1
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
2
|
Qu X, Neuhoff C, Cinar MU, Pröll M, Tholen E, Tesfaye D, Hölker M, Schellander K, Uddin MJ. Epigenetic Modulation of TLR4 Expression by Sulforaphane Increases Anti-Inflammatory Capacity in Porcine Monocyte-Derived Dendritic Cells. BIOLOGY 2021; 10:biology10060490. [PMID: 34072812 PMCID: PMC8227201 DOI: 10.3390/biology10060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Epigenetic modifications of the genes regulate the inflammation process that includes the DNA methylation and histone acetylation. Sulforaphane is well known for its immunomodulatory properties. Notably, the mechanism of its anti-inflammatory functions involving epigenetic modifications is unclear. This study highlighted the regulatory mechanism of sulforaphane in the innate immunity responses in an acute inflammatory state employ in vivo cell culture model. Porcine monocyte-derived dendritic cells were exposed to LPS with or without sulforaphane pre-treatment for these purposes. Epigenetics modulations of the important genes and regulatory factors were studies as well as the immune responses of the cells were vigorously studied over the period of time. This study deciphers the mechanism of SFN in restricting the excessive inflammatory reactions, thereby, exerting its protective and anti-inflammatory function though epigenetic mechanism. Abstract Inflammation is regulated by epigenetic modifications, including DNA methylation and histone acetylation. Sulforaphane (SFN), a histone deacetylase (HDAC) inhibitor, is also a potent immunomodulatory agent, but its anti-inflammatory functions through epigenetic modifications remain unclear. Therefore, this study aimed to investigate the epigenetic effects of SFN in maintaining the immunomodulatory homeostasis of innate immunity during acute inflammation. For this purpose, SFN-induced epigenetic changes and expression levels of immune-related genes in response to lipopolysaccharide (LPS) stimulation of monocyte-derived dendritic cells (moDCs) were analyzed. These results demonstrated that SFN inhibited HDAC activity and caused histone H3 and H4 acetylation. SFN treatment also induced DNA demethylation in the promoter region of the MHC-SLA1 gene, resulting in the upregulation of Toll-like receptor 4 (TLR4), MHC-SLA1, and inflammatory cytokines’ expression at 6 h of LPS stimulation. Moreover, the protein levels of cytokines in the cell culture supernatants were significantly inhibited by SFN pre-treatment followed by LPS stimulation in a time-dependent manner, suggesting that inhibition of HDAC activity and DNA methylation by SFN may restrict the excessive inflammatory cytokine availability in the extracellular environment. We postulate that SFN may exert a protective and anti-inflammatory function by epigenetically influencing signaling pathways in experimental conditions employing porcine moDCs.
Collapse
Affiliation(s)
- Xueqi Qu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
- Correspondence: (X.Q.); (C.N.)
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
- Correspondence: (X.Q.); (C.N.)
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey;
| | - Maren Pröll
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Michael Hölker
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
| | - Muhammad Jasim Uddin
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.P.); (E.T.); (D.T.); (M.H.); (K.S.); (M.J.U.)
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
- Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
3
|
Al-Bakheit A, Abu-Qatouseh L. Sulforaphane from broccoli attenuates inflammatory hepcidin by reducing IL-6 secretion in human HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
4
|
Silva-Palacios A, Ostolga-Chavarría M, Sánchez-Garibay C, Rojas-Morales P, Galván-Arzate S, Buelna-Chontal M, Pavón N, Pedraza-Chaverrí J, Königsberg M, Zazueta C. Sulforaphane protects from myocardial ischemia-reperfusion damage through the balanced activation of Nrf2/AhR. Free Radic Biol Med 2019; 143:331-340. [PMID: 31422078 DOI: 10.1016/j.freeradbiomed.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
The activation of the transcription factor Nrf2 and the consequent increment in the antioxidant response might be a powerful strategy to contend against reperfusion damage. In this study we compared the effectiveness between sulforaphane (SFN), a well known activator of Nrf2 and the mechanical maneuver of post-conditioning (PostC) to confer cardioprotection in an in vivo cardiac ischemia-reperfusion model. We also evaluated if additional mechanisms, besides Nrf2 activation contribute to cardioprotection. Our results showed that SFN exerts an enhanced protective response as compared to PostC. Bot, strategies preserved cardiac function, decreased infarct size, oxidative stress and inflammation, through common protective pathways; however, the aryl hydrocarbon receptor (AhR) also participated in the protection conferred by SFN. Our data suggest that SFN-mediated cardioprotection involves transient Nrf2 activation, followed by phase I enzymes upregulation at the end of reperfusion, as a long-term protection mechanism.
Collapse
Affiliation(s)
- A Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - M Ostolga-Chavarría
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - C Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico
| | - P Rojas-Morales
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - S Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suarez, Mexico
| | - M Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - N Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - J Pedraza-Chaverrí
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - M Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - C Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico.
| |
Collapse
|
5
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
6
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Chen X, Tang L, Feng J, Wang Y, Han Z, Meng J. Downregulation of Paralemmin-3 Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Rats by Regulating Inflammatory Response and Inhibiting Formation of TLR4/MyD88 and TLR4/TRIF Complexes. Inflammation 2018; 40:1983-1999. [PMID: 28801798 PMCID: PMC7102376 DOI: 10.1007/s10753-017-0639-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated paralemmin-3 (PALM3) participates in Toll-like receptor (TLR) signaling. This study investigated the effect of PALM3 knockdown on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its underlying mechanisms. We constructed a recombinant adenoviral vector containing short hairpin RNA for PALM3 to knockdown PALM3 expression. A transgene-free adenoviral vector was used as a negative control. The ALI rat model was established by LPS peritoneal injection at 48-h post-transfection. Results showed that downregulation of PALM3 improved the survival rate, attenuated lung pathological changes, alleviated pulmonary edema, lung vascular leakage and neutrophil infiltration, inhibited the production of proinflammatory cytokines and activation of nuclear factor κB and interferon β regulatory factor 3, and promoted the secretion of anti-inflammatory cytokine interleukin-10 and expression of suppressor of cytokine signaling-3 in the ALI rat model. However, PALM3 knockdown had no effect on TLR4, myeloid differentiation factor 88 (MyD88), and Toll-interleukin-1 receptor domain-containing adaptor inducing interferon β (TRIF) expression. Moreover, PALM3 knockdown reduced the interaction of TLR4 with MyD88 or TRIF induced by LPS in rat lungs. Therefore, the downregulation of PALM3 protected rats from LPS-induced ALI and its mechanisms were partially associated with the modulation of inflammatory responses and inhibition of TLR4/MyD88 and TLR4/TRIF complex formation.
Collapse
Affiliation(s)
- Xuxin Chen
- Department of Respiratory Medicine, Navy General Hospital of the PLA, No. 6 Fucheng Road, Beijing, 100037, China
| | - Lu Tang
- Department of Neurology, The First Hospital of Changsha, Changsha, 430100, People's Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yi Wang
- Department of Respiratory Medicine, The Sixth People's Hospital of Jinan City Affiliated to Jining Medical College, Jinan, 250200, People's Republic of China
| | - Zhihai Han
- Department of Respiratory Medicine, Navy General Hospital of the PLA, No. 6 Fucheng Road, Beijing, 100037, China.
| | - Jiguang Meng
- Department of Respiratory Medicine, Navy General Hospital of the PLA, No. 6 Fucheng Road, Beijing, 100037, China.
| |
Collapse
|
8
|
Patel B, Mann GE, Chapple SJ. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Radic Biol Med 2018; 122:150-160. [PMID: 29427794 DOI: 10.1016/j.freeradbiomed.2018.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Diabetes and cardiometabolic disorders such as hypertension and obesity are major risk factors for the development of cardiovascular disease, with a wealth of evidence suggesting that oxidative stress is linked to the initiation and pathogenesis of these disease processes. With yearly increases in the global incidence of cardiovascular diseases (CVD) and diabetes, numerous studies have focused on characterizing whether upregulating antioxidant defenses through exogenous antioxidants (e.g. vitamin E, vitamin C) or activation of endogenous defenses (e.g. the Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant defense pathway) may be of benefit. The dietary isothiocyanate sulforaphane (SFN) is currently the subject of several clinical trials for a variety of disease states, including the evaluation of its therapeutic potential to ameliorate diabetic and cardiometabolic complications. SFN is a well characterized and potent Nrf2 inducer, however recent studies suggest its protective actions may be in part mediated by its modulation of various pro-inflammatory (e.g. Nuclear factor-kappa B (NFκB)) and metabolic (e.g. Peroxisome Proliferator-Activator Receptor Gamma (PPARγ)) signaling pathways. The focus of this review is to provide a detailed analysis of the known mechanisms by which SFN modulates Nrf2, NFκB and PPARγ signaling and crosstalk and to provide a critical evaluation of the evidence linking these transcriptional pathways with diabetic and cardiometabolic complications and SFN mediated cytoprotection. To allow comparison between rodent and human studies, we discuss the published bioavailability of SFN metabolites achieved in rodents and man in the context of Nrf2, NFκB and PPARγ signaling. Furthermore, we provide an update on the functional outcomes and implicated signaling pathways reported in recent clinical trials with SFN in Type 2 diabetic patients.
Collapse
Affiliation(s)
- Bijal Patel
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Sarah J Chapple
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
9
|
Chen XX, Tang L, Fu YM, Wang Y, Han ZH, Meng JG. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-Toll-like receptor-4 signaling in alveolar macrophages. Int J Mol Med 2017; 40:1921-1931. [PMID: 29039447 DOI: 10.3892/ijmm.2017.3161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Alveolar macrophages (AMs) are the first line of defense against foreign stimulation in alveoli, and they participate in inflammatory responses during acute lung injury (ALI). Previous studies indicated that paralemmin-3 (PALM3) expression is induced by lipopolysaccharides (LPS) and may be involved in LPS-Toll-like receptor 4 (TLR4) signaling in alveolar epithelial cells. The aim of the present study was to investigate the effect of PALM3 on LPS-induced inflammation and its underlying mechanisms in rat AMs. For this purpose, the authors detected the expression of PALM3 in AMs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting following LPS stimulation. Following this, a recombinant adenovirus expressing short hairpin RNA (shRNA) for PALM3 was constructed, as well as a recombinant adenovirus carrying the rat PALM3 gene to modulate the expression of PALM3 in rat AMs. At 48 h after transfection, the PALM3 expression in AMs was detected by RT-qPCR and western blotting. The levels of several cytokines and the activity of nuclear factor-κB and interferon regulatory factor 3 in AMs were measured after LPS stimulation. The localization of PALM3 and LPS-TLR4 signaling adaptor molecules in AMs was analyzed by confocal microscopy, and the physical interactions of PALM3 with these adaptors were assessed by co-immunoprecipitation assays. LPS induced PALM3 expression in AMs and that PALM3 expression promoted the LPS-induced inflammatory response, while PALM3 downregulation suppressed the LPS-induced inflammatory response in AMs. In addition, the results demonstrated that PALM3 could interact with TLR4, myeloid differentiation factor 88, interleukin (IL)-1 receptor associated kinase-1, tumor necrosis factor receptor associated factor-6, and Toll-IL-1 receptor containing adapter molecule-2 in AMs after LPS stimulation. These results suggested that PALM3 contributes to the LPS-induced inflammatory response and participates in LPS-TLR4 signaling in AMs. These data may provide the basis for the development of novel targeted therapeutic strategies of treating ALI.
Collapse
Affiliation(s)
- Xu-Xin Chen
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing 100037, P.R. China
| | - Lu Tang
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan 430100, P.R. China
| | - Yu-Mei Fu
- Department of Emergency, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yi Wang
- Department of Respiratory Medicine, The Sixth People's Hospital of Jinan City Affiliated to Jining Medical College, Jinan, Shandong 250200, P.R. China
| | - Zhi-Hai Han
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing 100037, P.R. China
| | - Ji-Guang Meng
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing 100037, P.R. China
| |
Collapse
|
10
|
Yamagishi SI, Matsui T. Protective role of sulphoraphane against vascular complications in diabetes. PHARMACEUTICAL BIOLOGY 2016; 54:2329-2339. [PMID: 26841240 DOI: 10.3109/13880209.2016.1138314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Diabetes is a global health challenge. Although large prospective clinical trials have shown that intensive control of blood glucose or blood pressure reduces the risk for development and progression of vascular complications in diabetes, a substantial number of diabetic patients still experience renal failure and cardiovascular events, which could account for disabilities and high mortality rate in these subjects. Objective Sulphoraphane is a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, such as broccoli, cabbage and Brussels sprouts, and an inducer of phase II antioxidant and detoxification enzymes with anticancer properties. We reviewed here the protective role of sulphoraphane against diabetic vascular complications. Methods In this review, literature searches were undertaken in Medline and in CrossRef. Non-English language articles were excluded. Keywords [sulphoraphane and (diabetes, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, diabetic complications, vascular, cardiomyocytes, heart or glycation)] have been used to select the articles. Results There is accumulating evidence that sulphoraphane exerts beneficial effects on vascular damage in both cell culture and diabetic animal models via antioxidative properties. Furthermore, we have recently found that sulphoraphane inhibits in vitro formation of advanced glycation end products (AGEs), suppresses the AGE-induced inflammatory reactions in rat aorta by reducing receptor for AGEs (RAGE) expression and decreases serum levels of AGEs in humans. Conclusion These findings suggest that blockade of oxidative stress and/or the AGE-RAGE axis by sulphoraphane may be a novel therapeutic strategy for preventing vascular complications in diabetes.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- a Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications , Kurume University School of Medicine , Kurume , Japan
| | - Takanori Matsui
- a Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications , Kurume University School of Medicine , Kurume , Japan
| |
Collapse
|
11
|
Bonetto JHP, Fernandes RO, Seolin BGDL, Müller DD, Teixeira RB, Araujo AS, Vassallo D, Schenkel PC, Belló-Klein A. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia–reperfusion in rats. Can J Physiol Pharmacol 2016; 94:508-16. [DOI: 10.1139/cjpp-2015-0282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg−1·day−1) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.
Collapse
Affiliation(s)
- Jéssica Hellen Poletto Bonetto
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Rafael Oliveira Fernandes
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Bruna Gazzi de Lima Seolin
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Dalvana Daneliza Müller
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Dalton Vassallo
- Health Science Center of Vitória (EMESCAM), Espírito Santo, Brazil
| | - Paulo Cavalheiro Schenkel
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Li B, Tian S, Liu X, He C, Ding Z, Shan Y. Sulforaphane protected the injury of human vascular endothelial cell induced by LPC through up-regulating endogenous antioxidants and phase II enzymes. Food Funct 2016; 6:1984-91. [PMID: 26008201 DOI: 10.1039/c5fo00438a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sulforaphane (SFN), which is an isothiocyanate (ITC) that is found in cruciferous vegetables, has received considerable attention because of its beneficial effects. In this study, the protection by SFN in the lysophosphatidylcholine (LPC)-induced injury of human vascular endothelial EA.hy.926 cells was investigated. ROS intensity was obtained by fluorescence microscopic imaging. Levels of MDA, GSH and the activity of SOD were determined spectrophotometrically. Expressions of GST, GSH-Px, TrxR and Nrf-2 proteins were measured by western blotting analysis. SFN largely decreased ROS production, similar to vitamin E. The MDA level was decreased by SFN to a level that was comparable to the negative group. Incubation with 0.5, 1.25, 2.5 μmol L(-1) SFN for 24 h restored the activity of SOD by 58%, 64%, and 123%, respectively. SOD activities were individually increased by 53%, 97%, 103% after treatment with 2.5 μmol L(-1) SFN for 12 h, 24 h, and 48 h, respectively. SFN restored and up-regulated the expressions of GST, GSH-Px and TrxR both in dose- and time-dependent ways. Although VE presents comparable induction of phase 2 enzymes as 1.25 μmol L(-1) SFN, it cannot induce the translocation of Nrf-2 to the nucleus. SFN protected the injury of vascular endothelial cell by LPC by enhancing anti-oxidative capabilities mediated by Nrf-2 translocation.
Collapse
Affiliation(s)
- Baolong Li
- School of Food Science and Engineering, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang district, Harbin, China.
| | | | | | | | | | | |
Collapse
|
13
|
EOLA1 Inhibits Lipopolysaccharide-Induced Vascular Cell Adhesion Molecule-1 Expression by Association with MT2A in ECV304 Cells. Int J Inflam 2015; 2015:301562. [PMID: 26881174 PMCID: PMC4736203 DOI: 10.1155/2015/301562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/25/2023] Open
Abstract
Our research group firstly discovered endothelial-overexpressed lipopolysaccharide-associated factor 1 (EOLA1, GenBank number AY074889) as a lipopolysaccharide (LPS) responsive gene in ECV304 cells. The previous studies have further demonstrated the association of EOLA1 with metallothionein 2A (MT2A), while the role of EOLA1 during LPS-induced inflammatory response in ECV304 cells is unknown. In this report, we determined the subcellular localization of EOLA1 and the regulatory capacity of EOLA1 on vascular cell adhesion molecule-1 (VCAM-1) in response to LPS in ECV304 cells. Our results show that EOLA1 is broadly diffuse in the cells, and EOLA1 expression is dramatically induced by LPS. EOLA1 knockdown results in significant enhancement of LPS-induced VCAM-1 production. Consistent with this, overexpression of EOLA1 leads to the reduction of LPS-induced VCAM-1 production. Furthermore, MT2A knockdown reduces LPS-induced VCAM-1 production. Collectively, our results demonstrate a negative regulatory role of EOLA1 on LPS-induced VCAM-1 expression involving its association with MT2A in ECV304 cells.
Collapse
|
14
|
|
15
|
Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Antioxid Redox Signal 2015; 22:1382-424. [PMID: 25364882 PMCID: PMC4432495 DOI: 10.1089/ars.2014.6097] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. CRITICAL ISSUES In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. FUTURE DIRECTIONS Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Collapse
Affiliation(s)
- Stephanie M Tortorella
- 1 Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | | | |
Collapse
|
16
|
Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3'-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. ACTA ACUST UNITED AC 2015; 1:179-196. [PMID: 26457242 DOI: 10.1007/s40495-015-0017-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucosinolates are a group of sulfur-containing glycosides found in many plant species, including cruciferous vegetables such as broccoli, cabbage, brussels sprouts, and cauliflower. Accumulating evidence increasingly supports the beneficial effects of dietary glucosinolates on overall health, including as potential anti-cancer agents, because of their role in the prevention of the initiation of carcinogenesis via the induction of cellular defense detoxifying/antioxidant enzymes and their epigenetic mechanisms, including modification of the CpG methylation of cancer-related genes, histone modification regulation and changes in the expression of miRNAs. In this context, the defense mechanism mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against oxidative stress and reactive metabolites of carcinogens. In this review, we summarize the cancer chemopreventive role of naturally occurring glucosinolate derivatives as inhibitors of carcinogenesis, with particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo human cancer animal models.
Collapse
|
17
|
Jia SJ, Niu PP, Cong JZ, Zhang BK, Zhao M. TLR4 signaling: A potential therapeutic target in ischemic coronary artery disease. Int Immunopharmacol 2014; 23:54-9. [DOI: 10.1016/j.intimp.2014.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/06/2014] [Accepted: 08/13/2014] [Indexed: 01/12/2023]
|
18
|
Li Y, Xu Q, Wei P, Cheng L, Peng Q, Li S, Yin H, Du Y. Chitosan oligosaccharides downregulate the expression of E-selectin and ICAM-1 induced by LPS in endothelial cells by inhibiting MAP kinase signaling. Int J Mol Med 2013; 33:392-400. [PMID: 24336934 DOI: 10.3892/ijmm.2013.1589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/25/2013] [Indexed: 11/05/2022] Open
Abstract
The expression of adhesion molecules in endothelial cells elicited by lipopolysaccharide (LPS) is involved in the adhesive interaction between endothelial cells and monocytes in inflammation. In this study, in order to characterize the anti-inflammatory effects of chitosan oligosaccharides (COS) on LPS‑induced inflammation and to elucidate the underlying mechanisms, the mRNA levels of E-selectin and intercellular adhesion molecule-1 (ICAM-1) were measured in porcine iliac artery endothelial cells (PIECs). When these cells were treated with COS, the LPS-induced mRNA expression of E-selectin and ICAM-1 was reduced through the inhibition of the signal transduction cascade, p38 mitogen‑activated protein kinase (MAPK)/extracellular regulated protein kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB). Moreover, through the inhibition of p38 MAPK and ERK1/2, COS suppressed the LPS-induced NF-κB p65 translocation. We found that COS suppressed the phosphorylation of p38 MAPK and the translocation of NF-κB p65 into the nucleus in a dose-dependent manner, and inhibited the adhesion of U973 cells to PIECs. Based on these results, it can be concluded that COS downregulate the expression of E-selectin and ICAM-1 by inhibiting the phosphorylation of MAPKs and the activation of NF-κB in LPS-treated PIECs. Our study demonstrates the valuable anti-inflammatory properties of COS.
Collapse
Affiliation(s)
- Yu Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| | - Qingsong Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| | - Peng Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| | - Likun Cheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| | - Qiang Peng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| | - Shuguang Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| | - Yuguang Du
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P.R. China
| |
Collapse
|
19
|
LIU BIN, WANG JIA, CHENG LAN, LIANG JINGPING. Role of JNK and NF-κB pathways in Porphyromonas gingivalis LPS-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. Mol Med Rep 2013; 8:1594-600. [DOI: 10.3892/mmr.2013.1685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
|
20
|
Liu J, Duan J, Wang Y, Ouyang X. Intracellular adhesion molecule-1 is regulated by porphyromonas gingivalis through nucleotide binding oligomerization domain-containing proteins 1 and 2 molecules in periodontal fibroblasts. J Periodontol 2013; 85:358-68. [PMID: 23688098 DOI: 10.1902/jop.2013.130152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The mechanism by which Porphyromonas gingivalis regulates intracellular adhesion molecule 1 (ICAM-1) expression in human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs) is unknown. The aim of this study is to investigate whether nucleotide binding oligomerization domain-containing protein (NOD) 1 and NOD2 are involved in this process and the clinical significance of ICAM-1 in periodontitis. METHODS hPDLCs and hGFs were treated with P. gingivalis, l-Ala-γ-d-glutamyl-mesodiaminopimelic acid (an agonist for NOD1), and muramyl dipeptide (an agonist for NOD2). Alternatively, cells transfected with small interfering RNA targeting NOD1and NOD2 were treated with P. gingivalis. ICAM-1, NOD1, and NOD2 were detected at mRNA and protein levels. In addition, clinical examinations were performed in 30 healthy controls and 40 patients with chronic periodontitis (CP) before and after treatment, and serum-soluble ICAM-1 (sICAM-1) levels in these individuals were detected by enzyme-linked immunosorbent assay. RESULTS This study shows that P. gingivalis caused an increase in ICAM-1, NOD1, and NOD2 expression in periodontal fibroblasts. There was a linear correlation between ICAM-1 and NOD1 and NOD2 levels. Activation of NOD1 and NOD2 by the specific agonist led to the upregulation of ICAM-1, whereas knocking down NOD1 and NOD2 caused a reduction in P. gingivalis-induced ICAM-1 production. Furthermore, sICAM-1 levels were higher in patients with CP than in healthy controls and were positively related to the clinical periodontal parameters. After periodontal treatment, sICAM-1 levels decreased significantly. CONCLUSIONS The present results indicate that sICAM-1 levels are correlated to the severity of periodontitis. NOD1 and NOD2 mediate P. gingivalis-induced ICAM-1 production in periodontal fibroblasts. NOD1 and NOD2 could be considered potential targets for periodontal therapy.
Collapse
Affiliation(s)
- Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | |
Collapse
|
21
|
Chen X, Wu X, Zhao Y, Wang G, Feng J, Li Q, Qian G. A novel binding protein of single immunoglobulin IL-1 receptor-related molecule: Paralemmin-3. Biochem Biophys Res Commun 2010; 404:1029-33. [PMID: 21187075 DOI: 10.1016/j.bbrc.2010.12.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that single immunoglobulin IL-1 receptor-related molecule (SIGIRR) is a negative regulator of Toll-Interleukin-1 receptor signaling. Nevertheless, the molecular mechanism of the negatively regulatory effect of SIGIRR remains unknown. Using a yeast two-hybrid screen, we identified paralemmin-3 (PALM3) as a novel binding protein of SIGIRR. This interaction of SIGIRR with PALM3 was confirmed by coimmunoprecipitation in mammalian cells. In addition, the PALM3 mRNA expression was upregulated by lipopolysaccharide (LPS)-stimulation in a human alveolar epithelial cell line (A549 cells). Furthermore, silencing PALM3 by RNA interference inhibited the release of inflammatory cytokines in A549 cells after LPS-stimulation. These results suggest that PALM3 may function as an adaptor in the LPS- Toll-like receptor 4 signaling and the interaction of SIGIRR with PALM3 may partly account for the mechanism of the negatively regulatory effect of SIGIRR.
Collapse
Affiliation(s)
- Xuxin Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | | | | | |
Collapse
|