1
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
2
|
Ahmadi M, Ahmadyousefi Y, Salimi Z, Mirzaei R, Najafi R, Amirheidari B, Rahbarizadeh F, Kheshti J, Safari A, Soleimani M. Innovative Diagnostic Peptide-Based Technologies for Cancer Diagnosis: Focus on EGFR-Targeting Peptides. ChemMedChem 2023; 18:e202200506. [PMID: 36357328 DOI: 10.1002/cmdc.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Mohammad Ahmadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Mansour S, Adhya I, Lebleu C, Dumpati R, Rehan A, Chall S, Dai J, Errasti G, Delacroix T, Chakrabarti R. Identification of a novel peptide ligand for the cancer-specific receptor mutation EGFRvIII using high-throughput sequencing of phage-selected peptides. Sci Rep 2022; 12:20725. [PMID: 36456600 PMCID: PMC9715707 DOI: 10.1038/s41598-022-25257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report here the selection and characterization of a novel peptide ligand using phage display targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer: ovarian cancer, breast cancer and glioblastoma, but not in normal tissues. A 12-mer random peptide library was screened against EGFRvIII. Phage-selected peptides were sequenced in high-throughput by next generation sequencing (NGS), and their diversity was studied to identify highly abundant clones expected to bind with the highest affinities to EGFRvIII. The enriched peptides were characterized and their binding capacity towards stable cell lines expressing EGFRvIII, EGFR wild type (EGFR WT), or a low endogenous level of EGFR WT was confirmed by flow cytometry analysis. The best peptide candidate, VLGREEWSTSYW, was synthesized, and its binding specificity towards EGFRvIII was validated in vitro. Additionally, computational docking analysis suggested that the identified peptide binds selectively to EGFRvIII. The novel VLGREEWSTSYW peptide is thus a promising EGFRvIII-targeting agent for future applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sourour Mansour
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Indranil Adhya
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Coralie Lebleu
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Rama Dumpati
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Ahmed Rehan
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Santu Chall
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Jingqi Dai
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Gauthier Errasti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Thomas Delacroix
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Raj Chakrabarti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France ,Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India ,Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Ste 110, Mount Laurel, NJ 08054 USA
| |
Collapse
|
4
|
Bui TT, Kim HK. Recent Advances in Photo-mediated Radiofluorination. Chem Asian J 2021; 16:2155-2167. [PMID: 34189852 DOI: 10.1002/asia.202100399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Indexed: 01/22/2023]
Abstract
Carbon-fluorine bond formations have received a lot of attention because organofluorine compounds are widely used in pharmaceutical, agricultural, and materials science applications. In particular, the incorporation of fluorine-18, which is a commonly used radioisotope for radiopharmaceuticals for positron emission tomography (PET), a molecular imaging tool for the visualization of biochemical events, human metabolism processes, and the measurement and diagnosis of diseases in humans, plays a crucial role in clinical and preclinical studies. Several synthetic methodologies for carbon-fluorine-18 bond formation have been developed. However, conventional fluorination methods have some remaining drawbacks such as the high temperature and basic environment. Photo-induced catalysis is an emerging technique that allow chemists to achieve the synthesis of target molecular architectures under mild conditions. Moreover, several radiofluorination strategies have been developed via photocatalysis. In this review, we focused on describing recent advances in the field of light-mediated radiofluorination.
Collapse
Affiliation(s)
- Tien Tan Bui
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Korea.,Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, 54907, Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Korea.,Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, 54907, Korea
| |
Collapse
|
5
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
6
|
Ratajczyk T, Buntkowsky G, Gutmann T, Fedorczyk B, Mames A, Pietrzak M, Puzio Z, Szkudlarek PG. Magnetic Resonance Signal Amplification by Reversible Exchange of Selective PyFALGEA Oligopeptide Ligands Towards Epidermal Growth Factor Receptors. Chembiochem 2020; 22:855-860. [PMID: 33063920 DOI: 10.1002/cbic.202000711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/13/2022]
Abstract
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1 H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1 H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.
Collapse
Affiliation(s)
- Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Bartłomiej Fedorczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Zuzanna Puzio
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | | |
Collapse
|
7
|
Sun Z, Wang L, Wu S, Pan Y, Dong Y, Zhu S, Yang J, Yin Y, Li G. An Electrochemical Biosensor Designed by Using Zr-Based Metal-Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes with Practical Application. Anal Chem 2020; 92:3819-3826. [PMID: 32024367 DOI: 10.1021/acs.analchem.9b05241] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is one of the most fatal tumors in the brain, and its early diagnosis remains technically challenging due to the complex repertoires of oncogenic alterations and blood-brain barrier (BBB). GBM-derived specific exosomes can cross the BBB and circulate in body fluids, so they can be noninvasive biomarkers for the early diagnosis of GBM. Herein, we propose a sensitive and label-free electrochemical biosensor designed by using Zr-based metal-organic frameworks (Zr-MOFs) for the detection of GBM-derived exosomes with practical application. In the design, a peptide ligand can specifically bind with human epidermal growth factor receptor (EGFR) and EGFR variant (v) III mutation (EGFRvIII), which are overexpressed on the GBM-derived exosomes. Meanwhile, Zr-MOFs encapsulated with methylene blue can absorb on the surface of the exosomes due to the interaction between Zr4+ and the intrinsic phosphate groups outside of exosomes. Consequently, the concentration of exosomes can be directly quantified by monitoring the electroactive molecules inside MOFs, ranging from 9.5 × 103 to 1.9 × 107 particles/μL with the detection of limit of 7.83 × 103 particles/μL. Furthermore, this proposed biosensor can distinguish GBM patients from healthy groups, demonstrating the great prospect for early clinical diagnosis.
Collapse
Affiliation(s)
- Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanhong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yu Dong
- Department of Neurosurgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, P. R. China
| | - Sha Zhu
- Department of Oncology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214000, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
8
|
Yuan Z, Nodwell MB, Yang H, Malik N, Merkens H, Bénard F, Martin RE, Schaffer P, Britton R. Site-Selective, Late-Stage C-H 18 F-Fluorination on Unprotected Peptides for Positron Emission Tomography Imaging. Angew Chem Int Ed Engl 2018; 57:12733-12736. [PMID: 30086209 DOI: 10.1002/anie.201806966] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/24/2022]
Abstract
Peptides are often ideal ligands for diagnostic molecular imaging due to their ease of synthesis and tuneable targeting properties. However, labelling unmodified peptides with 18 F for positron emission tomography (PET) imaging presents a number of challenges. Here we show the combination of photoactivated sodium decatungstate and [18 F]-N-fluorobenzenesulfonimide effects site-selective 18 F-fluorination at the branched position in leucine residues in unprotected and unaltered peptides. This streamlined process provides a means to directly convert native peptides into PET imaging agents under mild aqueous conditions, enabling rapid discovery and development of peptide-based molecular imaging tools.
Collapse
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University Burnaby, British Columbia, V5A 1S6, Canada.,Life Science Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - Matthew B Nodwell
- Department of Chemistry, Simon Fraser University Burnaby, British Columbia, V5A 1S6, Canada
| | - Hua Yang
- Life Science Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - Noeen Malik
- Life Science Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Paul Schaffer
- Life Science Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
9
|
Yuan Z, Nodwell MB, Yang H, Malik N, Merkens H, Bénard F, Martin RE, Schaffer P, Britton R. Site-Selective, Late-Stage C−H 18
F-Fluorination on Unprotected Peptides for Positron Emission Tomography Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry; Simon Fraser University Burnaby; British Columbia V5A 1S6 Canada
- Life Science Division; TRIUMF; Vancouver BC V6T 2A3 Canada
| | - Matthew B. Nodwell
- Department of Chemistry; Simon Fraser University Burnaby; British Columbia V5A 1S6 Canada
| | - Hua Yang
- Life Science Division; TRIUMF; Vancouver BC V6T 2A3 Canada
| | - Noeen Malik
- Life Science Division; TRIUMF; Vancouver BC V6T 2A3 Canada
- Department of Molecular Oncology; BC Cancer Agency; Vancouver British Columbia V5Z 1L3 Canada
| | - Helen Merkens
- Department of Molecular Oncology; BC Cancer Agency; Vancouver British Columbia V5Z 1L3 Canada
| | - François Bénard
- Department of Molecular Oncology; BC Cancer Agency; Vancouver British Columbia V5Z 1L3 Canada
| | - Rainer E. Martin
- Medicinal Chemistry; Roche Pharma Research and Early Development (pRED); Roche Innovation Center Basel; F. Hoffmann-La Roche Ltd; Grenzacherstrasse 124 CH-4070 Basel Switzerland
| | - Paul Schaffer
- Life Science Division; TRIUMF; Vancouver BC V6T 2A3 Canada
| | - Robert Britton
- Department of Chemistry; Simon Fraser University Burnaby; British Columbia V5A 1S6 Canada
| |
Collapse
|
10
|
Akbari H, Bakas S, Pisapia JM, Nasrallah MP, Rozycki M, Martinez-Lage M, Morrissette JJD, Dahmane N, O’Rourke DM, Davatzikos C. In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 2018; 20:1068-1079. [PMID: 29617843 PMCID: PMC6280148 DOI: 10.1093/neuonc/noy033] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Epidermal growth factor receptor variant III (EGFRvIII) is a driver mutation and potential therapeutic target in glioblastoma. Non-invasive in vivo EGFRvIII determination, using clinically acquired multiparametric MRI sequences, could assist in assessing spatial heterogeneity related to EGFRvIII, currently not captured via single-specimen analyses. We hypothesize that integration of subtle, yet distinctive, quantitative imaging/radiomic patterns using machine learning may lead to non-invasively determining molecular characteristics, and particularly the EGFRvIII mutation. Methods We integrated diverse imaging features, including the tumor's spatial distribution pattern, via support vector machines, to construct an imaging signature of EGFRvIII. This signature was evaluated in independent discovery (n = 75) and replication (n = 54) cohorts of de novo glioblastoma, and compared with the EGFRvIII status obtained through an assay based on next-generation sequencing. Results The cross-validated accuracy of the EGFRvIII signature in classifying the mutation status in individual patients of the independent discovery and replication cohorts was 85.3% (specificity = 86.3%, sensitivity = 83.3%, area under the curve [AUC] = 0.85) and 87% (specificity = 90%, sensitivity = 78.6%, AUC = 0.86), respectively. The signature was consistent with EGFRvIII+ tumors having increased neovascularization and cell density, as well as a distinctive spatial pattern involving relatively more frontal and parietal regions compared with EGFRvIII- tumors. Conclusions An imaging signature of EGFRvIII was found, revealing a complex, yet distinct macroscopic glioblastoma phenotype. By non-invasively capturing the tumor in its entirety, the proposed methodology can assist in evaluating the tumor's spatial heterogeneity, hence overcoming common spatial sampling limitations of tissue-based analyses. This signature can preoperatively stratify patients for EGFRvIII-targeted therapies, and potentially monitor dynamic mutational changes during treatment.
Collapse
Affiliation(s)
- Hamed Akbari
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Jared M Pisapia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Martin Rozycki
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Maria Martinez-Lage
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Nadia Dahmane
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Donald M O’Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania
| |
Collapse
|
11
|
Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W. EGFR/EGFRvIII Dual-Targeting Peptide-Mediated Drug Delivery for Enhanced Glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24462-24475. [PMID: 28685576 DOI: 10.1021/acsami.7b05617] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tumor-homing peptides have been widely used to mediate active targeted drug delivery. l-AE is a reported targeting peptide demonstrating high binding affinity to epidermal growth factor receptor (EGFR) and mutation variant III (EGFRvIII) overexpressed on neovasculature, vasculogenic mimicry, tumor cells, and tumor stem cells. To improve its proteolytic stability, a d-peptide ligand (termed d-AE, the enantiomer of l-AE) was developed. d-AE was confirmed to bind receptors EGFR and EGFRvIII with targeting capability comparable to l-AE. In vivo biodistribution demonstrated the superiority of d-AE in prolonged circulation and enhanced intratumoral accumulation. Furthermore, stabilized peptide modification endowed micelles higher transcytosis efficiency and penetrating capability on blood-brain tumor barrier/U87 tumor spheroids coculture model. When paclitaxel (PTX) was loaded, d-AE-micelle/PTX demonstrated excellent antitumor effect in comparison to Taxol, micelle/PTX, and l-AE-micelle/PTX. These findings indicated that the multitargeted drug delivery system enabled by d-AE ligand provides a promising way for glioma therapy.
Collapse
Affiliation(s)
- Jiani Mao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Danni Ran
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Qing Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200030, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
- Minhang Hospital, Fudan University , Shanghai 201199, China
- State Key Laboratory of Medical Neurobiology, The Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
- Institute of Integrative Medicine of Fudan University , Shanghai 200040, China
| |
Collapse
|
12
|
Yue Q, Gao X, Yu Y, Li Y, Hua W, Fan K, Zhang R, Qian J, Chen L, Li C, Mao Y. An EGFRvIII targeted dual-modal gold nanoprobe for imaging-guided brain tumor surgery. NANOSCALE 2017; 9:7930-7940. [PMID: 28569328 DOI: 10.1039/c7nr01077j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surgery is a mainstay to treat malignant brain tumors. However, due to the infiltrative nature of these tumors, it is a great challenge for surgeons to accurately identify and excise all the tumor foci. EGFRvIII, a variant of epidermal growth factor receptor (EGFR), is found in 20% of glioblastoma cases, which is the brain tumor with the highest malignancy. In this study, we developed an EGFRvIII-targeted nanoprobe to guide glioblastoma surgery by pre-operatively defining the tumor boundary via magnetic resonance imaging (MRI) and intra-operatively guiding resection by surface-enhanced resonance Raman scattering (SERRS) imaging. In vivo MRI studies show that this nanoprobe delineates an orthotopic EGFRvIII+ U87MG glioblastoma xenograft with a higher target to background ratio than the control nanoprobe without targeting specificity. With the assistance of a handheld Raman scanner, this nanoprobe successfully guided EGFRvIII+ glioblastoma resection by tracking its characteristic SERRS signal peaks. Ex vivo Raman microscopy and histological images verified that this nanoprobe precisely demarcated the glioblastoma boundary and no residual neoplastic foci were observed in the tumor bed. This dual-modal nanoprobe not only precisely guided glioblastoma resection, but also overcame the brain shift induced false-positive signal by real-timely co-registering pre-operative and intra-operative images. This nanoprobe is promising for the improvement in diagnostic accuracy and surgical outcome of EGFRvIII+ glioblastoma.
Collapse
Affiliation(s)
- Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
14
|
Rojas S, Nolis P, Gispert JD, Spengler J, Albericio F, Herance JR, Abad S. Efficient cysteine labelling of peptides with N-succinimidyl 4-[18F]fluorobenzoate: stability study and in vivo biodistribution in rats by positron emission tomography (PET). RSC Adv 2013. [DOI: 10.1039/c3ra40754c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
PET/MRI in cancer patients: first experiences and vision from Copenhagen. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 26:37-47. [DOI: 10.1007/s10334-012-0357-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023]
|