1
|
Ma B, Hong Z, Zhang L, Ma L, Duan J, Gao Y, Wang M, Zhang Y. Reclassifying a Novel POMT1 Variant by Integrating Functional Analysis and Bioinformatics: Implications for Preimplantation Genetic Testing. Reprod Sci 2025; 32:1612-1625. [PMID: 39739288 DOI: 10.1007/s43032-024-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
The advancement of next-generation sequencing has spurred the growing adoption of whole-exome sequencing (WES) for genetic screening. Preimplantation genetic testing for monogenic disorders (PGT-M) can effectively prevent the transmission of pathogenic variants. However, interpreting vast data volumes and ensuring precise genetic counseling, especially with variants of uncertain significance (VUS), remains challenging. In this study, we investigated a family with recurrent fetal malformations detected by prenatal ultrasound. WES identified compound heterozygous POMT1 variants, c.1052 + 1G > A and c.1483G > A in the proband; the latter was initially categorized as a VUS. Then our bioinformatics analysis revealed that c.1483G > A variant was located in a highly conserved domain essential for POMT1's enzymatic activity, potentially altering the protein's 3D structure. In vitro studies using HEK293T cells showed that the variant led to aberrant POMT1 mRNA and protein accumulation, impaired cell viability, and abnormal protein localization in the cytoplasm, indicating disruption of normal glycosylation processes. Combining bioinformatics analysis with in vitro experiments, we reclassified the c.1483G > A variant as likely pathogenic. Subsequently, the couple opted for PGT-M, culminating in the birth of a healthy child. Our findings underscore the pivotal role of genetic testing in recurrent fetal malformations and expand the spectrum of POMT1 variants. The successful reclassification of the variant by integrating in vitro experiments with bioinformatics provides substantial evidence for clinicians implementing PGT-M, offering a feasible strategy for counseling with VUS detected by WES.
Collapse
Affiliation(s)
- Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Li Zhang
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Jie Duan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
2
|
Hopkinson M, Pitsillides AA. Extracellular matrix: Dystroglycan interactions-Roles for the dystrophin-associated glycoprotein complex in skeletal tissue dynamics. Int J Exp Pathol 2025; 106:e12525. [PMID: 39923120 PMCID: PMC11807010 DOI: 10.1111/iep.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/10/2025] Open
Abstract
Contributions made by the dystrophin-associated glycoprotein complex (DGC) to cell-cell and cell-extracellular matrix (ECM) interactions are vital in development, homeostasis and pathobiology. This review explores how DGC functions may extend to skeletal pathophysiology by appraising the known roles of its major ECM ligands, and likely associated DGC signalling pathways, in regulating cartilage and bone cell behaviour and emergent skeletal phenotypes. These considerations will be contextualised by highlighting the potential of studies into the role of the DGC in isolated chondrocytes, osteoblasts and osteoclasts, and by fuller deliberation of skeletal phenotypes that may emerge in very young mice lacking vital, yet diverse core elements of the DGC. Our review points to roles for individual DGC components-including the glycosylation of dystroglycan itself-beyond the establishment of membrane stability which clearly accounts for severe muscle phenotypes in muscular dystrophy. It implies that the short stature, low bone mineral density, poor bone health and greater fracture risk in these patients, which has been attributed due to primary deficiencies in muscle-evoked skeletal loading, may instead arise due to primary roles for the DGC in controlling skeletal tissue (re)modelling.
Collapse
Affiliation(s)
- Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| |
Collapse
|
3
|
Tan RL, Sciandra F, Hübner W, Bozzi M, Reimann J, Schoch S, Brancaccio A, Blaess S. The missense mutation C667F in murine β-dystroglycan causes embryonic lethality, myopathy and blood-brain barrier destabilization. Dis Model Mech 2024; 17:dmm050594. [PMID: 38616731 PMCID: PMC11212641 DOI: 10.1242/dmm.050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a β-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in β-DG causes muscle-eye-brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant β-DG is altered in the glial perivascular end-feet, resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and β-DG protein levels are significantly reduced in muscle and brain of mutant mice. Owing to the partially penetrant developmental phenotype of the C669F β-DG mice, they represent a novel and highly valuable mouse model with which to study the molecular effects of β-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.
Collapse
Affiliation(s)
- Rui Lois Tan
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Francesca Sciandra
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Manuela Bozzi
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie. Sezione di Biochimica. Università Cattolica del Sacro Cuore di Roma, 00168 Rome, Italy
| | - Jens Reimann
- Department of Neurology, Neuromuscular Diseases Section, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Synaptic Neuroscience Team, Institute of Neuropathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Andrea Brancaccio
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
4
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
5
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
6
|
Nur Villar-Quiles R, Romero NB, Tanya S. [JAG2-related muscular dystrophy: When differential diagnosis matters]. Med Sci (Paris) 2021; 37 Hors série n° 1:40-43. [PMID: 34878394 DOI: 10.1051/medsci/2021191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
JAG2 has recently been involved in autosomal recessive forms of muscular dystrophy as illustrated in this clinical vignette. In many ways, this disease can mimick a COL6-related retractile myopathy including at the imaging level.
Collapse
Affiliation(s)
- Rocio Nur Villar-Quiles
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, service de neuromyologie, APHP, Institut de Myologie, Paris, France - Sorbonne Université - Inserm, Centre de Recherche en Myologie, Paris, France
| | - Norma B Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, APHP, Sorbonne Université, Paris, France
| | - Stojkovic Tanya
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, service de neuromyologie, APHP, Institut de Myologie, Paris, France - Sorbonne Université - Inserm, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
7
|
Shelton GD, Minor KM, Guo LT, Friedenberg SG, Cullen JN, Hord JM, Venzke D, Anderson ME, Devereaux M, Prouty SJ, Handelman C, Campbell KP, Mickelson JR. Muscular dystrophy-dystroglycanopathy in a family of Labrador retrievers with a LARGE1 mutation. Neuromuscul Disord 2021; 31:1169-1178. [PMID: 34654610 PMCID: PMC8963908 DOI: 10.1016/j.nmd.2021.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Alpha-dystroglycan (αDG) is a highly glycosylated cell surface protein with a significant role in cell-to-extracellular matrix interactions in muscle. αDG interaction with extracellular ligands relies on the activity of the LARGE1 glycosyltransferase that synthesizes and extends the heteropolysaccharide matriglycan. Abnormalities in αDG glycosylation and formation of matriglycan are the pathogenic mechanisms for the dystroglycanopathies, a group of congenital muscular dystrophies. Muscle biopsies were evaluated from related 6-week-old Labrador retriever puppies with poor suckling, small stature compared to normal litter mates, bow-legged stance and markedly elevated creatine kinase activities. A dystrophic phenotype with marked degeneration and regeneration, multifocal mononuclear cell infiltration and endomysial fibrosis was identified on muscle cryosections. Single nucleotide polymorphism (SNP) array genotyping data on the family members identified three regions of homozygosity in 4 cases relative to 8 controls. Analysis of whole genome sequence data from one of the cases identified a stop codon mutation in the LARGE1 gene that truncates 40% of the protein. Immunofluorescent staining and western blotting demonstrated the absence of matriglycan in skeletal muscle and heart from affected dogs. Compared to control, LARGE enzyme activity was not detected. This is the first report of a dystroglycanopathy in dogs.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709 United States.
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709 United States
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| | - Jeffrey M Hord
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - David Venzke
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Mary E Anderson
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Megan Devereaux
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Sally J Prouty
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - Caryl Handelman
- Veterinary Housecalls of Long Island, Commack, NY 11725 United States
| | - Kevin P Campbell
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Howard Hughes Medical Institute, Roy J and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 United States
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108 United States
| |
Collapse
|
8
|
Greenig M, Melville A, Huntley D, Isalan M, Mielcarek M. Cross-Sectional Transcriptional Analysis of the Aging Murine Heart. Front Mol Biosci 2020; 7:565530. [PMID: 33102519 PMCID: PMC7545256 DOI: 10.3389/fmolb.2020.565530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease accounts for millions of deaths each year and is currently the leading cause of mortality worldwide. The aging process is clearly linked to cardiovascular disease, however, the exact relationship between aging and heart function is not fully understood. Furthermore, a holistic view of cardiac aging, linking features of early life development to changes observed in old age, has not been synthesized. Here, we re-purpose RNA-sequencing data previously-collected by our group, investigating gene expression differences between wild-type mice of different age groups that represent key developmental milestones in the murine lifespan. DESeq2's generalized linear model was applied with two hypothesis testing approaches to identify differentially-expressed (DE) genes, both between pairs of age groups and across mice of all ages. Pairwise comparisons identified genes associated with specific age transitions, while comparisons across all age groups identified a large set of genes associated with the aging process more broadly. An unsupervised machine learning approach was then applied to extract common expression patterns from this set of age-associated genes. Sets of genes with both linear and non-linear expression trajectories were identified, suggesting that aging not only involves the activation of gene expression programs unique to different age groups, but also the re-activation of gene expression programs from earlier ages. Overall, we present a comprehensive transcriptomic analysis of cardiac gene expression patterns across the entirety of the murine lifespan.
Collapse
Affiliation(s)
- Matthew Greenig
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrew Melville
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Derek Huntley
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Center for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Michal Mielcarek
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Center for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Crasto S, My I, Di Pasquale E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front Physiol 2020; 11:761. [PMID: 32719615 PMCID: PMC7349320 DOI: 10.3389/fphys.2020.00761] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of Lamin A/C gene (LMNA) cause laminopathies, a group of disorders associated with a wide spectrum of clinically distinct phenotypes, affecting different tissues and organs. Heart involvement is frequent and leads to cardiolaminopathy LMNA-dependent cardiomyopathy (LMNA-CMP), a form of dilated cardiomyopathy (DCM) typically associated with conduction disorders and arrhythmias, that can manifest either as an isolated event or as part of a multisystem phenotype. Despite the recent clinical and molecular developments in the field, there is still lack of knowledge linking specific LMNA gene mutations to the distinct clinical manifestations. Indeed, the severity and progression of the disease have marked interindividual variability, even amongst members of the same family. Studies conducted so far have described Lamin A/C proteins involved in diverse biological processes, that span from a structural role in the nucleus to the regulation of response to mechanical stress and gene expression, proposing various mechanistic hypotheses. However, none of those is per se able to fully justify functional and clinical phenotypes of LMNA-CMP; therefore, the role of Lamin A/C in cardiac pathophysiology still represents an open question. In this review we provide an update on the state-of-the-art studies on cardiolaminopathy, in the attempt to draw a line connecting molecular mechanisms to clinical manifestations. While investigators in this field still wonder about a clear genotype/phenotype correlation in LMNA-CMP, our intent here is to recapitulate common mechanistic hypotheses that link different mutations to similar clinical presentations.
Collapse
Affiliation(s)
- Silvia Crasto
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| | - Ilaria My
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Elisa Di Pasquale
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| |
Collapse
|
10
|
Daneshjoo O, hosseini A, Garshasbi M, Pizzuti A. Evidence of involvement of a novel VUS variant in the CHKB gene to congenital muscular dystrophy affection. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Cheung JK, Adams V, D'Souza D, James M, Day CJ, Jennings MP, Lyras D, Rood JI. The EngCP endo α-N-acetylgalactosaminidase is a virulence factor involved in Clostridium perfringens gas gangrene infections. Int J Med Microbiol 2020; 310:151398. [PMID: 31987726 DOI: 10.1016/j.ijmm.2020.151398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/11/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022] Open
Abstract
Clostridium perfringens is the causative agent of human clostridial myonecrosis; the major toxins involved in this disease are α-toxin and perfringolysin O. The RevSR two-component regulatory system has been shown to be involved in regulating virulence in a mouse myonecrosis model. Previous microarray and RNAseq analysis of a revR mutant implied that factors other than the major toxins may play a role in virulence. The RNAseq data showed that the expression of the gene encoding the EngCP endo α-N-acetylgalactosaminidase (CPE0693) was significantly down-regulated in a revR mutant. Enzymes from this family have been identified in several Gram-positive pathogens and have been postulated to contribute to their virulence. In this study, we constructed an engCP mutant of C. perfringens and showed that it was significantly less virulent than its wild-type parent strain. Virulence was restored by complementation in trans with the wild-type engCP gene. We also demonstrated that purified EngCP was able to hydrolyse α-dystroglycan derived from C2C12 mouse myotubes. However, EngCP had little effect on membrane permeability in mice, suggesting that EngCP may play a role other than the disruption of the structural integrity of myofibres. Glycan array analysis indicated that EngCP could recognise structures containing the monosaccharide N-acetlygalactosamine at 4C, but could recognise structures terminating in galactose, glucose and N-acetylglucosamine under conditions where EngCP was enzymatically active. In conclusion, we have obtained evidence that EngCP is required for virulence in C. perfringens and, although classical exotoxins are important for disease, we have now shown that an O-glycosidase also plays an important role in the disease process.
Collapse
Affiliation(s)
- Jackie K Cheung
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Danielle D'Souza
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Meagan James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| |
Collapse
|
12
|
Fenwick AJ, Awinda PO, Yarbrough-Jones JA, Eldridge JA, Rodgers BD, Tanner BCW. Demembranated skeletal and cardiac fibers produce less force with altered cross-bridge kinetics in a mouse model for limb-girdle muscular dystrophy 2i. Am J Physiol Cell Physiol 2019; 317:C226-C234. [PMID: 31091146 DOI: 10.1152/ajpcell.00524.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limb-girdle muscular dystrophy 2i (LGMD2i) is a dystroglycanopathy that compromises myofiber integrity and primarily reduces power output in limb muscles but can influence cardiac muscle as well. Previous studies of LGMD2i made use of a transgenic mouse model in which a proline-to-leucine (P448L) mutation in fukutin-related protein severely reduces glycosylation of α-dystroglycan. Muscle function is compromised in P448L mice in a manner similar to human patients with LGMD2i. In situ studies reported lower maximal twitch force and depressed force-velocity curves in medial gastrocnemius (MG) muscles from male P448L mice. Here, we measured Ca2+-activated force generation and cross-bridge kinetics in both demembranated MG fibers and papillary muscle strips from P448L mice. Maximal activated tension was 37% lower in MG fibers and 18% lower in papillary strips from P448L mice than controls. We also found slightly faster rates of cross-bridge recruitment and detachment in MG fibers from P448L than control mice. These increases in skeletal cross-bridge cycling could reduce the unitary force output from individual cross bridges by lowering the ratio of time spent in a force-bearing state to total cycle time. This suggests that the decreased force production in LGMD2i may be due (at least in part) to altered cross-bridge kinetics. This finding is notable, as the majority of studies germane to muscular dystrophies have focused on sarcolemma or whole muscle properties, whereas our findings suggest that the disease pathology is also influenced by potential downstream effects on cross-bridge behavior.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jacob A Yarbrough-Jones
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jennifer A Eldridge
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Washington Center for Muscle Biology, Washington State University , Pullman, Washington.,AAVogen, Inc. , Rockville, Maryland
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|
13
|
Ziyaee F, Shorafa E, Dastsooz H, Habibzadeh P, Nemati H, Saeed A, Silawi M, Farazi Fard MA, Faghihi MA, Dastgheib SA. A novel mutation in SEPN1 causing rigid spine muscular dystrophy 1: a Case report. BMC MEDICAL GENETICS 2019; 20:13. [PMID: 30642275 PMCID: PMC6332642 DOI: 10.1186/s12881-018-0743-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
Background Muscular dystrophies are a clinically and genetically heterogeneous group of disorders characterized by variable degrees of progressive muscle degeneration and weakness. There is a wide variability in the age of onset, symptoms and rate of progression in subtypes of these disorders. Herein, we present the results of our study conducted to identify the pathogenic genetic variation involved in our patient affected by rigid spine muscular dystrophy. Case presentation A 14-year-old boy, product of a first-cousin marriage, was enrolled in our study with failure to thrive, fatigue, muscular dystrophy, generalized muscular atrophy, kyphoscoliosis, and flexion contracture of the knees and elbows. Whole-exome sequencing (WES) was carried out on the DNA of the patient to investigate all coding regions and uncovered a novel, homozygous missense mutation in SEPN1 gene (c. 1379 C > T, p.Ser460Phe). This mutation has not been reported before in different public variant databases and also our database (BayanGene), so it is classified as a variation of unknown significance (VUS). Subsequently, it was confirmed that the novel variation was homozygous in our patient and heterozygous in his parents. Different bioinformatics tools showed the damaging effects of the variant on protein. Multiple sequence alignment using BLASTP on ExPASy and WebLogo, revealed the conservation of the mutated residue. Conclusion We reported a novel homozygous mutation in SEPN1 gene that expands our understanding of rigid spine muscular dystrophy. Although bioinformatics analyses of results were in favor of the pathogenicity of the mutation, functional studies are needed to establish the pathogenicity of the variant.
Collapse
Affiliation(s)
- Fateme Ziyaee
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Eslam Shorafa
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Dastsooz
- Italian Institute for Genomic Medicine (IIGM), University of Turin, Turin, Italy.,Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetic Center, Shiraz, Iran
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetic Center, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Nemati
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Saeed
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Silawi
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetic Center, Shiraz, Iran
| | - Mohammad Ali Farazi Fard
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetic Center, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetic Center, Shiraz, Iran.,Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Seyed Alireza Dastgheib
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetic Center, Shiraz, Iran. .,Department of Genetic, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Detection of variants in dystroglycanopathy-associated genes through the application of targeted whole-exome sequencing analysis to a large cohort of patients with unexplained limb-girdle muscle weakness. Skelet Muscle 2018; 8:23. [PMID: 30060766 PMCID: PMC6066920 DOI: 10.1186/s13395-018-0170-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background Dystroglycanopathies are a clinically and genetically heterogeneous group of disorders that are typically characterised by limb-girdle muscle weakness. Mutations in 18 different genes have been associated with dystroglycanopathies, the encoded proteins of which typically modulate the binding of α-dystroglycan to extracellular matrix ligands by altering its glycosylation. This results in a disruption of the structural integrity of the myocyte, ultimately leading to muscle degeneration. Methods Deep phenotypic information was gathered using the PhenoTips online software for 1001 patients with unexplained limb-girdle muscle weakness from 43 different centres across 21 European and Middle Eastern countries. Whole-exome sequencing with at least 250 ng DNA was completed using an Illumina exome capture and a 38 Mb baited target. Genes known to be associated with dystroglycanopathies were analysed for disease-causing variants. Results Suspected pathogenic variants were detected in DPM3, ISPD, POMT1 and FKTN in one patient each, in POMK in two patients, in GMPPB in three patients, in FKRP in eight patients and in POMT2 in ten patients. This indicated a frequency of 2.7% for the disease group within the cohort of 1001 patients with unexplained limb-girdle muscle weakness. The phenotypes of the 27 patients were highly variable, yet with a fundamental presentation of proximal muscle weakness and elevated serum creatine kinase. Conclusions Overall, we have identified 27 patients with suspected pathogenic variants in dystroglycanopathy-associated genes. We present evidence for the genetic and phenotypic diversity of the dystroglycanopathies as a disease group, while also highlighting the advantage of incorporating next-generation sequencing into the diagnostic pathway of rare diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0170-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Shajahan A, Supekar NT, Heiss C, Ishihara M, Azadi P. Tool for Rapid Analysis of Glycopeptide by Permethylation via One-Pot Site Mapping and Glycan Analysis. Anal Chem 2017; 89:10734-10743. [PMID: 28921966 PMCID: PMC5973789 DOI: 10.1021/acs.analchem.7b01730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To overcome the challenges in the analysis of protein glycosylation, we have developed a comprehensive and universal tool through permethylation of glycopeptides and their tandem mass spectrometric analysis. This method has the potential to simplify glycoprotein analysis by integrating glycan sequencing and glycopeptide analysis in a single experiment. Moreover, glycans with unique glycosidic linkages, particularly from prokaryotes, which are resistant to enzymatic or chemical release, could also be detected and analyzed by this methodology. Here we present a strategy for the permethylation of intact glycopeptides, obtained via controlled protease digest, and their characterization by using advanced mass spectrometry. We used bovine RNase B, human transferrin, and bovine fetuin as models to demonstrate the feasibility of the method. Remarkably, the glycan patterns, glycosylation site, and their occupancy by N-glycans are all detected and identified in a single experimental procedure. Acquisition on a high resolution tandem-MSn system with fragmentation methodologies such as high-energy collision dissociation (HCD) and collision induced dissociation (CID), provided the complete sequence of the glycan structures attached to the peptides. The behavior of 20 natural amino acids under the basic permethylation conditions was probed by permethylating a library of short synthetic peptides. Our studies indicate that the permethylation imparts simple, limited, and predictable chemical transformations on peptides and do not interfere with the interpretation of MS/MS data. In addition to this, permethylated O-glycans in unreduced form (released by β elimination) were also detected, allowing us to profile O-linked glycan structures simultaneously.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Nitin T. Supekar
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Rehwaldt JD, Rodgers BD, Lin DC. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i. J Appl Physiol (1985) 2017; 123:1698-1707. [PMID: 28860175 DOI: 10.1152/japplphysiol.00744.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle contractile properties are significantly compromised in a recently developed model for limb-girdle muscular dystrophy 2i, the P448L mouse. It further identifies novel pathological markers of muscle function that are suitable for developing therapeutics and for better understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Jordan D Rehwaldt
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington.,Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|
17
|
Balcin H, Palmio J, Penttilä S, Nennesmo I, Lindfors M, Solders G, Udd B. Late-onset limb-girdle muscular dystrophy caused by GMPPB mutations. Neuromuscul Disord 2017; 27:627-630. [DOI: 10.1016/j.nmd.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/26/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022]
|
18
|
Maricelli JW, Kagel DR, Bishaw YM, Nelson OL, Lin DC, Rodgers BD. Sexually dimorphic skeletal muscle and cardiac dysfunction in a mouse model of limb girdle muscular dystrophy 2i. J Appl Physiol (1985) 2017; 123:1126-1138. [PMID: 28663375 DOI: 10.1152/japplphysiol.00287.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
The fukutin-related protein P448L mutant mouse replicates many pathologies common to limb girdle muscular dystrophy 2i (LGMD2i) and is a potentially strong candidate for relevant drug screening studies. Because striated muscle function remains relatively uncharacterized in this mouse, we sought to identify metabolic, functional and histological metrics of exercise and cardiac performance. This was accomplished by quantifying voluntary exercise on running wheels, forced exercise on respiratory treadmills and cardiac output with echocardiography and isoproterenol stress tests. Voluntary exercise revealed few differences between wild-type and P448L mice. By contrast, peak oxygen consumption (VO2peak) was either lower in P448L mice or reduced with repeated low intensity treadmill exercise while it increased in wild-type mice. P448L mice fatigued quicker and ran shorter distances while expending 2-fold more calories/meter. They also received over 6-fold more motivational shocks with repeated exercise. Differences in VO2peak and resting metabolic rate were consistent with left ventricle dysfunction, which often develops in human LGMD2i patients and was more evident in female P448L mice, as indicated by lower fractional shortening and ejection fraction values and higher left ventricle systolic volumes. Several traditional markers of dystrophinopathies were expressed in P448L mice and were exacerbated by exercise, some in a muscle-dependent manner. These include elevated serum creatine kinase and muscle central nucleation, smaller muscle fiber cross-sectional area and more striated muscle fibrosis. These studies together identified several markers of disease pathology that are shared between P448L mice and human subjects with LGMD2i. They also identified novel metrics of exercise and cardiac performance that could prove invaluable in preclinical drug trials.NEW & NOTEWORTHY Limb-girdle muscular dystrophy 2i is a rare dystroglycanopathy that until recently lacked an appropriate animal model. Studies with the FKRP P448L mutant mouse began assessing muscle structure and function as well as running gait. Our studies further characterize systemic muscle function using exercise and cardiac performance. They identified many markers of respiratory, cardiac and skeletal muscle function that could prove invaluable to better understanding the disease and more importantly, to preclinical drug trials.
Collapse
Affiliation(s)
- Joseph W Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Denali R Kagel
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Yemeserach M Bishaw
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - O Lynne Nelson
- Veterinary Clinical Sciences, Washington State University, Pullman, Washington
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| | - Buel D Rodgers
- School of Molecular Biosciences, Washington State University, Pullman, Washington; .,Department of Animal Sciences; Washington Center for Muscle Biology, Washington State University, Pullman, Washington
| |
Collapse
|
19
|
Structural divergence of essential triad ribbon synapse proteins among placental mammals - Implications for preclinical trials in photoreceptor transplantation therapy. Exp Eye Res 2017; 159:156-167. [PMID: 28322827 DOI: 10.1016/j.exer.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
As photoreceptor transplantation rapidly moves closer to the clinic, verifying graft efficacy in animal models may have unforeseen xenogeneic barriers. Although photoreceptor transplants have most convincingly exhibited functional synaptogenesis in conspecific studies, such evidence (while ruling out false-positives due to: viral graft labeling, fusion/cytosolic transfer, or neuroprotection) has not yet been shown for discordant xenografts. From this, a fundamental question should be raised: is useful xenosynaptogenesis likely between human photoreceptors and mouse retina? The triad ribbon synapse (TRS) that would normally form is unique and contains trans-synaptic proteins essential to its formation and function. Thus, could interspecific structural divergence be present that may inhibit this trans-synaptic bridge in discordant xenografts? In an effort to address this question computationally, we compared eight recently confirmed (including subcellular location) TRS specific (or predominantly expressed at the TRS) proteins among placental mammals (1-to-1 orthologs) using HyPhy selection analysis (a predictive measure of structural divergence) and by using Phyre2 tertiary structural modeling. Here, selection analysis revealed strong positive (diversifying) selection acting on a particularly important TRS protein: pikachurin. This positive selection was localized to its second Laminin-G (LG)-like domain and on its N-terminal domain - a putative region of trans-synaptic interaction. Localization of structural divergence to the N-terminus of each putative post-translational cleavage (PTC) product may suggest neofunctionalization from ancestral uncleaved pikachurin - this would be consistent with a recent counter-paradigm report of pikachurin cleavage predominating at the TRS. From this, we suggest a dual role after cleavage where the N-terminal fragment can still mediate the trans-synaptic bridge, while the C-terminal fragment may act as a diffusible trophic or "homing" factor for bipolar cell dendrite migration. Tertiary structural models mirrored the conformational divergence predicted by selection analysis. With human and mouse pikachurin (as well as other TRS proteins) likely to diverge considerably in structure among placental mammals - alongside known inter-mammalian variation in TRS phenotype and protein repertoire, high levels of diversifying selection acting on genes involving sensation, considerable timespans allowing for genetic drift that can create xenogeneic epistasis, and uncertainty surrounding the extent of xenosynaptogenesis in PPC transplant studies to date - use of distantly related hosts to test human photoreceptor graft therapeutic efficacy should be considered with caution.
Collapse
|
20
|
Tang JD, McAnany CE, Mura C, Lampe KJ. Toward a Designable Extracellular Matrix: Molecular Dynamics Simulations of an Engineered Laminin-Mimetic, Elastin-Like Fusion Protein. Biomacromolecules 2016; 17:3222-3233. [DOI: 10.1021/acs.biomac.6b00951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- James D. Tang
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles E. McAnany
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Cameron Mura
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kyle J. Lampe
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
21
|
Ryckebüsch L, Hernandez L, Wang C, Phan J, Yelon D. Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Development 2016; 143:2965-72. [PMID: 27471259 DOI: 10.1242/dev.139485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
Skeletal muscle morphogenesis depends upon interactions between developing muscle fibers and the extracellular matrix (ECM) that anchors fibers to the myotendinous junction (MTJ). The pathways that organize the ECM and regulate its engagement by cell-matrix adhesion complexes (CMACs) are therefore essential for muscle integrity. Here, we demonstrate the impact of transmembrane protein 2 (tmem2) on cell-matrix interactions during muscle morphogenesis in zebrafish. Maternal-zygotic tmem2 mutants (MZtmem2) exhibit muscle fiber detachment, in association with impaired laminin organization and ineffective fibronectin degradation at the MTJ. Similarly, disorganized laminin and fibronectin surround MZtmem2 cardiomyocytes, which could account for their hindered movement during cardiac morphogenesis. In addition to ECM defects, MZtmem2 mutants display hypoglycosylation of α-dystroglycan within the CMAC, which could contribute to the observed fiber detachment. Expression of the Tmem2 ectodomain can rescue aspects of the MZtmem2 phenotype, consistent with a possible extracellular function of Tmem2. Together, our results suggest that Tmem2 regulates cell-matrix interactions by affecting both ECM organization and CMAC activity. These findings evoke possible connections between the functions of Tmem2 and the etiologies of congenital muscular dystrophies, particularly dystroglycanopathies.
Collapse
Affiliation(s)
- Lucile Ryckebüsch
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lydia Hernandez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carole Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenny Phan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Yang X, Kim SM, Ruzanski R, Chen Y, Moses S, Ling WL, Li X, Wang SC, Li H, Ambrogelly A, Richardson D, Shameem M. Ultrafast and high-throughput N-glycan analysis for monoclonal antibodies. MAbs 2016; 8:706-17. [PMID: 27082290 DOI: 10.1080/19420862.2016.1156828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glycosylation is a critical attribute for development and manufacturing of therapeutic monoclonal antibodies (mAbs) in the pharmaceutical industry. Conventional antibody glycan analysis is usually achieved by the 2-aminobenzamide (2-AB) hydrophilic interaction liquid chromatography (HILIC) method following the release of glycans. Although this method produces satisfactory results, it has limited use for screening a large number of samples because it requires expensive reagents and takes several hours or even days for the sample preparation. A simple and rapid glycan analysis method was not available. To overcome these constraints, we developed and compared 2 ultrafast methods for antibody glycan analysis (UMAG) that involve the rapid generation and purification of glycopeptides in either organic solvent or aqueous buffer followed by label-free quantification using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Both methods quickly yield N-glycan profiles of test antibodies similar to those obtained by the 2-AB HILIC-HPLC method. In addition, the UMAG method performed in aqueous buffer has a shorter assay time of less than 15 min, and enables high throughput analysis in 96-well PCR plates with minimal sample handling. This method, the fastest, and simplest as reported thus far, has been evaluated for glycoprofiling of mAbs expressed under various cell culture conditions, as well as for the evaluation of antibody culture clones and various production batches. Importantly the method sensitively captured changes in glycoprofiles detected by traditional 2-AB HILIC-HPLC or HILIC-UPLC. The simplicity, high speed, and low cost of this method may facilitate basic research and process development for novel mAbs and biosimilar products.
Collapse
Affiliation(s)
- Xiaoyu Yang
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Sunnie Myung Kim
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Richard Ruzanski
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Yuetian Chen
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Sarath Moses
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Wai Lam Ling
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Xiaojuan Li
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Shao-Chun Wang
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Huijuan Li
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | | | - Daisy Richardson
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| | - Mohammed Shameem
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , USA
| |
Collapse
|
23
|
Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd and mdx/Largemyd. PLoS One 2015; 10:e0117835. [PMID: 25710816 PMCID: PMC4339395 DOI: 10.1371/journal.pone.0117835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022] Open
Abstract
Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.
Collapse
|
24
|
Sbardella D, Sciandra F, Gioia M, Marini S, Gori A, Giardina B, Tarantino U, Coletta M, Brancaccio A, Bozzi M. α-dystroglycan is a potential target of matrix metalloproteinase MMP-2. Matrix Biol 2014; 41:2-7. [PMID: 25483986 DOI: 10.1016/j.matbio.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
Dystroglycan (DG) is a member of the glycoprotein complex associated to dystrophin and composed by two subunits, the β-DG, a transmembrane protein, and the α-DG, an extensively glycosylated extracellular protein. The β-DG ectodomain degradation by the matrix metallo-proteinases (i.e., MMP-2 and MMP-9) in both, pathological and physiological conditions, has been characterized in detail in previous publications. Since the amounts of α-DG and β-DG at the cell surface decrease when gelatinases are up-regulated, we investigated the degradation of α-DG subunit by MMP-2. Present data show, for the first time, that the proteolysis of α-DG indeed occurs on a native glycosylated molecule enriched from rabbit skeletal muscle. In order to characterize the α-DG portion, which is more prone to cleavage by MMP-2, we performed different degradations on tailored recombinant domains of α-DG spanning the whole subunit. The overall bulk of results casts light on a relevant susceptibility of the α-DG to MMP-2 degradation with particular reference to its C-terminal domain, thus opening a new scenario on the role of gelatinases (in particular of MMP-2) in the degradation of this glycoprotein complex, taking place in the course of pathological processes.
Collapse
Affiliation(s)
- Diego Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Magda Gioia
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (CNR), Milan, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Tarantino
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Universita` di Roma Tor Vergata, Rome, Italy; Centro di Biomedicina Spaziale, Università di Roma Tor Vergata, Rome, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (CNR) c/c Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
25
|
Jumbo-Lucioni P, Parkinson W, Broadie K. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model. Dis Model Mech 2014; 7:1365-78. [PMID: 25326312 PMCID: PMC4257005 DOI: 10.1242/dmm.017137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand levels, which are also corrected by dGALK co-removal and sugarless overexpression. These results reveal synaptomatrix glycosylation losses, altered trans-synaptic signaling pathway components, defective synaptogenesis and impaired coordinated movement in a CG neurological disease model.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Kumar VS, Sangeeta VB, Shubrata KS, Nagaraja AV. A novel case of 'muscle eye brain disease' in an immigrant family in India. J Pediatr Neurosci 2014; 9:88-9. [PMID: 24891919 PMCID: PMC4040049 DOI: 10.4103/1817-1745.131501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Vikram S Kumar
- Department of Pediatrics, Division of Child Psychiatry, Subbaiah Institute of Medical Sciences and Research Centre, Purlae, Shimoga, India
| | - V B Sangeeta
- Department of Pediatrics, Raja Rajeshwari Medical College, Bangalore, Karnataka, India
| | - K S Shubrata
- Department of Psychiatry, Division of Child Psychiatry, Subbaiah Institute of Medical Sciences and Research Centre, Purlae, Shimoga, India
| | - A V Nagaraja
- Consultant Neurologist, Nagaraja Neuroclinic, Shimoga, India
| |
Collapse
|
27
|
Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94:161-75. [PMID: 24507773 DOI: 10.1016/j.ajhg.2013.10.024] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Over 100 human genetic disorders result from mutations in glycosylation-related genes. In 2013, a new glycosylation disorder was reported every 17 days. This trend will probably continue given that at least 2% of the human genome encodes glycan-biosynthesis and -recognition proteins. Established biosynthetic pathways provide many candidate genes, but finding unanticipated mutated genes will offer new insights into glycosylation. Simple glycobiomarkers can be used in narrowing the candidates identified by exome and genome sequencing, and those can be validated by glycosylation analysis of serum or cells from affected individuals. Model organisms will expand the understanding of these mutations' impact on glycosylation and pathology. Here, we highlight some recently discovered glycosylation disorders and the barriers, breakthroughs, and surprises they presented. We predict that some glycosylation disorders might occur with greater frequency than current estimates of their prevalence. Moreover, the prevalence of some disorders differs substantially between European and African Americans.
Collapse
Affiliation(s)
- Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Halfter W, Sebag J, Cunningham ET. II.E. Vitreoretinal Interface and Inner Limiting Membrane. VITREOUS 2014:165-191. [DOI: 10.1007/978-1-4939-1086-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Live D, Wells L, Boons GJ. Dissecting the molecular basis of the role of the O-mannosylation pathway in disease: α-dystroglycan and forms of muscular dystrophy. Chembiochem 2013; 14:2392-2402. [PMID: 24318691 PMCID: PMC3938021 DOI: 10.1002/cbic.201300417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 11/10/2022]
Abstract
Dystroglycanopathies form a subgroup of muscular dystrophies that arise from defects in enzymes that are implicated in the recently elucidated O-mannosylation pathway, thereby resulting in underglycosylation of α-dystroglycan. The emerging identification of additional brain proteins modified by O-mannosylation provides a broader context for interpreting the range of neurological consequences associated with dystroglycanopathies. This form of glycosylation is associated with protein mucin-like domains that present numerous serine and threonine residues as possible sites for modification. Furthermore, the O-Man glycans coexist in this region with O-GalNAc glycans (conventionally associated with such protein sequences), thus resulting in a complex glycoconjugate landscape. Sorting out the relationships between the various molecular defects in glycosylation and the modes of disease presentation, as well as the regulatory interplay among the O-Man glycans and the effects on other modes of glycosylation in the same domain, is challenging. Here we provide a perspective on chemical biology approaches employing synthetic and analytical methods to address these questions.
Collapse
Affiliation(s)
- David Live
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA), Phone: (+1) 706-542-4401, Fax: (+1) 706-542-4412
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA), Phone: (+1) 706-542-4401, Fax: (+1) 706-542-4412
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA), Phone: (+1) 706-542-4401, Fax: (+1) 706-542-4412
| |
Collapse
|
30
|
Yagi H, Nakagawa N, Saito T, Kiyonari H, Abe T, Toda T, Wu SW, Khoo KH, Oka S, Kato K. AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan. Sci Rep 2013; 3:3288. [PMID: 24256719 PMCID: PMC3836086 DOI: 10.1038/srep03288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022] Open
Abstract
Dystroglycanopathy is a major class of congenital muscular dystrophy that is caused by a deficiency of functional glycans on α-dystroglycan (α-DG) with laminin-binding activity. A product of a recently identified causative gene for dystroglycanopathy, AGO61, acted in vitro as a protein O-mannose β-1, 4-N-acetylglucosaminyltransferase, although it was not functionally characterized. Here we show the phenotypes of AGO61-knockout mice and demonstrate that AGO61 is indispensable for the formation of laminin-binding glycans of α-DG. AGO61-knockout mouse brain exhibited abnormal basal lamina formation and a neuronal migration defect due to a lack of laminin-binding glycans. Furthermore, our results indicate that functional α-DG glycosylation was primed by AGO61-dependent GlcNAc modifications of specific threonine-linked mannosyl moieties of α-DG. These findings provide a key missing link for understanding how the physiologically critical glycan motif is displayed on α-DG and provides new insights on the pathological mechanisms of dystroglycanopathy.
Collapse
Affiliation(s)
- Hirokazu Yagi
- 1] Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Whitmore C, Fernandez-Fuente M, Booler H, Parr C, Kavishwar M, Ashraf A, Lacey E, Kim J, Terry R, Ackroyd MR, Wells KE, Muntoni F, Wells DJ, Brown SC. The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice. Hum Mol Genet 2013; 23:1842-55. [PMID: 24234655 DOI: 10.1093/hmg/ddt577] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in fukutin-related protein (FKRP) underlie a group of muscular dystrophies associated with the hypoglycosylation of α-dystroglycan (α-DG), a proportion of which show central nervous system involvement. Our original FKRP knock-down mouse (FKRP(KD)) replicated many of the characteristics seen in patients at the severe end of the dystroglycanopathy spectrum but died perinatally precluding its full phenotyping and use in testing potential therapies. We have now overcome this by crossing FKRP(KD) mice with those expressing Cre recombinase under the Sox1 promoter. Owing to our original targeting strategy, this has resulted in the restoration of Fkrp levels in the central nervous system but not the muscle, thereby generating a new model (FKRP(MD)) which develops a progressive muscular dystrophy resembling what is observed in limb girdle muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) is a bifunctional glycosyltransferase previously shown to hyperglycosylate α-DG. To investigate the therapeutic potential of LARGE up-regulation, we have now crossed the FKRP(MD) line with one overexpressing LARGE and show that, contrary to expectation, this results in a worsening of the muscle pathology implying that any future strategies based upon LARGE up-regulation require careful management.
Collapse
Affiliation(s)
- Charlotte Whitmore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Parkinson W, Dear ML, Rushton E, Broadie K. N-glycosylation requirements in neuromuscular synaptogenesis. Development 2013; 140:4970-81. [PMID: 24227656 DOI: 10.1242/dev.099192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural development requires N-glycosylation regulation of intercellular signaling, but the requirements in synaptogenesis have not been well tested. All complex and hybrid N-glycosylation requires MGAT1 (UDP-GlcNAc:α-3-D-mannoside-β1,2-N-acetylglucosaminyl-transferase I) function, and Mgat1 nulls are the most compromised N-glycosylation condition that survive long enough to permit synaptogenesis studies. At the Drosophila neuromuscular junction (NMJ), Mgat1 mutants display selective loss of lectin-defined carbohydrates in the extracellular synaptomatrix, and an accompanying accumulation of the secreted endogenous Mind the gap (MTG) lectin, a key synaptogenesis regulator. Null Mgat1 mutants exhibit strongly overelaborated synaptic structural development, consistent with inhibitory roles for complex/hybrid N-glycans in morphological synaptogenesis, and strengthened functional synapse differentiation, consistent with synaptogenic MTG functions. Synapse molecular composition is surprisingly selectively altered, with decreases in presynaptic active zone Bruchpilot (BRP) and postsynaptic Glutamate receptor subtype B (GLURIIB), but no detectable change in a wide range of other synaptic components. Synaptogenesis is driven by bidirectional trans-synaptic signals that traverse the glycan-rich synaptomatrix, and Mgat1 mutation disrupts both anterograde and retrograde signals, consistent with MTG regulation of trans-synaptic signaling. Downstream of intercellular signaling, pre- and postsynaptic scaffolds are recruited to drive synaptogenesis, and Mgat1 mutants exhibit loss of both classic Discs large 1 (DLG1) and newly defined Lethal (2) giant larvae [L(2)GL] scaffolds. We conclude that MGAT1-dependent N-glycosylation shapes the synaptomatrix carbohydrate environment and endogenous lectin localization within this domain, to modulate retention of trans-synaptic signaling ligands driving synaptic scaffold recruitment during synaptogenesis.
Collapse
Affiliation(s)
- William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
33
|
Liang WC, Hayashi YK, Ogawa M, Wang CH, Huang WT, Nishino I, Jong YJ. Limb-girdle muscular dystrophy type 2I is not rare in Taiwan. Neuromuscul Disord 2013; 23:675-81. [PMID: 23800702 DOI: 10.1016/j.nmd.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 02/06/2023]
Abstract
Alpha-dystroglycanopathy is caused by the glycosylation defects of α-dystroglycan (α-DG). The clinical spectrum ranges from severe congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all α-dystroglycanopathies, LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia. We screened uncategorized 40 LGMD and 10 CMD patients by immunohistochemistry for α-DG and found 7 with reduced α-DG immunostaining. Immunoblotting with laminin overlay assay confirmed the impaired glycosylation of α-DG. Among them, five LGMD patients harbored FKRP mutations leading to the diagnosis of LGMD2I. One common mutation, c.948delC, was identified and cardiomyopathy was found to be very common in our cohort. Muscle images showed severe involvement of gluteal muscles and posterior compartment at both thigh and calf levels, which is helpful for the differential diagnosis. Due to the higher frequency of LGMD2I with cardiomyopathy in our series, the early introduction of mutation analysis of FKRP in undiagnosed Taiwanese LGMD patients is highly recommended.
Collapse
Affiliation(s)
- Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Nakagawa N, Takematsu H, Oka S. HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on α-dystroglycan. Glycobiology 2013; 23:1066-74. [PMID: 23723439 DOI: 10.1093/glycob/cwt043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dystroglycan (DG) is a cell surface glycoprotein that connects extracellular matrix molecules to the intracellular cytoskeleton, functioning as mechanical and signaling axes in various physiological events. Since the ligand-binding activity of DG strictly depends on O-mannosyl glycans attached to its extracellular α-DG subunit, aberrant glycosylation causes dystroglycanopathy, a subclass of congenital muscular dystrophy. Accumulating evidence shows that like-acetylglucosaminyltransferase (LARGE), a glycosyltransferase involved in the biosynthesis of a phosphodiester-linked modification on O-mannose, is essential for α-DG to gain the ligand-binding activity. We previously reported that human natural killer-1 sulfotransferase (HNK-1ST), which was originally reported as one of the enzymes responsible for HNK-1 glycoepitope, had an ability to suppress the glycosylation and the function of α-DG. In this study, we investigated how HNK-1ST regulates the glycosylation of α-DG using deletion and mutation analyses. We generated an α-DG mutant which has only one threonine residue capable of being modified by LARGE. Focusing on the single post-phosphoryl modification site, we found that HNK-1ST showed an almost complete inhibition of the LARGE-dependent modification and transferred a sulfate group to the phosphodiester-linked moiety on O-mannose. Furthermore, using an in vitro enzymatic assay system, we demonstrated that the sulfated α-DG by HNK-1ST is no longer glycosylated by LARGE. These results illustrate one possible glycosylation pathway where α-DG function is regulated by opposing actions of HNK-1ST and LARGE.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
35
|
Freeze HH. Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 2013; 288:6936-45. [PMID: 23329837 DOI: 10.1074/jbc.r112.429274] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration.
Collapse
Affiliation(s)
- Hudson H Freeze
- Genetic Disease Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
36
|
Wells L. The o-mannosylation pathway: glycosyltransferases and proteins implicated in congenital muscular dystrophy. J Biol Chem 2013; 288:6930-5. [PMID: 23329833 DOI: 10.1074/jbc.r112.438978] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Several forms of congenital muscular dystrophy, referred to as dystroglycanopathies, result from defects in the protein O-mannosylation biosynthetic pathway. In this minireview, I discuss 12 proteins involved in the pathway and how they play a role in the building of glycan structures (most notably on the protein α-dystroglycan) that allow for binding to multiple proteins of the extracellular matrix.
Collapse
Affiliation(s)
- Lance Wells
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
37
|
Dani N, Nahm M, Lee S, Broadie K. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling. PLoS Genet 2012; 8:e1003031. [PMID: 23144627 PMCID: PMC3493450 DOI: 10.1371/journal.pgen.1003031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/26/2012] [Indexed: 12/14/2022] Open
Abstract
A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.
Collapse
Affiliation(s)
- Neil Dani
- Department of Biological Sciences and Department of Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Minyeop Nahm
- Department of Cell and Developmental Biology, Seoul National University, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Cell and Developmental Biology, Seoul National University, Seoul, Republic of Korea
| | - Kendal Broadie
- Department of Biological Sciences and Department of Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
38
|
McNally EM. The attachment disorders of muscle: failure to carb-load. J Clin Invest 2012; 122:3046-8. [PMID: 22922262 DOI: 10.1172/jci65483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dystroglycan is a prominent cell surface protein that mediates attachment to the extracellular matrix. Although broadly expressed, glycosylated dystroglycan is critically important for muscle cell adherence to its surrounding matrix. A subgroup of muscular dystrophies, which often manifest in infancy, is associated with reduced glycosylation of dystroglycan. In this issue of the JCI, Beedle et al. used conditional gene targeting of Fktn, the gene responsible for Fukuyama congenital muscular dystrophy, to investigate a developmental requirement for glycosylation of dystroglycan.
Collapse
|
39
|
Nakagawa N, Manya H, Toda T, Endo T, Oka S. Human natural killer-1 sulfotransferase (HNK-1ST)-induced sulfate transfer regulates laminin-binding glycans on α-dystroglycan. J Biol Chem 2012; 287:30823-32. [PMID: 22801424 DOI: 10.1074/jbc.m112.363036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Retinoic acid (RA) is a well established anti-tumor agent inducing differentiation in various cancer cells. Recently, a robust up-regulation of human natural killer-1 sulfotransferase (HNK-1ST) was found in several subsets of melanoma cells during RA-mediated differentiation. However, the molecular mechanism underlying the tumor suppression mediated by HNK-1ST remains unclear. Here, we show that HNK-1ST changed the glycosylation state and reduced the ligand binding activity of α-dystroglycan (α-DG) in RA-treated S91 melanoma cells, which contributed to an attenuation of cell migration. Knockdown of HNK-1ST restored the glycosylation of α-DG and the migration of RA-treated S91 cells, indicating that HNK-1ST functions through glycans on α-DG. Using CHO-K1 cells, we provide direct evidence that HNK-1ST but not other homologous sulfotransferases (C4ST1 and GalNAc4ST1) suppresses the glycosylation of α-DG. The activity-abolished mutant of HNK-1ST did not show the α-DG-modulating function, indicating that the sulfotransferase activity of HNK-1ST is essential. Finally, the HNK-1ST-dependent incorporation of [(35)S]sulfate groups was detected on α-DG. These findings suggest a novel role for HNK-1ST as a tumor suppressor controlling the functional glycans on α-DG and the importance of sulfate transfer in the glycosylation of α-DG.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | | | | | | | | |
Collapse
|
40
|
Sciandra F, Angelucci E, Altieri F, Ricci D, Hübner W, Petrucci TC, Giardina B, Brancaccio A, Bozzi M. Dystroglycan is associated to the disulfide isomerase ERp57. Exp Cell Res 2012; 318:2460-9. [PMID: 22814252 PMCID: PMC3459099 DOI: 10.1016/j.yexcr.2012.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/27/2012] [Accepted: 07/08/2012] [Indexed: 11/26/2022]
Abstract
Dystroglycan (DG) is an extracellular receptor composed of two subunits, α-DG and β-DG, connected through the α-DG C-terminal domain and the β-DG N-terminal domain. We report an alanine scanning of all DG cysteine residues performed on DG-GFP constructs overexpressed in 293-Ebna cells, demonstrating that Cys-669 and Cys-713, both located within the β-DG N-terminal domain, are key residues for the DG precursor cleavage and trafficking, but not for the interaction between the two DG subunits. In addition, we have used immunprecipitation and confocal microscopy showing that ERp57, a member of the disulfide isomerase family involved in glycoprotein folding, is associated and colocalizes immunohistochemically with β-DG in the ER and at the plasma membrane of 293-Ebna cells. The β-DG–ERp57 complex also included α-DG. DG mutants, unable to undergo the precursor cleavage, were still associated to ERp57. β-DG and ERp57 were also co-immunoprecipitated in rat heart and kidney tissues. In vitro, a mutant ERp57, mimicking the reduced form of the wild-type protein, interacts directly with the recombinant N-terminal domain of both α-DG and β-DG with apparent dissociation constant values in the micromolar range. ERp57 is likely to be involved in the DG processing/maturation pathway, but its association to the mature DG complex might also suggest some further functional role that needs to be investigated.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cardiomyopathy in patients with POMT1-related congenital and limb-girdle muscular dystrophy. Eur J Hum Genet 2012; 20:1234-9. [PMID: 22549409 DOI: 10.1038/ejhg.2012.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Protein-o-mannosyl transferase 1 (POMT1) is a glycosyltransferase involved in α-dystroglycan (α-DG) glycosylation. Clinical phenotype in POMT1-mutated patients ranges from congenital muscular dystrophy (CMD) with structural brain abnormalities, to limb-girdle muscular dystrophy (LGMD) with microcephaly and mental retardation, to mild LGMD. No cardiac involvement has until now been reported in POMT1-mutated patients. We report three patients who harbored compound heterozygous POMT1 mutations and showed left ventricular (LV) dilation and/or decrease in myocardial contractile force: two had a LGMD phenotype with a normal or close-to-normal cognitive profile and one had CMD with mental retardation and normal brain MRI. Reduced or absent α-DG immunolabeling in muscle biopsies were identified in all three patients. Bioinformatic tools were used to study the potential effect of POMT1-detected mutations. All the detected POMT1 mutations were predicted in silico to interfere with protein folding and/or glycosyltransferase function. The report on the patients described here has widened the clinical spectrum associated with POMT1 mutations to include cardiomyopathy. The functional impact of known and novel POMT1 mutations was predicted with a bioinformatics approach, and results were compared with previous in vitro studies of protein-o-mannosylase function.
Collapse
|
42
|
Two opposing roles of O-glycans in tumor metastasis. Trends Mol Med 2012; 18:224-32. [PMID: 22425488 DOI: 10.1016/j.molmed.2012.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/03/2012] [Accepted: 02/13/2012] [Indexed: 01/01/2023]
Abstract
Despite the high prevalence of metastatic cancers and the poor outcome for patients, the processes of tumor metastasis still remain poorly understood. It has been shown that cell-surface carbohydrates attached to proteins through the amino acids serine or threonine (O-glycans) are involved in tumor metastasis, with the roles of O-glycans varying depending on their structure. Core2 O-glycans allow tumor cells to evade natural killer (NK) cells of the immune system and survive longer in the circulatory system, thereby promoting tumor metastasis. Core3 O-glycans or O-mannosyl glycans suppress tumor formation and metastasis by modulating integrin-mediated signaling. Here, we highlight recent advances in our understanding of the detailed molecular mechanisms by which O-glycans promote or suppress tumor metastasis.
Collapse
|
43
|
Promoter alteration causes transcriptional repression of the POMGNT1 gene in limb-girdle muscular dystrophy type 2O. Eur J Hum Genet 2012; 20:945-52. [PMID: 22419172 DOI: 10.1038/ejhg.2012.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2O (LGMD2O) belongs to a group of rare muscular dystrophies named dystroglycanopathies, which are characterized molecularly by hypoglycosylation of α-dystroglycan (α-DG). Here, we describe the first dystroglycanopathy patient carrying an alteration in the promoter region of the POMGNT1 gene (protein O-mannose β-1,2-N-acetylglucosaminyltransferase 1), which involves a homozygous 9-bp duplication (-83_-75dup). Analysis of the downstream effects of this mutation revealed a decrease in the expression of POMGNT1 mRNA and protein because of negative regulation of the POMGNT1 promoter by the transcription factor ZNF202 (zinc-finger protein 202). By functional analysis of various luciferase constructs, we localized a proximal POMGNT1 promoter and we found a 75% decrease in luciferase activity in the mutant construct when compared with the wild type. Electrophoretic mobility shift assay (EMSA) revealed binding sites for the Sp1, Ets1 and GATA transcription factors. Surprisingly, the mutation generated an additional ZNF202 binding site and this transcriptional repressor bound strongly to the mutant promoter while failing to recognize the wild-type promoter. Although the genetic causes of dystroglycanopathies are highly variable, they account for only 50% of the cases described. Our results emphasize the importance of extending the mutational screening outside the gene-coding region in dystroglycanopathy patients of unknown aetiology, because mutations in noncoding regions may be the cause of disease. Our findings also underline the requirement to perform functional studies that may assist the interpretation of the pathogenic potential of promoter alterations.
Collapse
|
44
|
Ng R, Banks GB, Hall JK, Muir LA, Ramos JN, Wicki J, Odom GL, Konieczny P, Seto J, Chamberlain JR, Chamberlain JS. Animal models of muscular dystrophy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:83-111. [PMID: 22137430 DOI: 10.1016/b978-0-12-394596-9.00004-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 2002). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 2003). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 2009). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development.
Collapse
Affiliation(s)
- Rainer Ng
- Division of Medical Genetics, Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation.
Collapse
Affiliation(s)
- Susan E Sparks
- Department of Pediatrics, Levine Children's Hospital at Carolinas Medical Center, Charlotte, NC, USA; Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Abstract
Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous neuromuscular disorders with onset at birth or in infancy in which the muscle biopsy is compatible with a dystrophic myopathy. In the past 10 years, knowledge of neuromuscular disorders has dramatically increased, particularly with the exponential boost of disclosing the genetic background of CMDs. This review will highlight the clinical description of the most important forms of CMD, paying particular attention to the main keys for diagnostic approach. The diagnosis of CMDs requires the concurrence of expertise in multiple specialties (neurology, morphology, genetics, neuroradiology) available in a few centers worldwide that have achieved sufficient experience with the different CMD subtypes. Currently, molecular diagnosis is of paramount importance not only for phenotype-genotype correlations, genetic and prenatal counseling, and prognosis and aspects of management, but also concerning the imminent availability of clinical trials and treatments.
Collapse
|
47
|
Abstract
Mutations in fukutin-related protein (FKRP) are responsible for a common group of muscular dystrophies ranging from adult onset limb girdle muscular dystrophies to severe congenital forms with associated structural brain involvement. The defining feature of this group of disorders is the hypoglycosylation of α-dystroglycan and its inability to effectively bind extracellular matrix ligands such as laminin α2. However, α-dystroglycan has the potential to interact with a number of laminin isoforms many of which are basement membrane/tissue specific and developmentally regulated. To further investigate this we evaluated laminin α-chain expression in the cerebral cortex and eye of our FKRP knock-down mouse (FKRP(KD)). These mice showed a marked disturbance in the deposition of laminin α-chains including α1, α2, α4, and α5, although only laminin α1- and γ1-chain mRNA expression was significantly upregulated relative to controls. Moreover, there was a diffuse pattern of laminin deposition below the pial surface which correlated with an abrupt termination of many of the radial glial cells. This along with the pial basement membrane defects, contributed to the abnormal positioning of both early- and late-born neurons. Defects in the inner limiting membrane of the eye were associated with a reduction of laminin α1 demonstrating the involvement of the α-dystroglycan:laminin α1 axis in the disease process. These observations demonstrate for the first time that a reduction in Fkrp influences the ability of tissue-specific forms of α-dystroglycan to direct the deposition of several laminin isoforms in the formation of different basement membranes.
Collapse
|
48
|
The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol 2011; 2011:210797. [PMID: 22007139 PMCID: PMC3189583 DOI: 10.1155/2011/210797] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/03/2011] [Indexed: 01/18/2023] Open
Abstract
Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle may contribute to a higher degree of muscle damage which eventually overwhelms muscle regeneration capacity. While increased susceptibility of muscle to mechanical injury is thought to be an important contributor to disease pathology, it is becoming clear that not all DGC-associated diseases share this supposed hallmark feature. This paper outlines experimental support for a function of the DGC in preventing muscle damage and examines the evidence that supports novel functions for this complex in muscle that when impaired, may contribute to the pathogenesis of muscular dystrophy.
Collapse
|
49
|
Gavassini BF, Carboni N, Nielsen JE, Danielsen ER, Thomsen C, Svenstrup K, Bello L, Maioli MA, Marrosu G, Ticca AF, Mura M, Marrosu MG, Soraru G, Angelini C, Vissing J, Pegoraro E. Clinical and molecular characterization of limb-girdle muscular dystrophy due to LAMA2 mutations. Muscle Nerve 2011; 44:703-9. [DOI: 10.1002/mus.22132] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2011] [Indexed: 11/06/2022]
|
50
|
Stalnaker SH, Stuart R, Wells L. Mammalian O-mannosylation: unsolved questions of structure/function. Curr Opin Struct Biol 2011; 21:603-9. [PMID: 21945038 DOI: 10.1016/j.sbi.2011.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 11/29/2022]
Abstract
Post-translational modification of polypeptides with glycans increases the diversity of the structures of proteins and imparts increased functional diversity. Here, we review the current literature on a relatively new O-glycosylation pathway, the mammalian O-mannosylation pathway. The importance of O-mannosylation is illustrated by the fact that O-mannose glycan structures play roles in a variety of processes including viral entry into cells, metastasis, cell adhesion, and neuronal development. Furthermore, mutations in the enzymes of this pathway are causal for a variety of congenital muscular dystrophies. Here we highlight the protein substrates, glycan structures, and enzymes involved in O-mannosylation as well as our gaps in understanding structure/function relationships in this biosynthetic pathway.
Collapse
Affiliation(s)
- Stephanie H Stalnaker
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, United States
| | | | | |
Collapse
|