentrations of choline (Cho), creatine (Cr), and total N-acetylaspartate (tNAA) determined with proton magnetic resonance spectroscopic imaging ((1)H MRSI) in cerebral gliomas for the multimodal evaluation of metabolic changes. METHODS (18)F-FET PET and 2-dimensional (1)H MRSI were performed in 15 patients with cerebral gliomas of World Health Organization (WHO) grades II-IV. PET and (1)H MRSI datasets were coregistered by use of mutual information. On the basis of their levels of (18)F-FET uptake, 4 different areas in a tumor (maximum, strong, moderate, and low (18)F-FET uptake) were defined on PET slices as being congruent with the volume of interest in the (1)H MRSI experiment. (18)F-FET uptake in lesions was evaluated as tumor-to-brain ratios. Metabolite concentrations for Cho, Cr, and tNAA and Cho/tNAA ratios were computed for these 4 areas in the tumor and for the contralateral normal brain. RESULTS In the area with maximum (18)F-FET uptake, the concentration of tNAA (R= -0.588) and the Cho/tNAA ratio (R=0.945) correlated significantly with (18)F-FET uptake. In the areas with strong and moderate (18)F-FET uptake, only the Cho/tNAA ratios (R=0.811 and R=0.531, respectively) were significantly associated with amino acid transport. At low (18)F-FET uptake, analysis of the correlations of amino acid uptake and metabolite concentrations yielded a significant result only for the concentration of Cr (R=0.626). No correlation was found for metabolite concentrations determined with (1)H MRSI and (18)F-FET uptake in normal brain tissue. Maximum (18)F-FET uptake and the tNAA concentration were significantly different between gliomas of WHO grades II and IV, with P values of 0.032 and 0.016, respectively. CONCLUSION High (18)F-FET uptake, which is indicative of tumor cell infiltration, associates with neuronal cell loss (tNAA) and changes in ratios between parameters representing membrane proliferation and those of neuronal loss (Cho/tNAA ratio), which can be measured by (1)H MRSI. The significant correlation coefficients detected for Cr in regions with low (18)F-FET uptake suggests an association between the mechanism governing amino acid transport and energy metabolism in areas that are infiltrated by tumor cells to a lesser extent. These findings motivate further research directed at investigating the potential of (1)H MRSI to define tumor boundaries in a manner analogous to that of amino acid PET.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|