1
|
Wang Q, Zhang X, Wei W, Cao M. PET Imaging of Lung Cancers in Precision Medicine: Current Landscape and Future Perspective. Mol Pharm 2022; 19:3471-3483. [PMID: 35771950 DOI: 10.1021/acs.molpharmaceut.2c00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the recent advances in cancer treatment, lung cancer remains the leading cause of cancer mortality worldwide. Immunotherapies using immune checkpoint inhibitors (ICIs) achieved substantial efficacy in nonsmall cell lung cancer (NSCLC). Currently, most ICIs are still a monoclonal antibody (mAb). Using mAbs or antibody derivatives labeled with radionuclide as the tracers, immunopositron emission tomography (immunoPET) possesses multiple advantages over traditional 18F-FDG PET in imaging lung cancers. ImmunoPET presents excellent potential in detecting, diagnosing, staging, risk stratification, treatment guidance, and recurrence monitoring of lung cancers. By using radiolabeled mAbs, immunoPET can visualize the biodistribution and uptake of ICIs, providing a noninvasive modality for patient stratification and response evaluation. Some novel targets and associated tracers for immunoPET have been discovered and investigated. This Review introduces the value of immunoPET in imaging lung cancers by summarizing both preclinical and clinical evidence. We also emphasize the value of immunoPET in optimizing immunotherapy in NSCLC. Lastly, immunoPET probes developed for imaging small cell lung cancer (SCLC) will also be discussed. Although the major focus is to summarize the immunoPET tracers for lung cancers, we also highlighted several small-molecule PET tracers to give readers a balanced view of the development status.
Collapse
Affiliation(s)
- Qing Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Xindi Zhang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| |
Collapse
|
2
|
Högnäsbacka A, Poot AJ, Vugts DJ, van Dongen GAMS, Windhorst AD. The Development of Positron Emission Tomography Tracers for In Vivo Targeting the Kinase Domain of the Epidermal Growth Factor Receptor. Pharmaceuticals (Basel) 2022; 15:ph15040450. [PMID: 35455447 PMCID: PMC9033078 DOI: 10.3390/ph15040450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple small molecule PET tracers have been developed for the imaging of the epidermal growth factor receptor (EGFR). These tracers target the tyrosine kinase (TK) domain of the receptor and have been used for both quantifying EGFR expression and to differentiate between EGFR mutational statuses. However, the approaches for in vivo evaluation of these tracers are diverse and have resulted in data that are hard to compare. In this review, we analyze the historical development of the in vivo evaluation approaches, starting from the first EGFR TK PET tracer [11C]PD153035 to tracers developed based on TK inhibitors used for the clinical treatment of mutated EGFR expressing non-small cell lung cancer like [11C]erlotinib and [18F]afatinib. The evaluation of each tracer has been compiled to allow for a comparison between studies and ultimately between tracers. The main challenges for each group of tracers are thereafter discussed. Finally, this review addresses the challenges that need to be overcome to be able to efficiently drive EGFR PET imaging forward.
Collapse
Affiliation(s)
- Antonia Högnäsbacka
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
- Correspondence: (A.H.); (A.D.W.)
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Guus A. M. S. van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
- Correspondence: (A.H.); (A.D.W.)
| |
Collapse
|
3
|
Goggi JL, Haslop A, Ramasamy B, Cheng P, Jiang L, Soh V, Robins EG. Identifying nonsmall-cell lung tumours bearing the T790M EGFR TKI resistance mutation using PET imaging. J Labelled Comp Radiopharm 2019; 62:596-603. [PMID: 31132309 DOI: 10.1002/jlcr.3771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Abstract
Specific mutations significantly affect response to epidermal growth factor tyrosine kinase inhibitor (EGFR-TKI) treatment in lung cancer patients. Identifying patients with these mutations remains a major clinical challenge. EGFR T790M mutation, which conveys resistance to in the present study, [18 F]FEWZ was assessed in vitro to determine efficacy relative to the starting compound and in vivo to measure the biodistribution and specificity of binding to EGFR wild-type, L858R and T790M bearing tumours. [18 F]FEWZ is the first evidence of a radiolabeled third generation anilinopyrimidine-derived tyrosine kinase inhibitor targeting T790M mutation bearing tumours in vivo.
Collapse
Affiliation(s)
- Julian L Goggi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* Star), Singapore
| | - Anna Haslop
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* Star), Singapore
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* Star), Singapore
| | - Peter Cheng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* Star), Singapore
| | - Lingfan Jiang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* Star), Singapore
| | - Vanessa Soh
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* Star), Singapore
| | - Edward G Robins
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* Star), Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
4
|
Development of a Fluorinated Analogue of Erlotinib for PET Imaging of EGFR Mutation–Positive NSCLC. Mol Imaging Biol 2018; 21:696-704. [DOI: 10.1007/s11307-018-1286-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Makino A, Miyazaki A, Tomoike A, Kimura H, Arimitsu K, Hirata M, Ohmomo Y, Nishii R, Okazawa H, Kiyono Y, Ono M, Saji H. PET probe detecting non-small cell lung cancer susceptible to epidermal growth factor receptor tyrosine kinase inhibitor therapy. Bioorg Med Chem 2018; 26:1609-1613. [DOI: 10.1016/j.bmc.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/28/2023]
|
6
|
Wan YL, Dai HJ, Liu W, Ma HT. miR-767-3p Inhibits Growth and Migration of Lung Adenocarcinoma Cells by Regulating CLDN18. Oncol Res 2017; 26:637-644. [PMID: 29169410 PMCID: PMC7844711 DOI: 10.3727/096504017x15112639918174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Claudin18 (CLDN18) is necessary for intercellular junctions and is reported to be involved in cell migration and metastasis, making it like an oncogene in various cancer types. However, the biological function and regulatory mechanisms of CLDN18 in lung adenocarcinoma are not yet clear. In this study, we found downregulation of miR-767-3p and upregulation of CLDN18 in lung adenocarcinoma tissue and cell lines. In addition, there was a negative correlation between the expression of miR-767-3p and CLDN18 in lung adenocarcinoma. Double luciferase reporter gene analysis showed that miR-767-3p modulates the expression of CLDN18 by binding its 3'-untranslated regions (3'-UTR). Knockdown of CLDN18 results in a decrease in the growth, migration, and invasion of lung adenocarcinoma cells. Although overexpression of miR-767-3p inhibits lung adenocarcinoma cell growth and migration, these effects can be rescued by reexpressing CLDN18. In summary, the data suggest that miR-767-3p inhibits tumor cell proliferation, migration, and invasion by targeting CLDN18, providing a promising therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi Long Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Han Jue Dai
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Wei Liu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Hai Tao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|