1
|
Xu H, Dong P, Wang H, Sin I, Kang CS, Ren S, Sun X, Chong HS. Synthesis and evaluation of a novel bifunctional ligand 3o-C-NETA for Yttrium-90 and Lutetium-177. Bioorg Med Chem Lett 2025; 120:130136. [PMID: 39947352 DOI: 10.1016/j.bmcl.2025.130136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
A bifunctional ligand is an essential component for targeted cancer therapy using cytotoxic radionuclides. We report the synthesis and evaluation of a novel bifunctional ligand, 3o-C-NETA, designed for labeling a bioactive small molecule or an antibody with β-particle emitting radionuclides 90Y and 177Lu. 3o-C-NETA is an octadentate chelating agent and contains both a macrocyclic backbone (1,4,7-triazacyclononane, TACN) and pendant donor groups. 3o-C-NETA was efficiently synthesized via the regiospecific ring opening of a functionalized aziridinium ion with tert-Butyl protected NODA (1,4,7-triazacyclononane-1,4-diacetic acid) and evaluated for radiolabeling kinetics and in vitro complex stability with 90Y and 177Lu. The new bifunctional ligand (3o-C-NETA) rapidly bound to 90Y or 177Lu, and the corresponding 90Y- or 177Lu-labeled 3o-C-NETA remained stable in human serum for two weeks.
Collapse
Affiliation(s)
- Hua Xu
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Pengfei Dong
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Haixing Wang
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Inseok Sin
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Chi Soo Kang
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Siyuan Ren
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Xiang Sun
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States
| | - Hyun-Soon Chong
- Department of Chemistry, Lewis College of Science and Letters, Illinois Institute of Technology, Chicago, IL, United States.
| |
Collapse
|
2
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L, de Aguiar Ferreira C. EGFR- and Integrin α Vβ 3-Targeting Peptides as Potential Radiometal-Labeled Radiopharmaceuticals for Cancer Theranostics. Int J Mol Sci 2024; 25:8553. [PMID: 39126121 PMCID: PMC11313252 DOI: 10.3390/ijms25158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVβ3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVβ3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVβ3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.
Collapse
Affiliation(s)
- Cibele Rodrigues Toledo
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
| | - Ahmed A. Tantawy
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Ramogida C, Price E. Transition and Post-Transition Radiometals for PET Imaging and Radiotherapy. Methods Mol Biol 2024; 2729:65-101. [PMID: 38006492 DOI: 10.1007/978-1-0716-3499-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Radiometals are an exciting class of radionuclides because of the large number of metallic elements available that have medically useful isotopes. To properly harness radiometals, they must be securely bound by chelators, which must be carefully matched to the radiometal ion to maximize radiolabeling performance and the stability of the resulting complex. This chapter focuses on practical aspects of radiometallation chemistry including chelator selection, radiolabeling procedures and conditions, radiolysis prevention, purification, quality control, requisite equipment and reagents, and useful tips.
Collapse
Affiliation(s)
- Caterina Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.
| | - Eric Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Liu X, Chen L, Li Y, He C, Zhang X, Zhou H, Bao G, Zhu X, Xiang G, Ma X. Synthesis of novel DOTA-/AAZTA-based bifunctional chelators: Solution thermodynamics, peptidomimetic conjugation, and radiopharmaceutical evaluation. Biomed Pharmacother 2023; 165:115114. [PMID: 37467649 DOI: 10.1016/j.biopha.2023.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Bifunctional chelators (BFCs), which link metallic radionuclide and a targeting vector, are some of the most crucial components of metallic radionuclide-based radiopharmaceuticals for positron-emission computed tomography (PET) imaging. In this study, we designed and synthesized two versatile BFCs, p-NCS-Ph-DE4TA and p-NCS-Ph-AAZ4TA, and we conjugated them with a prostate-specific membrane antigen (PSMA) inhibitor. These two chelators showed high affinity for Ga (III) according to a study of the thermodynamics and kinetics and DFT calculations. The labeled PSMA targeted probes, [68Ga]Ga-p-NCS-Ph-DE4TA-PSMA and [68Ga]Ga-p-NCS-Ph-AAZ4TA-PSMA, maintained excellent stability in vitro, and they exhibited high specific activity when binding to PSMA. A PET/CT imaging study in mice bearing SMMC-7721 hepatocellular carcinoma xenografts demonstrated clear visualization of tumors with a high tumor uptake and low background level, indicating the excellent performance in vivo and specific activity when targeting hepatocellular carcinomas. In summary, p-NCS-Ph-DE4TA and p-NCS-Ph-AAZ4TA are leading developmental candidates for PET imaging for tumor diagnosis.
Collapse
Affiliation(s)
- Xiaoguang Liu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, People's Republic of China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lixing Chen
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuying Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huimin Zhou
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guangfa Bao
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Pharmacy, Tongren Polytechnic College, Tongren 554300, People's Republic of China.
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Pharmacy, Tongren Polytechnic College, Tongren 554300, People's Republic of China.
| |
Collapse
|
5
|
Murce E, Ahenkorah S, Beekman S, Handula M, Stuurman D, de Ridder C, Cleeren F, Seimbille Y. Radiochemical and Biological Evaluation of 3p- C-NETA-ePSMA-16, a Promising PSMA-Targeting Agent for Radiotheranostics. Pharmaceuticals (Basel) 2023; 16:882. [PMID: 37375829 DOI: 10.3390/ph16060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bifunctional chelators (BFCs) are a key element in the design of radiopharmaceuticals. By selecting a BFC that efficiently complexes diagnostic and therapeutic radionuclides, a theranostic pair possessing almost similar biodistribution and pharmacokinetic properties can be developed. We have previously reported 3p-C-NETA as a promising theranostic BFC, and the encouraging preclinical outcomes obtained with [18F]AlF-3p-C-NETA-TATE led us to conjugate this chelator to a PSMA-targeting vector for imaging and treatment of prostate cancer. In this study, we synthesized 3p-C-NETA-ePSMA-16 and radiolabeled it with different diagnostic (111In, 18F) and therapeutic (177Lu, 213Bi) radionuclides. 3p-C-NETA-ePSMA-16 showed high affinity to PSMA (IC50 = 4.61 ± 1.33 nM), and [111In]In-3p-C-NETA-ePSMA-16 showed specific cell uptake (1.41 ± 0.20% ID/106 cells) in PSMA expressing LS174T cells. Specific tumor uptake of [111In]In-3p-C-NETA-ePSMA-16 was observed up to 4 h p.i. (1.62 ± 0.55% ID/g at 1 h p.i.; 0.89 ± 0.58% ID/g at 4 h p.i.) in LS174T tumor-bearing mice. Only a faint signal could be seen at 1 h p.i. in the SPECT/CT scans, whereas dynamic PET/CT scans performed after administration of [18F]AlF-3p-C-NETA-ePSMA-16 in PC3-Pip tumor xenografted mice resulted in a better tumor visualization and imaging contrast. Therapy studies with short-lived radionuclides such as 213Bi could further elucidate the therapeutic potential of 3p-C-NETA-ePSMA-16 as a radiotheranostic.
Collapse
Affiliation(s)
- Erika Murce
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Stephen Ahenkorah
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium
| | - Savanne Beekman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Maryana Handula
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- TRIUMF, Life Sciences Division, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
6
|
Failla M, Floresta G, Abbate V. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Med Chem 2023; 14:592-623. [PMID: 37122545 PMCID: PMC10131587 DOI: 10.1039/d2md00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
- Department of Drug and Health Sciences, University of Catania Catania Italy
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
7
|
Ahenkorah S, Murce E, Cawthorne C, Ketchemen JP, Deroose CM, Cardinaels T, Seimbille Y, Fonge H, Gsell W, Bormans G, Ooms M, Cleeren F. 3p-C-NETA: A versatile and effective chelator for development of Al 18F-labeled and therapeutic radiopharmaceuticals. Am J Cancer Res 2022; 12:5971-5985. [PMID: 35966589 PMCID: PMC9373814 DOI: 10.7150/thno.75336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Radiolabeled somatostatin analogues (e.g. [68Ga]Ga-DOTATATE and [177Lu]Lu-DOTATATE) have been used to diagnose, monitor, and treat neuroendocrine tumour (NET) patients with great success. [18F]AlF-NOTA-octreotide, a promising 18F-labeled somatostatin analogue and potential alternative for 68Ga-DOTA-peptides, is under clinical evaluation. However, ideally, the same precursor (combination of chelator-linker-vector) can be used for production of both diagnostic and therapeutic radiopharmaceuticals with very similar (e.g. Al18F-method in combination with therapeutic radiometals 213Bi/177Lu) or identical (e.g. complementary Tb-radionuclides) pharmacokinetic properties, allowing for accurate personalised dosimetry estimation and radionuclide therapy of NET patients. In this study we evaluated 3p-C-NETA, as potential theranostic Al18F-chelator and present first results of radiosynthesis and preclinical evaluation of [18F]AlF-3p-C-NETA-TATE. Methods: 3p-C-NETA was synthesized and radiolabeled with diagnostic (68Ga, Al18F) or therapeutic (177Lu, 161Tb, 213Bi, 225Ac and 67Cu) radionuclides at different temperatures (25-95 °C). The in vitro stability of the corresponding radiocomplexes was determined in phosphate-buffered saline (PBS) and human serum. 3p-C-NETA-TATE was synthesized using standard solid/liquid-phase peptide synthesis. [18F]AlF-3p-C-NETA-TATE was synthesized in an automated AllinOne® synthesis module and the in vitro stability of [18F]AlF-3p-C-NETA-TATE was evaluated in formulation buffer, PBS and human serum. [18F]AlF-3p-C-NETA-TATE pharmacokinetics were evaluated using µPET/MRI in healthy rats, with [18F]AlF-NOTA-Octreotide as benchmark. Results: 3p-C-NETA quantitatively sequestered 177Lu, 213Bi and 67Cu at 25 °C while heating was required to bind Al18F, 68Ga, 161Tb and 225Ac efficiently. The [18F]AlF-, [177Lu]Lu- and [161Tb]Tb-3p-C-NETA-complex showed excellent in vitro stability in both PBS and human serum over the study period. In contrast, [67Cu]Cu- and [225Ac]Ac-, [68Ga]Ga-3p-C-NETA were stable in PBS, but not in human serum. [18F]AlF-3p-C-NETA-TATE was obtained in good radiochemical yield and radiochemical purity. [18F]AlF-3p-C-NETA-TATE displayed good in vitro stability for 4 h in all tested conditions. Finally, [18F]AlF-3p-C-NETA-TATE showed excellent pharmacokinetic properties comparable with the results obtained for [18F]AlF-NOTA-Octreotide. Conclusions: 3p-C-NETA is a versatile chelator that can be used for both diagnostic applications (Al18F) and targeted radionuclide therapy (213Bi, 177Lu, 161Tb). It has the potential to be the new theranostic chelator of choice for clinical applications in nuclear medicine.
Collapse
Affiliation(s)
- Stephen Ahenkorah
- NURA, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium.,Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological sciences, University of Leuven, Leuven, Belgium
| | - Erika Murce
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | | | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Thomas Cardinaels
- NURA, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium.,Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.,Life Sciences Division, TRIUMF, Vancouver, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada.,Department of Medical Imaging, Royal University Hospital (RUH), Saskatoon, Canada
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, University of Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological sciences, University of Leuven, Leuven, Belgium
| | - Maarten Ooms
- NURA, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
9
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Dai L, Zhang J, Wong CT, Chan WTK, Ling X, Anderson CJ, Law GL. Design of Functional Chiral Cyclen-Based Radiometal Chelators for Theranostics. Inorg Chem 2021; 60:7082-7088. [PMID: 33689299 DOI: 10.1021/acs.inorgchem.0c03734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of water-soluble chiral cyclen-based chelators with chemical handles for selective targeting have been synthesized (cyclen = 1,4,7,10-Tetraazacyclododecane). Optical studies, relaxivity measurements, and competitive titrations were performed to show the versatility of these chiral chelators. The complexations of L3, L4, and L5 with Lu3+, Y3+, Sc3+, and Cu2+ were successfully demonstrated in around 90% to 100% yields. Efficient and rapid radiolabeling of L5 with 177Lu was achieved under mild conditions with 96% yield. The chelators exhibit near quantitative labeling efficiencies with a wide range of radiometal ions, which are promising for the development of targeting specific radiopharmaceutical and molecular magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Lixiong Dai
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Junhui Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Carlos Tinlong Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carolyn J Anderson
- Departments of Medicine, Radiology, Pharmacology and Chemical Biology, Chemistry, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Departments of Chemistry and Radiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| |
Collapse
|
11
|
Liu Q, Fang H, Gai Y, Lan X. pH-Triggered Assembly of Natural Melanin Nanoparticles for Enhanced PET Imaging. Front Chem 2020; 8:755. [PMID: 33134253 PMCID: PMC7579405 DOI: 10.3389/fchem.2020.00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 02/03/2023] Open
Abstract
Natural melanin nanoplatforms have attracted attention in molecular imaging. Natural melanin can be made into small-sized nanoparticles, which penetrate tumor sites deeply, but unfortunately, the particles continue to backflow into the blood or are cleared into the surrounding tissues, leading to loss of retention within tumors. Here, we report a pH-triggered approach to aggregate natural melanin nanoparticles by introducing a hydrolysis-susceptible citraconic amide on the surface. Triggered by pH values lower than 7.0, such as the tumor acid environment, the citraconic amide moiety tended to hydrolyze abruptly, resulting in both positive and negative surface charges. The electrostatic attractions between nanoparticles drove nanoparticle aggregation, which increased accumulation in the tumor site because backflow was blocked by the increased size. Melanin nanoparticles have the natural ability to bind metal ions, which can be labeled with isotopes for nuclear medicine imaging. When the melanin nanoparticles were labeled by 68Ga, we observed that the pH-induced physical aggregation in tumor sites resulted in enhanced PET imaging. The pH-triggered assembly of natural melanin nanoparticles could be a practical strategy for efficient tumor targeted imaging.
Collapse
Affiliation(s)
- Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
12
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
13
|
Li L, de Guadalupe Jaraquemada-Peláez M, Aluicio-Sarduy E, Wang X, Barnhart TE, Cai W, Radchenko V, Schaffer P, Engle JW, Orvig C. Coordination chemistry of [Y(pypa)] - and comparison immuno-PET imaging of [ 44Sc]Sc- and [ 86Y]Y-pypa-phenyl-TRC105. Dalton Trans 2020; 49:5547-5562. [PMID: 32270167 PMCID: PMC7222037 DOI: 10.1039/d0dt00437e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both scandium-44 and yttrium-86 are popular PET isotopes with appropriate half-lives for immuno-positron emission tomography (immuno-PET) imaging. Herein, a new bifunctional H4pypa ligand, H4pypa-phenyl-NCS, is synthesized, conjugated to a monoclonal antibody, TRC105, and labeled with both radionuclides to investigate the long-term in vivo stability of each complex. While the 44Sc-labeled radiotracer exhibited promising pharmacokinetics and stability in 4T1-xenograft mice (n = 3) even upon prolonged interactions with blood serum proteins, the progressive bone uptake of the 86Y-counterpart indicated in vivo demetallation, obviating H4pypa as a suitable chelator for Y3+ ion in vivo. The solution chemistry of [natY(pypa)]- was studied in detail and the complex found to be thermodynamically stable in solution with a pM value 22.0, ≥3 units higher than those of the analogous DOTA- and CHX-A''-DTPA-complexes; the 86Y-result in vivo was therefore most unexpected. To explore further this in vivo lability, Density Functional Theory (DFT) calculation was performed to predict the geometry of [Y(pypa)]- and the results were compared with those for the analogous Sc- and Lu-complexes; all three adopted the same coordination geometry (i.e. distorted capped square antiprism), but the metal-ligand bonds were much longer in [Y(pypa)]- than in [Lu(pypa)]- and [Sc(pypa)]-, which could indicate that the size of the binding cavity is too small for the Y3+ ion, but suitable for both the Lu3+ and Sc3+ ions. Considered along with results from [86Y][Y(pypa-phenyl-TRC105)], it is noted that when matching chelators with radionuclides, chemical data such as the thermodynamic stability and in vitro inertness, albeit useful and necessary, do not always translate to in vivo inertness, especially with the prolonged blood circulation of the radiotracer bound to a monoclonal antibody. Although H4pypa is a nonadentate chelator, which theoretically matches the coordination number of the Y3+ ion, we show herein that its binding cavity, in fact, favors smaller metal ions such as Sc3+ and Lu3+ and further exploitation of the Sc-pypa combination is desired.
Collapse
Affiliation(s)
- Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Aleksandar V, Drina J, Magdalena R, Zorana M, Marija M, Dragana S, Sanja VĐ. Optimization of the radiolabelling method for improved in vitro and in vivo stability of 90Y-albumin microspheres. Appl Radiat Isot 2019; 156:108984. [PMID: 31760344 DOI: 10.1016/j.apradiso.2019.108984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Biologically stable 90Y-labelled albumin microspheres (AMS) were developed by optimizing the process of their preparation. Three formulations of 90Y-AMS were initially prepared with high radiolabelling yield but depending on the step when the radionuclide 90Y and DTPA chelator were added, radiolabelled microspheres with different in vitro and in vivo stability were obtained. DTPA was proved as a useful chelating agent that tightly links radionuclide 90Y to albumin. Also, AMS radiolabelled via DTPA during preparation and before microspheres stabilization, showed significant in vitro and in vivo stability ready for the potential use in selective internal radiation therapy.
Collapse
Affiliation(s)
- Vukadinović Aleksandar
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, 11000, Serbia
| | - Janković Drina
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, 11000, Serbia
| | - Radović Magdalena
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, 11000, Serbia
| | - Milanović Zorana
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, 11000, Serbia
| | - Mirković Marija
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, 11000, Serbia
| | - Stanković Dragana
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, 11000, Serbia
| | - Vranješ-Đurić Sanja
- University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, 11000, Serbia.
| |
Collapse
|
15
|
Szkop M, Brygoła K, Janczewska M, Ciach T. A simple time-resolved fluorescence assay for quantitative determination of DOTA chelator. Anal Biochem 2019; 584:113384. [PMID: 31356774 DOI: 10.1016/j.ab.2019.113384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/14/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) is one of the preeminent metal chelator applied for diagnostic and therapeutic purposes, however to date there is no versatile and reliable nonradioisotopic method for its precise determination. In this technical note, we present a novel and sensitive fluorimetric assay for quantitative determination of DOTA based on the luminescence quenching of the highly luminescent europium ions complex with trioctyl phosphine oxide and naphthoyl trifluoroacetone sensitizing activators. The assay is carried out in two simple steps and enables the determination of DOTA in the nanomolar range providing a superior tool compared to commonly applied spectrophotometric assay with Arsenazo-III reagent.
Collapse
Affiliation(s)
- Michał Szkop
- NanoThea Inc., Waryńskiego 1, 00-645, Warsaw, Poland.
| | - Kamil Brygoła
- NanoThea Inc., Waryńskiego 1, 00-645, Warsaw, Poland
| | | | - Tomasz Ciach
- NanoThea Inc., Waryńskiego 1, 00-645, Warsaw, Poland; Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| |
Collapse
|
16
|
Egorova BV, Fedorova OA, Kalmykov SN. Cationic radionuclides and ligands for targeted therapeutic radiopharmaceuticals. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review considers the already used and potential α- and β-emitting cationic radionuclides for targeted radionuclide therapy. Recent results of laboratory, preclinical and clinical applications of these radionuclides are discussed. As opposed to β-emitters, which are already used in nuclear medicine, α-emitters involved in targeted radiopharmaceuticals were subjected to clinical trials only recently and were found to be therapeutically effective. The review summarizes recent trends in the development of ligands as components of radiopharmaceuticals addressing specific features of short-lived cationic radionuclides applied in medicine. Despite a steadily growing number of chelating ligands, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and diethylenetriaminepentaacetic acid (DTPA) remain the most widely used agents in nuclear medicine. The drawbacks of these compounds restrict the application of radionuclides in medicine. Variations in the macrocycle size, the introduction and modification of substituents can significantly improve the chelating ability of ligands, enhance stability of radionuclide complexes with these ligands and eliminate the influence of ligands on the affinity of biological targeting vectors.
The bibliography includes 189 references.
Collapse
|
17
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
18
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
20
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
21
|
Kurth J, Krause BJ, Schwarzenböck SM, Stegger L, Schäfers M, Rahbar K. External radiation exposure, excretion, and effective half-life in 177Lu-PSMA-targeted therapies. EJNMMI Res 2018; 8:32. [PMID: 29651569 PMCID: PMC5897276 DOI: 10.1186/s13550-018-0386-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/02/2018] [Indexed: 12/26/2022] Open
Abstract
Background Prostate-specific membrane antigen (PSMA)-targeted therapy with 177Lu-PSMA-617 is a therapeutic option for patients with metastatic castration-resistant prostate cancer (mCRPC). To optimize the therapy procedure, it is necessary to determine relevant parameters to define radiation protection and safety necessities. Therefore, this study aimed at estimating the ambient radiation exposure received by the patient. Moreover, the excreted activity was quantified. Results In total, 50 patients with mCRPC and treated with 177Lu-PSMA-617 (mean administered activity 6.3 ± 0.5 GBq) were retrospectively included in a bi-centric study. Whole-body dose rates were measured at a distance of 2 m at various time points after application of 177Lu-PSMA-617, and effective half-lives for different time points were calculated and compared. Radiation exposure to the public was approximated using the dose integral. For the estimation of the excreted activity, whole body measurements of 25 patients were performed at 7 time points. Unbound 177Lu-PSMA-617 was rapidly cleared from the body. After 4 h, approximately 50% and, after 12 h, approximately 70% of the administered activity were excreted, primarily via urine. The mean dose rates were the following: 3.6 ± 0.7 μSv/h at 2 h p. i., 1.6 ± 0.6 μSv/h at 24 h, 1.1 ± 0.5 μSv/h at 48 h, and 0.7 ± 0.4 μSv/h at 72 h. The mean effective half-life of the cohort was 40.5 ± 9.6 h (min 21.7 h; max 85.7 h). The maximum dose to individual members of the public per treatment cycle was ~ 250 ± 55 μSv when the patient was discharged from the clinic after 48 h and ~ 190 ± 36 μSv when the patient was discharged after 72 h. Conclusions In terms of the radiation exposure to the public, 177Lu-PSMA is a safe option of radionuclide therapy. As usually four (sometimes more) cycles of the therapy are performed, it must be conducted in a way that ensures that applicable legal requirements can be followed. In other words, the radiation exposure to the public and the concentration of activity in wastewater must be sub-marginal. Therefore, in certain countries, hospitalization of these patients is mandatory.
Collapse
Affiliation(s)
- J Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Gertrudenplatz 1, 18057, Rostock, Germany.
| | - B J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Gertrudenplatz 1, 18057, Rostock, Germany
| | - S M Schwarzenböck
- Department of Nuclear Medicine, Rostock University Medical Center, Gertrudenplatz 1, 18057, Rostock, Germany
| | - L Stegger
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - M Schäfers
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - K Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
22
|
Huang Y, Liu Y, Liu S, Wu R, Wu Z. An Efficient Synthesis of N
,N
,N
-Substituted 1,4,7-Triazacyclononane. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yong Huang
- Brain Institute for Brain Disorders; Capital Medical University; 100069 Beijing China
| | - Yajing Liu
- School of Pharmaceutical Science; Capital Medical University; 100069 Beijing China
| | - Song Liu
- Brain Institute for Brain Disorders; Capital Medical University; 100069 Beijing China
| | - Renbo Wu
- Brain Institute for Brain Disorders; Capital Medical University; 100069 Beijing China
| | - Zehui Wu
- Brain Institute for Brain Disorders; Capital Medical University; 100069 Beijing China
| |
Collapse
|
23
|
Bokhari TH, Butt MB, Hina S, Iqbal M, Daud M, Imran M. A review on 90Y-labeled compounds and biomolecules. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5622-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Abstract
Angiogenesis imaging is important for diagnostic and therapeutic treatment of various malignant and nonmalignant diseases. The Arg-Gly-Asp (RGD) sequence has been known to bind with the αvβ3 integrin that is expressed on the surface of angiogenic blood vessels or tumor cells. Thus, various radiolabeled derivatives of RGD peptides have been developed for angiogenesis imaging. Among the various radionuclides, (68)Ga was the most widely studied for RGD peptide imaging because of its excellent nuclear physical properties, easy-to-label chemical properties, and cost-effectiveness owing to the availability of a (68)Ge-(68)Ga generator. Thus, various (68)Ga-labeled RGD derivatives have been developed and applied for preclinical and clinical studies. Clinical trials were performed for both malignant and nonmalignant diseases. Breast cancer, glioma, and lung cancer were malignant, and myocardial infarction, atherosclerosis, and moyamoya disease were nonmalignant among the investigated diseases. Further, these (68)Ga-labeled RGD derivatives could be applied to assess the effects of antiangiogenic treatment or theragnosis or both, of cancers. In conclusion, the angiogenesis imaging technology using (68)Ga-labeled RGD derivatives might be useful for the development of new therapeutic assessments, and for diagnostic and theragnostic applications.
Collapse
Affiliation(s)
- Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
25
|
Compounds for radionuclide imaging and therapy of malignant foci characterized by the increased angiogenesis. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
A Practical Route for the Preparation of 1,4,7-Triazacyclononanyl Diacetates with a Hydroxypyridinonate Pendant Arm. Molecules 2015; 20:19393-405. [PMID: 26512638 PMCID: PMC6332087 DOI: 10.3390/molecules201019393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
The preparation of triazamacrocyclic hydroxypyridinonate (HOPO-TACN) derivatives as potential chelators for metals in biomedical applications was reported. The synthesis is based on a convergent synthetic approach, in which the key intermediate di-tert-butyl-2,2′-(1,4,7-triazonane-1,4-diyl) diacetate was coupled with a hydroxypyridinonate pendant arm. The method is suitable for rapid syntheses of metal chelator HOPO-TACNs of biomedical interest.
Collapse
|