1
|
Cui X, Wang B, Han D, Cheng M, Yuan P, Du P, Hou Y, Su C, Tang J, Zhang J. Exacerbation of atherosclerosis by STX17 knockdown: Unravelling the role of autophagy and inflammation. J Cell Mol Med 2024; 28:e18402. [PMID: 39008328 PMCID: PMC11133389 DOI: 10.1111/jcmm.18402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 07/16/2024] Open
Abstract
Syntaxin 17 (STX17) has been identified as a crucial factor in mediating the fusion of autophagosomes and lysosomes. However, its specific involvement in the context of atherosclerosis (AS) remains unclear. This study sought to elucidate the role and mechanistic contributions of STX17 in the initiation and progression of AS. Utilizing both in vivo and in vitro AS model systems, we employed ApoE knockout (KO) mice subjected to a high-fat diet and human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) to assess STX17 expression. To investigate underlying mechanisms, we employed shRNA-STX17 lentivirus to knock down STX17 expression, followed by evaluating autophagy and inflammation in HUVECs. In both in vivo and in vitro AS models, STX17 expression was significantly upregulated. Knockdown of STX17 exacerbated HUVEC damage, both with and without ox-LDL treatment. Additionally, we observed that STX17 knockdown impaired autophagosome degradation, impeded autophagy flux and also resulted in the accumulation of dysfunctional lysosomes in HUVECs. Moreover, STX17 knockdown intensified the inflammatory response following ox-LDL treatment in HUVECs. Further mechanistic exploration revealed an association between STX17 and STING; reducing STX17 expression increased STING levels. Further knockdown of STING enhanced autophagy flux. In summary, our findings suggest that STX17 knockdown worsens AS by impeding autophagy flux and amplifying the inflammatory response. Additionally, the interaction between STX17 and STING may play a crucial role in STX17-mediated autophagy.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Bo Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Dongjian Han
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Mengdie Cheng
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Peiyu Yuan
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Pengchong Du
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Yachen Hou
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Chang Su
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Junnan Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Jinying Zhang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| |
Collapse
|
2
|
Wang HL, Narisawa M, Wu P, Meng X, Cheng XW. The many roles of cathepsins in restenosis. Heliyon 2024; 10:e24720. [PMID: 38333869 PMCID: PMC10850908 DOI: 10.1016/j.heliyon.2024.e24720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Drug-eluting stents (DES) and dual antiplatelet regimens have significantly improved the clinical management of ischemic heart disease; however, the drugs loaded with DES in clinical practice are mostly paclitaxel or rapamycin derivatives, which target symptoms of post implantation proliferation and inflammation, leading to delayed re-endothelialization and neo-atherosclerosis. Along with the treatments already in place, there is a need for novel strategies to lessen the negative clinical outcomes of DES delays as well as a need for greater understanding of their pathobiological mechanisms. This review concentrates on the function of cathepsins (Cats) in the inflammatory response and granulation tissue formation that follow Cat-induced damage to the vasculature scaffold, as well as the functions of Cats in intimal hyperplasia, which is characterized by the migration and proliferation of smooth muscle cells, and endothelial denudation, re-endothelialization, and/or neo-endothelialization. Additionally, Cats can alter essential neointima formation and immune response inside scaffolds, and if Cats are properly controlled in vivo, they may improve scaffold biocompatibility. This unique profile of functions could lead to an original concept for a cathepsin-based coronary intervention treatment as an adjunct to stent placement.
Collapse
Affiliation(s)
- Hai Long Wang
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Pan Wu
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, PR China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, PR China
| |
Collapse
|
3
|
Huang J, Feng Q, Zou L, Liu Y, Bao M, Xia W, Zhu C. [Gly14]-humanin exerts a protective effect against D-galactose-induced primary ovarian insufficiency in mice. Reprod Biomed Online 2024; 48:103330. [PMID: 38163419 DOI: 10.1016/j.rbmo.2023.103330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 01/03/2024]
Abstract
RESEARCH QUESTION Is there a protective effect of the humanin derivative [Gly14]-humanin (HNG) on a D-gal-induced mouse model of primary ovarian insufficiency (POI), and what is the underlying mechanism? DESIGN D-gal (200 mg/kg/day) was injected subcutaneously for 6 weeks to induce the mouse POI model. Mice treated with HNG were injected intraperitoneally with different concentrations for 6 weeks. Ovarian morphology, function, levels of sex hormones and states of oxidative stress in the ovary and body were evaluated. RESULTS Compared with the D-gal group, 10 mg/kg HNG improved the abnormal ovarian morphology and oestrous cycle (P = 0.0036), increased the number of ovarian follicles (P = 0.0016) and litters (P = 0.0127), and increased the levels of oestrogen (P = 0.0043) and AMH (P = 0.0147). Antioxidant indicators in the ovaries and serum of mice, including total antioxidant capacity (P = 0.0004 and P = 0.0032, respectively), catalase (P = 0.0173 and P = 0.0103, respectively) and glutathione (both P < 0.0001) were significantly increased. The oxidation indicator malondialdehyde decreased significantly (all P < 0.01). Apoptosis of ovarian granulosa cells was significantly reduced (P = 0.0140) as was the expression of senescence-related proteins p53, p21 and p16 (all P < 0.01). The level of autophagy in ovarian tissue of mice treated with high increased (significantly increased LC3 protein [P < 0.0001] and significantly reduced p62 protein [P = 0.0007]). CONCLUSIONS HNG inhibited D-gal-induced oxidative stress, apoptosis and ovarian damage, promoting ovarian autophagy. HNG may be a potential prophylactic agent against POI.
Collapse
Affiliation(s)
- Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China..
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China..
| |
Collapse
|
4
|
Ma Z, Zheng M, Liu Z, Lu H, Liu Y, Yang Y, Fang Z, Lu S. Identification of potential angiotensin-I-converting enzyme inhibitory components in celery seed using UHPLC-MS and molecular docking. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
6
|
Xie Y, Zhang J, Zhang M, Jiang L. [Gly14]-Humanin inhibits an angiotensin II-induced vascular smooth muscle cell phenotypic switch via ameliorating intracellular oxidative stress. Hum Exp Toxicol 2022; 41:9603271221136208. [PMID: 36289015 DOI: 10.1177/09603271221136208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Angiotensin II (AngII) is involved in the pathogenesis of hypertensive artery remodeling by inducing a phenotypic switch in vascular smooth muscle cells [Gly14]-Humanin (HNG), a humanin analogue, exerts potent cytoprotective effects both in vitro and in vivo. This study aimed to investigate the effects of HNG on an AngII-induced phenotypic switch in VSMCs and the potential mechanisms underlying these effects. The roles of [Gly14]-Humanin in AngII-stimulated VSMCs proliferation and migration was detected by CCK-8 assay, Cell cycle analysis, wound healing assay, trsnswell assay and western blot. The mechanism by which [Gly14]-Humanin regulates VSMC phenotypic switch was determined by intracellular oxidative stress detection, transcriptomic analysis and qRT-PCR. The results showed that HNG inhibited AngII-induced VSMC proliferation and migration and maintained a stable VSMC contractile phenotype. In addition, HNG reduced the level of AngII-induced oxidative stress in vascular smooth muscle cells. This process could be accomplished by inhibiting nicotinamide adenine dinucleotide phosphate oxidase activity. In conclusion, the results suggested that HNG ameliorated intracellular oxidative stress by inhibiting NAD(P)H oxidase activity, thereby suppressing the AngII-induced VSMC phenotype switch. Thus, HNG is a potential drug to ameliorate artery remodeling in hypertension.
Collapse
Affiliation(s)
- Yi Xie
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Jiang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Dabravolski SA, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. The Role of Mitochondria-Derived Peptides in Cardiovascular Diseases and Their Potential as Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22168770. [PMID: 34445477 PMCID: PMC8396025 DOI: 10.3390/ijms22168770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria-derived peptides (MDPs) are small peptides hidden in the mitochondrial DNA, maintaining mitochondrial function and protecting cells under different stresses. Currently, three types of MDPs have been identified: Humanin, MOTS-c and SHLP1-6. MDPs have demonstrated anti-apoptotic and anti-inflammatory activities, reactive oxygen species and oxidative stress-protecting properties both in vitro and in vivo. Recent research suggests that MDPs have a significant cardioprotective role, affecting CVDs (cardiovascular diseases) development and progression. CVDs are the leading cause of death globally; this term combines disorders of the blood vessels and heart. In this review, we focus on the recent progress in understanding the relationships between MDPs and the main cardiovascular risk factors (atherosclerosis, insulin resistance, hyperlipidaemia and ageing). We also will discuss the therapeutic application of MDPs, modified and synthetic MDPs, and their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
8
|
Caso VM, Manzo V, Pecchillo Cimmino T, Conti V, Caso P, Esposito G, Russo V, Filippelli A, Ammendola R, Cattaneo F. Regulation of Inflammation and Oxidative Stress by Formyl Peptide Receptors in Cardiovascular Disease Progression. Life (Basel) 2021; 11:243. [PMID: 33804219 PMCID: PMC7998928 DOI: 10.3390/life11030243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the most important regulators of cardiac function and are commonly targeted for medical therapeutics. Formyl-Peptide Receptors (FPRs) are members of the GPCR superfamily and play an emerging role in cardiovascular pathologies. FPRs can modulate oxidative stress through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) production whose dysregulation has been observed in different cardiovascular diseases. Therefore, many studies are focused on identifying molecular mechanisms of the regulation of ROS production. FPR1, FPR2 and FPR3 belong to the FPRs family and their stimulation triggers phosphorylation of intracellular signaling molecules and nonsignaling proteins that are required for NADPH oxidase activation. Some FPR agonists trigger inflammatory processes, while other ligands activate proresolving or anti-inflammatory pathways, depending on the nature of the ligands. In general, bacterial and mitochondrial formylated peptides activate a proinflammatory cell response through FPR1, while Annexin A1 and Lipoxin A4 are anti-inflammatory FPR2 ligands. FPR2 can also trigger a proinflammatory pathway and the switch between FPR2-mediated pro- and anti-inflammatory cell responses depends on conformational changes of the receptor upon ligand binding. Here we describe the detrimental or beneficial effects of the main FPR agonists and their potential role as new therapeutic and diagnostic targets in the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Valentina Maria Caso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Pio Caso
- Department of Cardiology, AORN Ospedali dei Colli-Monaldi, 80131 Naples, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| | - Vincenzo Russo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| |
Collapse
|
9
|
Kim J, Choi JW, Namkung J. Expression Profile of Mouse Gm20594, Nuclear-Encoded Humanin-Like Gene. J Lifestyle Med 2021; 11:13-22. [PMID: 33763338 PMCID: PMC7957044 DOI: 10.15280/jlm.2021.11.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mitochondrial-derived peptides (MDPs) such as MOTS-c and humanin have been studied for their cytoprotective functions. In mice, humanin-encoding Mtrnr2 is a mitochondrial pseudogene, and the humanin-like peptide is encoded by the nuclear Gm20594 gene. However, endogenous tissue-specific expression profiles of Gm20594 have not yet been identified. Methods Mtrnr1 and Gm20594 expression was profiled via reverse transcription using only oligo(dT) primers from tissues of C57BL6/J mice. To analyze altered expression upon mitochondrial biogenesis, C2C12 myocytes and brown adipocytes were differentiated. Mitochondrial DNA copy numbers were quantified for normalization. Results Both Mtrnr1 and Gm20594 were highly expressed in brown adipose tissue. When normalized against mitochondrial content, Mtrnr1 was identified as being highly expressed in the duodenum, followed by the jejunum. In models of mitochondrial biogenesis, both Mtrnr1 and Gm20594 were upregulated during myocyte and brown adipocyte differentiation. Increased Mtrnr1 expression during brown adipocyte differentiation remained significant after normalization against mitochondrial DNA copy number, whereas myocyte differentiation exhibited biphasic upregulation and downregulation in early and late phases, respectively. Conclusion Nuclear-encoded Gm20594 showed similar expression patterns of mitochondrial-encoded Mtrnr1. Brown adipose tissue presented the highest basal expression levels of Gm20594 and Mtrnr1. When normalized against mitochondrial DNA copy number, gut tissues exhibited the highest expression of Mtrnr1. Upregulation of Mtrnr1 during mitochondrial biogenesis is independent of mitochondrial content.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong-Whan Choi
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
10
|
Cai H, Liu Y, Men H, Zheng Y. Protective Mechanism of Humanin Against Oxidative Stress in Aging-Related Cardiovascular Diseases. Front Endocrinol (Lausanne) 2021; 12:683151. [PMID: 34177809 PMCID: PMC8222669 DOI: 10.3389/fendo.2021.683151] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological reactive oxygen species (ROS) are important regulators of intercellular signal transduction. Oxidative and antioxidation systems maintain a dynamic balance under physiological conditions. Increases in ROS levels destroy the dynamic balance, leading to oxidative stress damage. Oxidative stress is involved in the pathogenesis of aging-related cardiovascular diseases (ACVD), such as atherosclerosis, myocardial infarction, and heart failure, by contributing to apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation in mitochondria is the main source of ROS. Increasing evidence demonstrates the relationship between ACVD and humanin (HN), an endogenous peptide encoded by mitochondrial DNA. HN protects cardiomyocytes, endothelial cells, and fibroblasts from oxidative stress, highlighting its protective role in atherosclerosis, ischemia-reperfusion injury, and heart failure. Herein, we reviewed the signaling pathways associated with the HN effects on redox signals, including Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2), chaperone-mediated autophagy (CMA), c-jun NH2 terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK), adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3). Furthermore, we discussed the relationship among HN, redox signaling pathways, and ACVD. Finally, we propose that HN may be a candidate drug for ACVD.
Collapse
|