1
|
Balmforth C, Whittington B, Tzolos E, Bing R, Williams MC, Clark L, Corral CA, Tavares A, Dweck MR, Newby DE. Translational molecular imaging: Thrombosis imaging with positron emission tomography. J Nucl Cardiol 2024; 39:101848. [PMID: 38499227 DOI: 10.1016/j.nuclcard.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
A key focus of cardiovascular medicine is the detection, treatment, and prevention of disease, with a move towards more personalized and patient-centred treatments. To achieve this goal, novel imaging approaches that allow for early and accurate detection of disease and risk stratification are needed. At present, the diagnosis, monitoring, and prognostication of thrombotic cardiovascular diseases are based on imaging techniques that measure changes in structural anatomy and biological function. Molecular imaging is emerging as a new tool for the non-invasive detection of biological processes, such as thrombosis, that can improve identification of these events above and beyond current imaging modalities. At the forefront of these evolving techniques is the use of high-sensitivity radiotracers in conjunction with positron emission tomography imaging that could revolutionise current diagnostic paradigms by improving our understanding of the role and origin of thrombosis in a range of cardiovascular diseases.
Collapse
Affiliation(s)
- Craig Balmforth
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Beth Whittington
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Rong Bing
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Laura Clark
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Alcaide Corral
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Adriana Tavares
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Marc Richard Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - David Ernest Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Banka V, Kelleher A, Sehlin D, Hultqvist G, Sigurdsson EM, Syvänen S, Ding YS. Development of brain-penetrable antibody radioligands for in vivo PET imaging of amyloid-β and tau. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1173693. [PMID: 37680310 PMCID: PMC10483511 DOI: 10.3389/fnume.2023.1173693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Introduction Alzheimer's disease (AD) is characterized by the misfolding and aggregation of two major proteins: amyloid-beta (Aβ) and tau. Antibody-based PET radioligands are desirable due to their high specificity and affinity; however, antibody uptake in the brain is limited by the blood-brain barrier (BBB). Previously, we demonstrated that antibody transport across the BBB can be facilitated through interaction with the transferrin receptor (TfR), and the bispecific antibody-based PET ligands were capable of detecting Aβ aggregates via ex vivo imaging. Since tau accumulation in the brain is more closely correlated with neuronal death and cognition, we report here our strategies to prepare four F-18-labeled specifically engineered bispecific antibody probes for the selective detection of tau and Aβ aggregates to evaluate their feasibility and specificity, particularly for in vivo PET imaging. Methods We first created and evaluated (via both in vitro and ex vivo studies) four specifically engineered bispecific antibodies, by fusion of single-chain variable fragments (scFv) of a TfR antibody with either a full-size IgG antibody of Aβ or tau or with their respective scFv. Using [18F]SFB as the prosthetic group, all four 18F-labeled bispecific antibody probes were then prepared by conjugation of antibody and [18F]SFB in acetonitrile/0.1 M borate buffer solution (final pH ~ 8.5) with an incubation of 20 min at room temperature, followed by purification on a PD MiniTrap G-25 size exclusion gravity column. Results Based on both in vitro and ex vivo evaluation, the bispecific antibodies displayed much higher brain concentrations than the unmodified antibody, supporting our subsequent F18-radiolabeling. [18F]SFB was produced in high yields in 60 min (decay-corrected radiochemical yield (RCY) 46.7 ± 5.4) with radiochemical purities of >95%, confirmed by analytical high performance liquid chromatography (HPLC) and radio-TLC. Conjugation of [18F]SFB and bispecific antibodies showed a 65%-83% conversion efficiency with radiochemical purities of 95%-99% by radio-TLC. Conclusions We successfully labeled four novel and specifically engineered bispecific antibodies with [18F]SFB under mild conditions with a high RCY and purities. This study provides strategies to create brain-penetrable F-18 radiolabeled antibody probes for the selective detection of tau and Aβ aggregates in the brain of transgenic AD mice via in vivo PET imaging.
Collapse
Affiliation(s)
- Vinay Banka
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
| | - Andrew Kelleher
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala
University, Uppsala, Sweden
| | | | - Einar M. Sigurdsson
- Department of Psychiatry, New York University School of
Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York
University School of Medicine, New York, NY, United States
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala
University, Uppsala, Sweden
| | - Yu-Shin Ding
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
- Department of Psychiatry, New York University School of
Medicine, New York, NY, United States
| |
Collapse
|
3
|
18F Site-Specific Labelling of a Single-Chain Antibody against Activated Platelets for the Detection of Acute Thrombosis in Positron Emission Tomography. Int J Mol Sci 2022; 23:ijms23136886. [PMID: 35805892 PMCID: PMC9267009 DOI: 10.3390/ijms23136886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Positron emission tomography is the imaging modality of choice when it comes to the high sensitivity detection of key markers of thrombosis and inflammation, such as activated platelets. We, previously, generated a fluorine-18 labelled single-chain antibody (scFv) against ligand-induced binding sites (LIBS) on activated platelets, binding it to the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. We used a non-site-specific bio conjugation approach with N-succinimidyl-4-[18F]fluorobenzoate (S[18F]FB), leading to a mixture of products with reduced antigen binding. In the present study, we have developed and characterised a novel fluorine-18 PET radiotracer, based on this antibody, using site-specific bio conjugation to engineer cysteine residues with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). ScFvanti-LIBS and control antibody mut-scFv, with engineered C-terminal cysteine, were reduced, and then, they reacted with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). Radiolabelled scFv was injected into mice with FeCl3-induced thrombus in the left carotid artery. Clots were imaged in a PET MR imaging system, and the amount of radioactivity in major organs was measured using an ionisation chamber and image analysis. Assessment of vessel injury, as well as the biodistribution of the radiolabelled scFv, was studied. In the in vivo experiments, we found uptake of the targeted tracer in the injured vessel, compared with the non-injured vessel, as well as a high uptake of both tracers in the kidney, lung, and muscle. As expected, both tracers cleared rapidly via the kidney. Surprisingly, a large quantity of both tracers was taken up by organs with a high glutathione content, such as the muscle and lung, due to the instability of the maleimide cysteine bond in vivo, which warrants further investigations. This limits the ability of the novel antibody radiotracer 18F-scFvanti-LIBS to bind to the target in vivo and, therefore, as a useful agent for the sensitive detection of activated platelets. We describe the first fluorine-18 variant of the scFvanti-LIBS against activated platelets using site-specific bio conjugation.
Collapse
|
4
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
5
|
Wang X, Ziegler M, McFadyen JD, Peter K. Molecular Imaging of Arterial and Venous Thrombosis. Br J Pharmacol 2021; 178:4246-4269. [PMID: 34296431 DOI: 10.1111/bph.15635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
Thrombosis contributes to one in four deaths worldwide and is the cause of a large proportion of mortality and morbidity. A reliable and rapid diagnosis of thrombosis will allow for immediate therapy, thereby providing significant benefits to patients. Molecular imaging is a fast-growing and captivating area of research, in both preclinical and clinical applications. Major advances have been achieved by improvements in three central areas of molecular imaging: 1) Better markers for diseases, with increased sensitivity and selectivity; 2) Optimised contrast agents with improved signal to noise ratio; 3) Progress in scanner technologies with higher sensitivity and resolution. Clinically available imaging modalities used for molecular imaging include, magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, as well as nuclear imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). In the preclinical imaging field, optical (fluorescence and bioluminescent) molecular imaging has provided new mechanistic insights in the pathology of thromboembolic diseases. Overall, the advances in molecular imaging, driven by the collaboration of various scientific disciplines, have substantially contributed to an improved understanding of thrombotic disease, and raises the exciting prospect of earlier diagnosis and individualised therapy for cardiovascular diseases. As such, these advances hold significant promise to be translated to clinical practice and ultimately to reduce mortality and morbidity in patients with thromboembolic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute
| | - James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Cardiometabolic Health, University of Melbourne.,Clinical Hematology Department, Alfred Hospital
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne.,Department of Cardiology, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
6
|
Guo B, Li Z, Tu P, Tang H, Tu Y. Molecular Imaging and Non-molecular Imaging of Atherosclerotic Plaque Thrombosis. Front Cardiovasc Med 2021; 8:692915. [PMID: 34291095 PMCID: PMC8286992 DOI: 10.3389/fcvm.2021.692915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis in the context of atherosclerosis typically results in life-threatening consequences, including acute coronary events and ischemic stroke. As such, early detection and treatment of thrombosis in atherosclerosis patients is essential. Clinical diagnosis of thrombosis in these patients is typically based upon a combination of imaging approaches. However, conventional imaging modalities primarily focus on assessing the anatomical structure and physiological function, severely constraining their ability to detect early thrombus formation or the processes underlying such pathology. Recently, however, novel molecular and non-molecular imaging strategies have been developed to assess thrombus composition and activity at the molecular and cellular levels more accurately. These approaches have been successfully used to markedly reduce rates of atherothrombotic events in patients suffering from acute coronary syndrome (ACS) by facilitating simultaneous diagnosis and personalized treatment of thrombosis. Moreover, these modalities allow monitoring of plaque condition for preventing plaque rupture and associated adverse cardiovascular events in such patients. Sustained developments in molecular and non-molecular imaging technologies have enabled the increasingly specific and sensitive diagnosis of atherothrombosis in animal studies and clinical settings, making these technologies invaluable to patients' health in the future. In the present review, we discuss current progress regarding the non-molecular and molecular imaging of thrombosis in different animal studies and atherosclerotic patients.
Collapse
Affiliation(s)
- Bingchen Guo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiyang Tu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Hao Tang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Refaat A, del Rosal B, Palasubramaniam J, Pietersz G, Wang X, Peter K, Moulton SE. Smart Delivery of Plasminogen Activators for Efficient Thrombolysis; Recent Trends and Future Perspectives. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ahmed Refaat
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Faculty of Science, Engineering and Technology Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Pharmaceutics Department Faculty of Pharmacy ‐ Alexandria University 1 El‐Khartoum Square Azarita Alexandria 21521 Egypt
| | - Blanca del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics School of Science RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Jathushan Palasubramaniam
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiology Alfred Hospital 55 Commercial Rd Melbourne VIC 3004 Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Burnet Institute 85 Commercial Road Melbourne VIC 3004 Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiometabolic Health University of Melbourne Melbourne VIC 3010 Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia
- Department of Medicine Monash University 27 Rainforest Walk Melbourne VIC 3800 Australia
- Department of Cardiology Alfred Hospital 55 Commercial Rd Melbourne VIC 3004 Australia
- Department of Cardiometabolic Health University of Melbourne Melbourne VIC 3010 Australia
| | - Simon E. Moulton
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Faculty of Science, Engineering and Technology Swinburne University of Technology John St Melbourne VIC 3122 Australia
- ARC Centre of Excellence for Electromaterials Science Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Aikenhead Centre for Medical Discovery (ACMD) St Vincent's Hospital Melbourne VIC 3065 Australia
- Iverson Health Innovation Research Institute Swinburne University of Technology John St Melbourne VIC 3122 Australia
- Australian Institute for Innovative Materials, Intelligent Polymer Research Institute University of Wollongong Wollongong NSW 2500 Australia
| |
Collapse
|
8
|
Li Y, Xin F, Hu J, Jagdale S, Davis TP, Hagemeyer CE, Qiao R. Functionalization of NaGdF4 nanoparticles with a dibromomaleimide-terminated polymer for MR/optical imaging of thrombosis. Polym Chem 2020. [DOI: 10.1039/c9py01568j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thrombosis-targeted molecular imaging probe with magnetic resonance (MR) and optical dual-modality capacity using dibromomaleimide (DBM)-bearing polymer-grafted NaGdF4 nanoparticles.
Collapse
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Fangyun Xin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Shweta Jagdale
- Nanobiotechnology Laboratory
- Australian Centre for Blood Diseases
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Christoph E. Hagemeyer
- Nanobiotechnology Laboratory
- Australian Centre for Blood Diseases
- Monash University
- Melbourne
- Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
9
|
Abstract
Purpose of Review A variety of approaches and molecular targets have emerged in recent years for radionuclide-based imaging of atherosclerosis and vulnerable plaque using single photon emission computed tomography (SPECT) and positron emission tomography (PET), with numerous methods focused on characterizing the mechanisms underlying plaque progression and rupture. This review highlights the ongoing developments in both the preclinical and clinical environment for radionuclide imaging of atherosclerosis and atherothrombosis. Recent Findings Numerous physiological processes responsible for the evolution of high-risk atherosclerotic plaque, such as inflammation, thrombosis, angiogenesis, and microcalcification, have been shown to be feasible targets for SPECT and PET imaging. For each physiological process, specific molecular markers have been identified that allow for sensitive non-invasive detection and characterization of atherosclerotic plaque. Summary The capabilities of SPECT and PET imaging continue to evolve for physiological evaluation of atherosclerosis. This review summarizes the latest developments related to radionuclide imaging of atherothrombotic diseases.
Collapse
|
10
|
Hashad RA, Lange JL, Tan NCW, Alt K, Hagemeyer CE. Engineering Antibodies with C-Terminal Sortase-Mediated Modification for Targeted Nanomedicine. Methods Mol Biol 2019; 2033:67-80. [PMID: 31332748 DOI: 10.1007/978-1-4939-9654-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current advances in nanoengineered materials coupled with the precise targeting capability of recombinant antibodies can create nanoscale diagnostics and therapeutics which show enhanced accumulation and extended retention at a target tissue. Smaller antibodies such as single-chain variable fragments (scFv) preserve the selective and strong binding of their parent antibody to their antigen with the benefits of low immunogenicity, more efficient tissue penetration and easy introduction of functional residues suitable for site-specific conjugation. This is of high importance as nonspecific antibody modification often involves attachment to free cysteine or lysine amino acids which may reside in the active site, leading to reduced antigen binding.In this chapter, we outline a facile and versatile chemoenzymatic approach for production of targeted nanocarrier scFv conjugates using the bacterial trans-peptidase Sortase A (Srt A). Srt A efficiently mediates sequence-specific peptide ligation under mild conditions and has few undesirable side reactions. We first describe the production, purification and characterization of Srt A enzyme and a scFv construct which targets activated platelets, called scFvanti-GPIIb/IIIa. Following this, our protocol illustrates the chemoenzymatic modification of the antibody at the C-terminus with an orthogonal click chemistry linker. This avoids any random attachment to the biologically active antigen binding site of the antibody. Finally, we describe the modification of a nanoparticle surface with scFv attachment via two methods: (1) direct Sortase-mediated conjugation; or (2) a two-step system which consists of scFv Sortase-mediated conjugation followed by strain promoted azide-alkyne cycloaddition. Finally, methodology is described to assess the successful assembly of targeted particles.
Collapse
Affiliation(s)
- Rania A Hashad
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jaclyn L Lange
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha C W Tan
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karen Alt
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Ouadi A, Bekaert V, Receveur N, Thomas L, Lanza F, Marchand P, Gachet C, Mangin PH, Brasse D, Laquerriere P. Imaging thrombosis with 99mTc-labeled RAM.1-antibody in vivo. Nucl Med Biol 2018; 61:21-27. [PMID: 29625391 DOI: 10.1016/j.nucmedbio.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Platelets play a major role in thrombo-embolic diseases, notably by forming a thrombus that can ultimately occlude a vessel. This may provoke ischemic pathologies such as myocardial infarction, stroke or peripheral artery diseases, which represent the major causes of death worldwide. The aim of this study was to evaluate the specificity of radiolabeled Rat-Anti-Mouse antibody (RAM.1). METHODS We describe a method to detect platelets by using a RAM.1 coupled with the chelating agent hydrazinonicotinic acid (HYNIC) conjugated to 99mTc, for Single Photon Emission Computed Tomography (SPECT). To induce platelet accumulation at a site of interest, we used a mouse model of FeCl3 induced injury of the carotid artery. 90 min after i.v. injection of [99mTc][Tc(HYNIC)-RAM.1], biodistribution of the radiolabeled RAM.1 was assessed, SPECT imaging and histological analysis were performed on the mice that underwent FeCl3-induced vessel damage. RESULTS We demonstrated a quick and strong affinity of the radiolabeled RAM.1 for the platelet thrombus. Results clearly demonstrated the ability of this radioimmunoconjugate for detecting thrombi from 10 min post injection with an exceptional thrombi uptake. Using FeCl3, the median ratio between the thrombus and the background was 12.4 (range 9.3-42.3) as compared to 1.0 (range: 0.86-2.7) p < 0.05 when using 0.9% NaCl. CONCLUSION Thanks to the high sensitivity of SPECT, we provided evidence that [99mTc][Tc(HYNIC)-RAM.1] represents a powerful tool to detect localized platelet thrombi which could potentially be used in humans. Because of the relative low cost and high sensitivity, these results encourage further study like the detection of non-induced thrombus and further developments toward clinical application. This is further supported by the fact that RAM.1 recognizes human platelets.
Collapse
Affiliation(s)
- Ali Ouadi
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Virgile Bekaert
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Nicolas Receveur
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - Lionel Thomas
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - François Lanza
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Christian Gachet
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - Pierre H Mangin
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - David Brasse
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | | |
Collapse
|
12
|
Clark J, O’Hagan D. Strategies for radiolabelling antibody, antibody fragments and affibodies with fluorine-18 as tracers for positron emission tomography (PET). J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Wang X, Peter K. Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing. Arterioscler Thromb Vasc Biol 2017; 37:1029-1040. [PMID: 28450298 DOI: 10.1161/atvbaha.116.306483] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Molecular imaging, with major advances in the development of both innovative targeted contrast agents/particles and radiotracers, as well as various imaging technologies, is a fascinating, rapidly growing field with many preclinical and clinical applications, particularly for personalized medicine. Thrombosis in either the venous or the arterial system, the latter typically caused by rupture of unstable atherosclerotic plaques, is a major determinant of mortality and morbidity in patients. However, imaging of the various thrombotic complications and the identification of plaques that are prone to rupture are at best indirect, mostly unreliable, or not available at all. The development of molecular imaging toward diagnosis and prevention of thrombotic disease holds promise for major advance in this clinically important field. Here, we review the medical need and clinical importance of direct molecular imaging of thrombi and unstable atherosclerotic plaques that are prone to rupture, thereby causing thrombotic complications such as myocardial infarction and ischemic stroke. We systematically compare the advantages/disadvantages of the various molecular imaging modalities, including X-ray computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, fluorescence imaging, and ultrasound. We further systematically discuss molecular targets specific for thrombi and those characterizing unstable, potentially thrombogenic atherosclerotic plaques. Finally, we provide examples for first theranostic approaches in thrombosis, combining diagnosis, targeted therapy, and monitoring of therapeutic success or failure. Overall, molecular imaging is a rapidly advancing field that holds promise of major benefits to many patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Lim B, Yao Y, Huang ALI, Yap ML, Flierl U, Palasubramaniam J, Zaldivia MT, Wang X, Peter K. A Unique Recombinant Fluoroprobe Targeting Activated Platelets Allows In Vivo Detection of Arterial Thrombosis and Pulmonary Embolism Using a Novel Three-Dimensional Fluorescence Emission Computed Tomography (FLECT) Technology. Am J Cancer Res 2017; 7:1047-1061. [PMID: 28435447 PMCID: PMC5399575 DOI: 10.7150/thno.18099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 01/21/2023] Open
Abstract
Progress in pharmaceutical development is highly-dependent on preclinical in vivo animal studies. Small animal imaging is invaluable for the identification of new disease markers and the evaluation of drug efficacy. Here, we report for the first time the use of a three-dimensional fluorescence bioimager called FLuorescence Emission Computed Tomography (FLECT) for the detection of a novel recombinant fluoroprobe that is safe, easily prepared on a large scale and stably stored prior to scan. This novel fluoroprobe (Targ-Cy7) comprises a single-chain antibody-fragment (scFvTarg), which binds exclusively to activated-platelets, conjugated to a near-infrared (NIR) dye, Cy7, for detection. Upon mouse carotid artery injury, the injected fluoroprobe circulates and binds within the platelet-rich thrombus. This specific in vivo binding of the fluoroprobe to the thrombus, compared to its non-targeting control-fluoroprobe, is detected by the FLECT imager. The analyzed FLECT image quantifies the NIR signal and localizes it to the site of vascular injury. The detected fluorescence is further verified using a two-dimensional IVIS® Lumina scanner, where significant NIR fluorescence is detected in vivo at the thrombotic site, and ex vivo, at the injured carotid artery. Furthermore, fluorescence levels in various organs have also been quantified for biodistribution, with the highest fluoroprobe uptake shown to be in the injured artery. Subsequently, this live animal imaging technique is successfully employed to monitor the response of the induced thrombus to treatment over time. This demonstrates the potential of using longitudinal FLECT scanning to examine the efficacy of candidate drugs in preclinical settings. Besides intravascular thrombosis, we have shown that this non-invasive FLECT-imaging can also detect in vivo pulmonary embolism. Overall, this report describes a novel fluorescence-based preclinical imaging modality that uses an easy-to-prepare and non-radioactive recombinant fluoroprobe. This represents a unique tool to study mechanisms of thromboembolic diseases and it will strongly facilitate the in vivo testing of antithrombotic drugs. Furthermore, the non-radiation nature, low-cost, high sensitivity, and the rapid advancement of optical scanning technologies make this fluorescence imaging an attractive development for future clinical applications.
Collapse
|
15
|
Abstract
Thromboembolic disorders are a major cause of morbidity and mortality worldwide. The progress in noninvasive imaging techniques has led to the development of radionuclide imaging based on SPECT and PET approaches to observe molecular and cellular processes that may underlie the onset and progression of disease. The advantages of using normal and genetically modified small animal research have spurred the development of dedicated small animal imaging systems. Animal models of venous and arterial thrombosis are largely used and have improved our understanding of the etiology and pathogenesis of thrombosis. Here, we review the literature regarding nuclear imaging of thrombosis in mice and rats.
Collapse
Affiliation(s)
- Marie-Cécile Valéra
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,b Faculté de Chirurgie Dentaire, Université de Toulouse III , Toulouse , France
| | - Bernard Payrastre
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,c Laboratoire d'Hématologie CHU de Toulouse , Toulouse , France
| | - Olivier Lairez
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,d Fédération des services de cardiologie, Département de Médecine Nucléaire Centre d'imagerie cardiaque, CHU de Toulouse , Toulouse , France
| |
Collapse
|
16
|
Alt K, Paterson BM, Westein E, Rudd SE, Poniger SS, Jagdale S, Ardipradja K, Connell TU, Krippner GY, Nair AKN, Wang X, Tochon-Danguy HJ, Donnelly PS, Peter K, Hagemeyer CE. A versatile approach for the site-specific modification of recombinant antibodies using a combination of enzyme-mediated bioconjugation and click chemistry. Angew Chem Int Ed Engl 2015; 54:7515-9. [PMID: 25962581 DOI: 10.1002/anie.201411507] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/24/2015] [Indexed: 12/16/2022]
Abstract
A unique two-step modular system for site-specific antibody modification and conjugation is reported. The first step of this approach uses enzymatic bioconjugation with the transpeptidase Sortase A for incorporation of strained cyclooctyne functional groups. The second step of this modular approach involves the azide-alkyne cycloaddition click reaction. The versatility of the two-step approach has been exemplified by the selective incorporation of fluorescent dyes and a positron-emitting copper-64 radiotracer for fluorescence and positron-emission tomography imaging of activated platelets, platelet aggregates, and thrombi, respectively. This flexible and versatile approach could be readily adapted to incorporate a large array of tailor-made functional groups using reliable click chemistry whilst preserving the activity of the antibody or other sensitive biological macromolecules.
Collapse
Affiliation(s)
- Karen Alt
- Vascular Biotechnology, Baker IDI, Melbourne (Australia).
| | - Brett M Paterson
- School of Chemistry/Bio21 Institute, University of Melbourne (Australia)
| | - Erik Westein
- Atherothrombosis and Vascular Biology, Baker IDI, Melbourne (Australia)
| | - Stacey E Rudd
- School of Chemistry/Bio21 Institute, University of Melbourne (Australia)
| | - Stan S Poniger
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne (Australia)
| | - Shweta Jagdale
- Vascular Biotechnology, Baker IDI, Melbourne (Australia)
| | | | - Timothy U Connell
- School of Chemistry/Bio21 Institute, University of Melbourne (Australia)
| | - Guy Y Krippner
- Vascular Biotechnology, Baker IDI, Melbourne (Australia)
| | - Ashish K N Nair
- Atherothrombosis and Vascular Biology, Baker IDI, Melbourne (Australia)
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker IDI, Melbourne (Australia)
| | | | - Paul S Donnelly
- School of Chemistry/Bio21 Institute, University of Melbourne (Australia).
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker IDI, Melbourne (Australia)
| | | |
Collapse
|
17
|
Alt K, Paterson BM, Westein E, Rudd SE, Poniger SS, Jagdale S, Ardipradja K, Connell TU, Krippner GY, Nair AKN, Wang X, Tochon-Danguy HJ, Donnelly PS, Peter K, Hagemeyer CE. A Versatile Approach for the Site-Specific Modification of Recombinant Antibodies Using a Combination of Enzyme-Mediated Bioconjugation and Click Chemistry. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
99mTc-labeled single-domain antibody EG2 in targeting epidermal growth factor receptor. Nucl Med Commun 2015; 36:452-60. [DOI: 10.1097/mnm.0000000000000264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, Williams CC, Peter K, Hagemeyer CE, Donnelly PS. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew Chem Int Ed Engl 2014; 53:6115-9. [PMID: 24777818 DOI: 10.1002/anie.201402613] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Indexed: 01/28/2023]
Abstract
The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins.
Collapse
Affiliation(s)
- Brett M Paterson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic (Australia)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, Williams CC, Peter K, Hagemeyer CE, Donnelly PS. Enzyme-Mediated Site-Specific Bioconjugation of Metal Complexes to Proteins: Sortase-Mediated Coupling of Copper-64 to a Single-Chain Antibody. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|