1
|
Jin YY, Desai VS, Mazzaroth J, Wickstrom E. IGF1R-Targeted Delivery of a Bridged Nucleic Acid Oligonucleotide-Peptide Conjugate for MicroRNA-21 Inhibition in Triple-Negative Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642231. [PMID: 40161818 PMCID: PMC11952343 DOI: 10.1101/2025.03.09.642231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Triple-negative breast cancer (TNBC), defined by the absence of ER, PR, and Her2, impacts over 46,000 U.S. women annually, disproportionately affecting minority ethnic groups and individuals with BRCA1 mutations. Despite advancements such as PARP inhibitors, TNBC remains highly aggressive, with frequent recurrences and a 50% mortality rate within four years, underscoring the urgent need for more effective targeted therapies. MicroRNAs (miRNAs) represent a novel therapeutic approach. In TNBC, overexpressed miR-21 drives tumor progression, immune evasion, treatment resistance, and metastasis. Targeted miR-21 inhibition could curb these effects while minimizing harm to normal cells. We developed a peptide-conjugated miR-21 inhibitor targeting TNBC cells via the overexpressed IGF1 receptor (IGF1R), associated with poor prognosis. Using aminomethyl-bridged nucleic acid (BNA) chemistry, a serum-stable, low-toxicity anti-miR-21 RNA analog was created and tested for its effects on TNBC cell proliferation, apoptosis, tumor suppressor expression, and immune checkpoint regulation. Conjugation to an IGF1 peptide analog improved delivery, demonstrating tumor-specific biodistribution, efficacy, and safety in TNBC-bearing mice. The miR-21 inhibitor-peptide conjugate reduced proliferation, induced apoptosis, elevated tumor suppressors, and suppressed immune checkpoints in TNBC cell lines. In vivo , it targeted tumors, halted growth, and showed no liver or kidney toxicity, supporting its potential as a targeted, low-toxicity TNBC therapy.
Collapse
|
2
|
Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers (Basel) 2021; 13:cancers13215459. [PMID: 34771622 PMCID: PMC8582396 DOI: 10.3390/cancers13215459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Breast cancer is one of the most commonly diagnosed malignant tumors, possessing high incidence and mortality rates that threaten women’s health. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Radionuclide molecular imaging displays its advantages for detecting breast cancer from a functional perspective. Noninvasive visualization of biological processes with radionuclide-labeled small metabolic compounds helps elucidate the metabolic state of breast cancer, while radionuclide-labeled ligands/antibodies for receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer. This review focuses on the most recent developments of novel radiotracers as promising tools for early breast cancer diagnosis. Abstract Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.
Collapse
|
3
|
Jiang Y, Gai Y, Long Y, Liu Q, Liu C, Zhang Y, Lan X. Application and Evaluation of [ 99mTc]-Labeled Peptide Nucleic Acid Targeting MicroRNA-155 in Breast Cancer Imaging. Mol Imaging 2021; 19:1536012120916124. [PMID: 32559121 PMCID: PMC7307583 DOI: 10.1177/1536012120916124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been reported that dysregulation of microRNA-155 expression and function is associated with tumorigenesis, growth, tumor subtypes, invasion, and poor survival rates. Peptide nucleic acid (PNA), an artificially synthesized nucleic acid mimic, has been applied for molecular diagnosis. In this study, a PNA sequence that undergoes complementary binding to miR-155 was labeled with 99mTc to evaluate whether the tracer could visualize the expression of miR-155 in breast cancer. Both antisense PNA (anti-PNA, fully complementary bound to human mature miR-155, referred to as “anti-PNA-155”) and mismatched PNA (referred to as “mis-PNA”) single strands containing 23-mer were synthesized. The relative expression of miR-155 in MCF-7 cells and tumors was higher than that in MDA-MB-231 cells and tumors. Single-photon emission computed tomography (SPECT) scan showed that radioactivity mainly accumulated in kidney. MCF-7 tumors, but not MDA-MB-231 tumors, were clearly visualized after [99mTc]anti-PNA-155 injection. MCF-7 tumors were less visible when coinjected with 100-fold excess of anti-PNA-155 or injected with [99mTc]mis-PNA, which suggested specific binding. Biodistribution study results were consistent with SPECT imaging. We successfully demonstrated that [99mTc]anti-PNA-155 could visualize miR-155 expression in vivo, suggesting it may be a promising probe applied in breast cancer.
Collapse
Affiliation(s)
- Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chunbao Liu
- Department of Nuclear Medicine, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Croci S, Manicardi A, Rubagotti S, Bonacini M, Iori M, Capponi PC, Cicoria G, Parmeggiani M, Salvarani C, Versari A, Corradini R, Asti M. 64Cu and fluorescein labeled anti-miRNA peptide nucleic acids for the detection of miRNA expression in living cells. Sci Rep 2019; 9:3376. [PMID: 30833583 PMCID: PMC6399270 DOI: 10.1038/s41598-018-35800-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/08/2018] [Indexed: 01/23/2023] Open
Abstract
MiRNAs are single stranded RNAs of 18-22 nucleotides. They are promising diagnostic and prognostic markers for several pathologies including tumors, neurodegenerative, cardiovascular and autoimmune diseases. In the present work the development and characterization of anti-miRNA radiolabeled probes based on peptide nucleic acids (PNAs) for potential non-invasive molecular imaging in vivo of giant cell arteritis are described. MiR-146a and miR-146b-5p were selected as targets because they have been found up-regulated in this disease. Anti-miR and scramble PNAs were synthesized and linked to carboxyfluorescein or DOTA. DOTA-anti-miR PNAs were then labelled with copper-64 (64Cu) to function as non-invasive molecular imaging tools. The affinity of the probes for the targets was assessed in vitro by circular dichroism and melting temperature. Differential uptake of fluorescein and 64Cu labeled anti-miRNA probes was tested on BCPAP and A549 cell lines, expressing different levels of miR-146a and -146b-5p. The experiments showed that the anti-miR-146a PNAs were more effective than the anti-miR-146b-5p PNAs. Anti-miR-146a PNAs could bind both miR-146a and miR-146b-5p. The uptake of fluorescein and 64Cu labeled anti-miR-146a PNAs was higher than that of the negative control scramble PNAs in miRNA expressing cells in vitro. 64Cu-anti-miR-146a PNAs might be further investigated for non-invasive PET imaging of miR-146 overexpressing diseases.
Collapse
Affiliation(s)
- Stefania Croci
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, Diagnostic Imaging and Laboratory Medicine Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Alex Manicardi
- Department of Chemistry, Live Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, 43124, Italy
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Faculty of Science, Ghent University, Krijgslaan 281-S4, Gent, 9000, Belgium
| | - Sara Rubagotti
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, Diagnostic Imaging and Laboratory Medicine Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Michele Iori
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Pier Cesare Capponi
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Gianfranco Cicoria
- Medical Physics Department, University Hospital "S. Orsola-Malpighi", 40138, Bologna, Italy
| | - Maria Parmeggiani
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, Diagnostic Imaging and Laboratory Medicine Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Roberto Corradini
- Department of Chemistry, Live Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, 43124, Italy
| | - Mattia Asti
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy.
| |
Collapse
|
5
|
Hassanzadeh L, Chen S, Veedu RN. Radiolabeling of Nucleic Acid Aptamers for Highly Sensitive Disease-Specific Molecular Imaging. Pharmaceuticals (Basel) 2018; 11:E106. [PMID: 30326601 PMCID: PMC6315947 DOI: 10.3390/ph11040106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotide ligand molecules with a unique three-dimensional shape, capable of binding to a defined molecular target with high affinity and specificity. Since their discovery, aptamers have been developed for various applications, including molecular imaging, particularly nuclear imaging that holds the highest potential for the clinical translation of aptamer-based molecular imaging probes. Their easy laboratory production without any batch-to-batch variations, their high stability, their small size with no immunogenicity and toxicity, and their flexibility to incorporate various functionalities without compromising the target binding affinity and specificity make aptamers an attractive class of targeted-imaging agents. Aptamer technology has been utilized in nuclear medicine imaging techniques, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET), as highly sensitive and accurate biomedical imaging modalities towards clinical diagnostic applications. However, for aptamer-targeted PET and SPECT imaging, conjugation of appropriate radionuclides to aptamers is crucial. This review summarizes various strategies to link the radionuclides to chemically modified aptamers to accomplish aptamer-targeted PET and SPECT imaging.
Collapse
Affiliation(s)
- Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical and Research Center & Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran 1449614535, Iran.
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
| | - Suxiang Chen
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| |
Collapse
|
6
|
Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS OMEGA 2018; 3:9126-9145. [PMID: 31459047 PMCID: PMC6644613 DOI: 10.1021/acsomega.8b01071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 05/30/2023]
Abstract
Molecular imaging has been widely used not only as an important detection technology in the field of medical imaging for cancer diagnosis but also as a theranostic approach for cancer in recent years. Multifunctional carbon-based nanomaterials (MCBNs), characterized by unparalleled optical, electronic, and thermal properties, have attracted increasing interest and demonstrably hold the greatest promise in biomolecular imaging and therapy. As such, it should come as no surprise that MCBNs have already revealed a great deal of potential applications in biomedical areas, such as bioimaging, drug delivery, and tumor therapy. Carbon nanomaterials can be categorized as graphene, single-walled carbon nanotubes, mesoporous carbon, nanodiamonds, fullerenes, or carbon dots on the basis of their morphologies. In this article, reports of the use of MCBNs in various chemical conjugation/functionalization strategies, focusing on their applications in cancer molecular imaging and imaging-guided therapy, will be comprehensively summarized. MCBNs show the possibility to serve as optimal candidates for precise cancer biotheranostics.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Minghao Wu
- Department
of Radiology, Tianjin Medical University
Cancer Institute and Hospital, National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer Key Laboratory
of Cancer Prevention and Therapy, Tianjin 300060, P. R.
China
| | - Mingjie Wu
- Institut
National de la Recherche Scientifique-Énergie Matériaux
et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Jingyi Zhu
- School
of Pharmaceutical Science, Nanjing Tech
University, Nanjing 211816, P. R. China
| | - Xuening Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| |
Collapse
|
7
|
Gebhart G, Flamen P, De Vries EGE, Jhaveri K, Wimana Z. Imaging Diagnostic and Therapeutic Targets: Human Epidermal Growth Factor Receptor 2. J Nucl Med 2016; 57 Suppl 1:81S-8S. [PMID: 26834107 DOI: 10.2967/jnumed.115.157941] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the approval of trastuzumab, a humanized monoclonal antibody against the extracellular domain of human epidermal growth factor receptor 2 (HER2), 3 other HER2-targeting agents have gained regulatory approval: lapatinib, pertuzumab, and trastuzumab-emtansine. These agents have revolutionized the management of HER2-positive breast cancer, highlighting the concept that targeted therapies are successful when patients exhibit tumor-selective expression of a molecular target-in this case, HER2. However, response prediction and innate or acquired resistance remain serious concerns. Predictive biomarkers of a response-which could help in the selection of patients who might benefit from a selected targeted therapy-are currently lacking. Molecular imaging with anti-HER2 probes allows the noninvasive, whole-body assessment of HER2 tumor burden and has the potential to improve patient selection, optimize the dose and schedule, and rationalize assessment of the response to anti-HER2 therapies. Furthermore, unlike biopsy-based HER2 assessment, this approach can reveal inter- or intratumoral heterogeneity as well as variations in HER2 expression over time. This review summarizes the available literature and the current status of molecular imaging as a tool for the assessment of HER2 (target) expression or the prediction of an early treatment response in early and advanced HER2-positive breast cancer.
Collapse
Affiliation(s)
- Geraldine Gebhart
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elisabeth G E De Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Komal Jhaveri
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zena Wimana
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
8
|
Overexpression of MAGE-A9 predicts unfavorable outcome in breast cancer. Exp Mol Pathol 2014; 97:579-84. [PMID: 25445503 DOI: 10.1016/j.yexmp.2014.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 12/23/2022]
Abstract
Melanoma-associated antigens (MAGEs) are a group of well-characterized members of the cancer/testis antigen (CTA) family, which is one of the largest groups of human tumor-associated antigens. MAGE-A9 is a particular member in the context of the MAGE-A gene family and was defined as presenting prognostic relevance in certain type of human cancer. However, the expression of MAGE-A9 in invasive ductal breast cancer (IDC) and the relationship with the clinical attributes of IDC, especially prognostic characteristic, remain poorly understood. In this present study, one-step quantitative reverse transcription polymerase chain reaction (18 fresh-frozen IDC tissues and corresponding non-cancerous tissues) and immunohistochemistry by tissue microarrays (82 IDC tissue samples and 70 matched tumor-adjacent non-cancerous tissue samples) were performed to characterize expression of the MAGE-A9 gene in IDC. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of IDC. The results of qPCR and IHC analysis showed that the expression of MAGE-A9 in IDC was significantly higher than that in corresponding non-cancerous tissue. Moreover, the expression level of MAGE-A9 protein in IDC was significantly related to histological grade (p = 0.011) and distant metastasis (p = 0.019). Multivariate analysis with the Cox regression model showed that MAGE-A9 protein expression (p = 0.009), histological grade (p = 0.014), lymph node metastasis (p = 0.012) and distant metastasis (p = 0.011) were independent prognostic factors for overall survival of IDC patients. The data suggest that MAGE-A9 expression is correlated with malignant attributes of IDC and it may serve as a novel prognostic factor and an ideal candidate for targeted therapy in IDC treatment.
Collapse
|
9
|
Sonar M, Wampole ME, Jin YY, Chen CP, Thakur ML, Wickstrom E. Fluorescence detection of KRAS2 mRNA hybridization in lung cancer cells with PNA-peptides containing an internal thiazole orange. Bioconjug Chem 2014; 25:1697-708. [PMID: 25180641 PMCID: PMC4166030 DOI: 10.1021/bc500304m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/14/2014] [Indexed: 12/12/2022]
Abstract
We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5' end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5' terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5-6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA.
Collapse
Affiliation(s)
- Mahesh
V. Sonar
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Matthew E. Wampole
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Yuan-Yuan Jin
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Chang-Po Chen
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, China
| | - Mathew L. Thakur
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Eric Wickstrom
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
10
|
68Ga-labeled cyclic NGR peptide for microPET imaging of CD13 receptor expression. Molecules 2014; 19:11600-12. [PMID: 25100253 PMCID: PMC6271277 DOI: 10.3390/molecules190811600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
Peptides containing the asparagines-glycine-arginine (NGR) motif have been identified as specific ligands binding to CD13/aminopeptidase N (APN) receptor, a tumor neovascular biomarker. In this study, we synthesized a novel NGR-containing peptide (NOTA-G3-NGR), and labeled NOTA-G3-NGR with 68Ga (t1/2 = 67.7 min). The resulting 68Ga-NOTA-G3-NGR peptide was subject to in vitro and in vivo characterization. The microPET imaging results revealed that the 68Ga-NOTA-G3-NGR peptide exhibits rapid and specific tumor uptake, and high tumor-to-background contrast in a subcutaneous HT-1080 fibrosarcoma mouse model. We concluded that the 68Ga-NOTA-G3-NGR peptide has potential in the diagnosis of CD13-targeted tumor angiogenesis.
Collapse
|
11
|
Detection of vascular endothelial growth factor in colon cancer xenografts using bevacizumab based near infrared fluorophore conjugate. J Biomed Sci 2014; 21:35. [PMID: 24780003 PMCID: PMC4012715 DOI: 10.1186/1423-0127-21-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
Background The aim of this study was to develop the near infrared fluorescence (NIRF)-based imaging agent for the visualization of vascular endothelial growth factor (VEGF) in colon cancer. AlexaFluor 750 conjugating with bevacizumab, and injected intravenously into nude mice bearing VEGF over-expressing HT29 human colorectal cancer. Optical imaging was performed at 15 min, 24 h and 48 h post injection. Immunofluorescences staining of the tumor sections were performed. HT29 colorectal cancer xenografts were clearly visualized with bevacizumab-AlexaFluor 750. Results Ex vivo analysis showed 2.1 ± 0.4%, 37.6 ± 6.3% and 38.5 ± 6.2% injected dose/g accumulated in the tumors at 15 min, 24 h and 48 h respectively. Tumor uptake was significantly decreased in pretreated with excess of bevacizumab (p = 0.002). Immunofluorescence analysis showed strong staining of anti-CD 31 antibody around the blood vessels. Anti-VEGF-A and bevacizumab showed heterogeneous expression throughout the tumor. Conclusions Current study successfully detected the VEGF expression in HT29 colorectal cancer xenografts, signifying as a potential agent for non-invasive imaging of VEGF expression, which may be applied in clinical practice.
Collapse
|