1
|
Chang KW, Chang PL, Tsai CJ, Tsai YJ, Wu PH, Lee HL, Lai YH, Wong CYO, Huang WS. The Titrated Mannitol Improved Central [ 99mTc] Tc TRODAT-1 Uptake in an Animal Model-A Clinically Feasible Application. Int J Mol Sci 2023; 24:3773. [PMID: 36835185 PMCID: PMC9959225 DOI: 10.3390/ijms24043773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
[99mTc]Tc TRODAT-1 is a widely used single photon emission tomography (SPECT) radiopharmaceutical in Asian practice for early detection of central dopaminergic disorders. However, its imaging quality remains sub-optimal. To overcome this problem, mannitol, an osmotic agent was used to observe its effect on improving striatal [99mTc]Tc TRODAT-1 uptake in rat brain by titrated human dosages to investigate a clinically feasible way to improve human imaging quality. [99mTc]Tc TRODAT-1 synthesis and quality control were performed as described. Sprague-Dawley rats were used for this study. The animal in vivo nanoSPECT/CT and ex vivo autoradiography were employed to observe and verify the striatal [99mTc]Tc TRODAT-1 uptake in rat brains using clinically equivalent doses (i.e., 0, 1 and 2 mL groups, each n = 5) of mannitol (20% w/v, equivalent to 200 mg/mL) by an intravenous administration. Specific binding ratios (SBRs) were calculated to express the central striatal uptake in different experimental groups. In the NanoSPECT/CT imaging, the highest SBRs of striatal [99mTc]Tc TRODAT-1 were reached at 75-90 min post-injection. The averaged striatal SBRs were 0.85 ± 0.13 (2 mL normal saline, the control group), 0.94 ± 0.26 (1 mL mannitol group) and 1.36 ± 0.12 (2 mL mannitol group, p < 0.01 which were significantly different than the control as well as 1 mL mannitol groups (p < 0.05). The SBRs from ex vivo autoradiography also showed a comparable trend of the striatal [99mTc]Tc TRODAT-1 uptake in the 2 mL, 1 mL mannitol and the control groups (1.76 ± 0.52, 0.91 ± 0.29, and 0.21 ± 0.03, respectively, p < 0.05). No remarkable changes of vital signs were found in the mannitol groups and the controls. Pre-treated mannitol revealed a significant increase of the central striatal [99mTc]Tc TRODAT-1 uptake in a rat model which not only enabled us to perform pre-clinical studies of dopaminergic related disorders but also provided a potential way to further optimize image quality in clinical practice.
Collapse
Affiliation(s)
- Kang-Wei Chang
- Taipei Neuroscience Institute & Laboratory Animal Center, Taipei Medical University, Taipei 11048, Taiwan
| | - Po-Ling Chang
- Departments of Nuclear Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chi-Jung Tsai
- Departments of Nuclear Medicine, Taipei Medical University Hospital, Taipei 11048, Taiwan
| | - Ya-Ju Tsai
- Departments of Nuclear Medicine, Taipei Medical University Hospital, Taipei 11048, Taiwan
| | - Ping-Hsiu Wu
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11048, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11048, Taiwan
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11048, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11048, Taiwan
| | - Yu-Hua Lai
- Department of Neurology, Cheng Hsin General Hospital, Taipei 11283, Taiwan
| | - Ching-Yee Oliver Wong
- Department of Radiology, University of Southern California, Los Angeles, CA 90007, USA
| | - Wen-Sheng Huang
- Departments of Nuclear Medicine, Taipei Medical University Hospital, Taipei 11048, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 11283, Taiwan
| |
Collapse
|
2
|
Farn SS, Chang KW, Lin WC, Yu HM, Lin KL, Tseng YC, Chang Y, Yu CS, Lin WJ. Synthesis, Radiolabeling, and Preliminary in vivo Evaluation of [ 68Ga] IPCAT-NOTA as an Imaging Agent for Dopamine Transporter. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2577-2591. [PMID: 34168430 PMCID: PMC8216701 DOI: 10.2147/dddt.s288600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
Introduction Novel radiotracer development for imaging dopamine transporters is a subject of interest because although [99mTc]TRODAT-1, [123I]β-CIT, and [123I]FP-CIT are commercially available; 99Mo/99mTc generator is in short supply and 123I production is highly dependent on compact cyclotron. Therefore, we designed a novel positron emission tomography (PET) tracer based on a tropane derivative through C-2 modification to conjugate NOTA for chelating 68Ga, a radioisotope derived from a 68Ge/68Ga generator. Methods IPCAT-NOTA 22 was synthesized and labeled with [68Ga]GaCl4− at room temperature. Biological studies on serum stability, LogP, and in vitro autoradiography (binding assay and competitive assay) were performed. Furthermore, ex vivo autoradiography, biodistribution, and dynamic PET imaging studies were performed in Sprague Dawley rats. Results [68Ga]IPCAT-NOTA 24 obtained had a radiochemical yield of ≥90% and a specific activity of 4.25 MBq/nmol. [68Ga]IPCAT-NOTA 24 of 85% radiochemical purity (RCP%) was stable at 37°C for up to 60 minutes in serum with a lipophilicity of 0.88. The specific binding ratio (SBR%) reached 15.8 ± 6.7 at 60 minutes, and the 85% specific uptake could be blocked through co-injection at 100- and 1000-fold of the cold precursor in in vitro binding studies. Tissue regional distribution studies in rats with [68Ga]IPCAT-NOTA 24 showed striatal uptake (0.02% at 5 minutes and 0.007% at 60 minutes) with SBR% of 6%, 25%, and 62% at 5–15, 30–40, and 60–70 minutes, respectively, in NanoPET studies. The RCP% of [68Ga]IPCAT-NOTA 24 at 30 minutes in vivo remained 67.65%. Conclusion Data described here provide new information on the design of PET probe of conjugate/pendent approach for DAT imaging. Another chelator or another direct method of intracranial injection must be used to prove the relation between [68Ga]IPCAT-NOTA 24 uptake and transporter localization.
Collapse
Affiliation(s)
- Shiou-Shiow Farn
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan.,Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Kang-Wei Chang
- Laboratory Animal Center, Office of Research and Development, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wan-Chi Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan
| | - Hung-Man Yu
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan
| | - Kun-Liang Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan
| | - Yu-Chin Tseng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan
| | - Yu Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 300, Taiwan.,Institute of Nuclear Engineering and Science, College of Nuclear Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Wuu-Jyh Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 32546, Taiwan
| |
Collapse
|
3
|
Stehouwer JS, Goodman MM. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine. PET Clin 2016; 4:101-28. [PMID: 20216936 DOI: 10.1016/j.cpet.2009.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary.
Collapse
|
4
|
Synthesis, radiosynthesis and first in vitro evaluation of novel PET-tracers for the dopamine transporter: [11C]IPCIT and [18F]FE@IPCIT. Bioorg Med Chem 2013; 21:7562-9. [DOI: 10.1016/j.bmc.2013.10.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
|
5
|
Pan J, Pourghiasian M, Hundal N, Lau J, Bénard F, Dedhar S, Lin KS. f-[18F]fluoroethanol and 3-[18F]fluoropropanol: facile preparation, biodistribution in mice, and their application as nucleophiles in the synthesis of [18F]fluoroalkyl aryl ester and ether PET tracers. Nucl Med Biol 2013; 40:850-7. [PMID: 23774003 DOI: 10.1016/j.nucmedbio.2013.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/01/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION 2-[(18)F]Fluoroethoxy and 3-[(18)F]fluoropropoxy groups are common moieties in the structures of radiotracers used with positron emission tomography. The objectives of this study were (1) to develop an efficient one-step method for the preparation of 2-[(18)F]fluoroethanol (2-[(18)F]FEtOH) and 3-[(18)F]fluoropropanol (3-[(18)F]FPrOH); (2) to demonstrate the feasibility of using 2-[(18)F]FEtOH as a nucleophile for the synthesis of 2-[(18)F]fluoroethyl aryl esters and ethers; and (3) to determine the biodistribution profiles of 2-[(18)F]FEtOH and 3-[(18)F]FPrOH in mice. METHODS 2-[(18)F]FEtOH and 3-[(18)F]FPrOH were prepared by reacting n-Bu4N[(18)F]F with ethylene carbonate and 1,3-dioxan-2-one, respectively, in diethylene glycol at 165°C and purified by distillation. 2-[(18)F]fluoroethyl 4-fluorobenzoate and 1-(2-[(18)F]fluoroethoxy)-4-nitrobenzene were prepared by coupling 2-[(18)F]FEtOH with 4-fluorobenzoyl chloride and 1-fluoro-4-nitrobenzene, respectively. Biodistribution and PET/CT imaging studies of 2-[(18)F]FEtOH and 3-[(18)F]FPrOH were performed in normal female Balb/C mice. RESULTS The preparation of 2-[(18)F]FEtOH and 3-[(18)F]FPrOH took 60 min, and their decay-corrected yields were 88.6 ± 2.0% (n = 9) and 65.6 ± 10.2% (n = 5), respectively. The decay-corrected yields for the preparation of 2-[(18)F]fluoroethyl 4-fluorobenzoate and 1-(2-[(18)F]fluoroethoxy)-4-nitrobenzene were 36.1 ± 5.4% (n = 3) and 27.7 ± 10.7% (n = 3), respectively. Imaging/biodistribution studies in mice using 2-[(18)F]FEtOH showed high initial radioactivity accumulation in all major organs followed by very slow clearance. On the contrary, by using 3-[(18)F]FPrOH, radioactivity accumulated in all major organs was cleared rapidly, but massive in vivo defluorination (31.3 ± 9.57%ID/g in bone at 1h post-injection) was observed. CONCLUSIONS Using 2-[(18)F]FEtOH/3-[(18)F]FPrOH as a nucleophile is a competitive new strategy for the synthesis of 2-[(18)F]fluoroethyl/3-[(18)F]fluoropropyl aryl esters and ethers. Our biodistribution data emphasize the importance of in vivo stability of PET tracers containing a 2-[(18)F]fluoroethyl or 3-[(18)F]fluoropropyl group due to high background and high bone uptake resulting from 2-[(18)F]FEtOH and 3-[(18)F]FPrOH, respectively. This is especially important for their aryl ester derivatives which are prone to in vivo hydrolysis.
Collapse
Affiliation(s)
- Jinhe Pan
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada V5Z1L3
| | | | | | | | | | | | | |
Collapse
|
6
|
Forsback S, Marjamäki P, Eskola O, Bergman J, Rokka J, Grönroos T, Haaparanta M, Solin O. [18F]CFT synthesis and binding to monoamine transporters in rats. EJNMMI Res 2012; 2:3. [PMID: 22277306 PMCID: PMC3299608 DOI: 10.1186/2191-219x-2-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/25/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We present the electrophilic synthesis of [18F]2β-carbomethoxy-3β-(4-fluoro)tropane [[18F]CFT] and the pharmacological specificity and selectivity of [18F]CFT for monoamine transporters in the brain and peripheral organs of rats. The human radiation dose is extrapolated from the animal data. METHODS [18F]CFT was synthesized by electrophilic fluorination of a stannylated precursor by using post-target-produced [18F]F2 as a fluorinating agent. The ex vivo 18F-activity biodistribution of [18F]CFT in the brain of rats was studied by autoradiography. The binding of [18F]CFT to the monoamine transporters was studied using in vivo blocking experiments with dopamine transporter [DAT], norepinephrine transporter [NET], or serotonin transporter [SERT] inhibitors. In vivo animal positron emission tomography was used as a comparative method to determine tracer kinetics. Human radiation dose was assessed using OLINDA software. RESULTS The radiochemical yield of [18F]CFT from the initial [18F]F-, decay corrected to the end of bombardment, was 3.2 ± 1.0%. The specific activity [SA] was 14.5 ± 3.4 GBq/μmol, decay corrected to the end of synthesis. Radiochemical purity exceeded 99%. DAT-specific binding was found in the striatum, locus coeruleus, and pancreas. NET-specific binding was found in the locus coeruleus. SERT-specific binding was not found in any of the studied organs. Effective dose equivalent [EDE] estimated for the standard human model was 12.8 μSv/MBq. Effective dose [ED] was 9.17 μSv/MBq. CONCLUSIONS Post-target-produced high-SA [18F]F2 was used to incorporate18F directly into the phenyl ring of [18F]CFT. The final product had high radiochemical and chemical purities and a high SA for DAT and NET studies in vivo. In periphery, [18F]CFT showed a specific uptake in the pancreas. EDE and ED corresponded well with other18F-radioligands.
Collapse
Affiliation(s)
- Sarita Forsback
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Porthaninkatu 3, Turku, 20500, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Stehouwer JS, Daniel LM, Chen P, Voll RJ, Williams L, Plott SJ, Votaw JR, Owens MJ, Howell L, Goodman MM. Synthesis, fluorine-18 radiolabeling, and biological evaluation of N-((E)-4-fluorobut-2-en-1-yl)-2beta-carbomethoxy-3beta-(4'-halophenyl)nortropanes: candidate radioligands for in vivo imaging of the brain dopamine transporter with positron emission tomography. J Med Chem 2010; 53:5549-57. [PMID: 20597489 DOI: 10.1021/jm100269c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-(E)-fluorobutenyl-3beta-(para-halo-phenyl)nortropanes 9-12 were synthesized as ligands of the dopamine transporter (DAT) for use as (18)F-labeled positron emission tomography (PET) imaging agents. In vitro competition binding assays demonstrated that compounds 9-12 have a high affinity for the DAT and are selective for the DAT compared to the serotonin and norepinephrine transporters. MicroPET imaging with [(18)F]9-[(18)F]11 in anesthetized cynomolgus monkeys showed high uptake in the putamen with lesser uptake in the caudate, but significant washout of the radiotracer was only observed for [(18)F]9. PET imaging with [(18)F]9 in an awake rhesus monkey showed high and nearly equal uptake in both the putamen and caudate with peak uptake achieved after 20 min followed by a leveling-off for about 10 min and then a steady washout and attainment of a quasi-equilibrium. During the time period 40-80 min postinjection of [(18)F]9, the ratio of uptake in the putamen and caudate vs cerebellum uptake was > or = 4.
Collapse
|
8
|
An improved radiosynthesis of [18F]AV-133: a PET imaging agent for vesicular monoamine transporter 2. Nucl Med Biol 2010; 37:133-41. [DOI: 10.1016/j.nucmedbio.2009.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/23/2022]
|
9
|
Comparison of 2beta-carbomethoxy-3beta-(4-[18F]fluorophenyl)tropane and N-(3-[18F]fluoropropyl)-2beta-carbomethoxy-3beta-(4-fluorophenyl)nortropane, tracers for imaging dopamine transporter in rat. Mol Imaging Biol 2009; 12:269-77. [PMID: 19949983 DOI: 10.1007/s11307-009-0278-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 06/14/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE This study compares 2beta-carbomethoxy-3beta-(4-[(18)F]fluorophenyl)tropane ([(18)F]beta-CFT) and N-(3-[(18)F]fluoropropyl)-2beta-carbomethoxy-3beta-(4-fluorophenyl)nortropane ([(18)F]beta-CFT-FP) as radiotracers for imaging the dopamine transporter (DAT) in rat. PROCEDURES Biodistribution, specificity and selectivity of the radiotracers were studied ex vivo in rats pre-treated with specific antagonists for DAT, serotonin transporter (SERT) and noradrenalin transporter (NET) and in control rats. Positron emission tomography (PET) studies were performed using an HRRT scanner. Radiolabelled metabolites were analyzed with thin-layer chromatography. RESULTS [(18)F]beta-CFT showed slow kinetics with a maximum striatum/cerebellum uptake ratio of 9.2 at 120 min. [(18)F]beta-CFT-FP showed fast kinetics with a maximum ratio of 3.1 at 5 min. Both tracers bound to DAT. [(18)F]beta-CFT also bound to NET. [(18)F]beta-CFT was more resistant to metabolism than [(18)F]beta-CFT-FP. CONCLUSIONS Structural modifications of [(18)F]beta-CFT significantly changed its biological properties, as shown by [(18)F]beta-CFT-FP. [(18)F]beta-CFT is a suitable tracer for both preclinical and human PET studies, but [(18)F]beta-CFT-FP is less suitable as a PET tracer.
Collapse
|