1
|
Zhang Q, Jiang Q, Sa K, Liang J, Sun D, Li H, Chen L. Research progress of plant-derived natural alkaloids in central nervous system diseases. Phytother Res 2023; 37:4885-4907. [PMID: 37455555 DOI: 10.1002/ptr.7955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/14/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) disease is one of the most important causes of human death. Because of their complex pathogenesis, more and more attention has been paid to them. At present, drug treatment of the CNS is the main means; however, most drugs only relieve symptoms, and some have certain toxicity and side effects. Natural compounds derived from plants can provide safer and more effective alternatives. Alkaloids are common nitrogenous basic organic compounds found in nature, which exist widely in many kinds of plants and have unique application value in modern medicine. For example, Galantamine and Huperzine A from medicinal plants are widely used drugs on the market to treat Alzheimer's disease. Therefore, the main purpose of this review is to provide the available information on natural alkaloids with the activity of treating central nervous system diseases in order to explore the trends and perspectives for the further study of central nervous system drugs. In this paper, 120 alkaloids with the potential effect of treating central nervous system diseases are summarized from the aspects of sources, structure types, mechanism of action and structure-activity relationship.
Collapse
Affiliation(s)
- Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuiru Sa
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Junming Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Mettai M, Daoud I, Mesli F, Kenouche S, Melkemi N, Kherachi R, Belkadi A. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson's disease with novel scaffold. In Silico Pharmacol 2023; 11:3. [PMID: 36687301 PMCID: PMC9852416 DOI: 10.1007/s40203-023-00139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Monoamine oxidase B and Adenosine A2A receptors are used as key targets for Parkinson's disease. Recently, hMAO-B and hA2AR Dual-targets inhibitory potential of a novel series of Phenylxanthine derivatives has been established in experimental findings. Hence, the current study examines the interactions between 38 compounds of this series with hMAO-B and hA2AR targets using different molecular modeling techniques to investigate the binding mode and stability of the formed complexes. A molecular docking study revealed that the compounds L24 ((E)-3-(3-Chlorophenyl)-N-(4-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl) phenyl) acrylamide and L32 ((E)-3-(3-Chlorophenyl)-N-(3-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)phenyl)acrylamide) had a high affinity (S-score: -10.160 and -7.344 kcal/mol) with the pocket of hMAO-B and hA2AR targets respectively, and the stability of the studied complexes was confirmed during MD simulations. Also, the MEP maps of compounds 24 and 32 were used to identify the nucleophilic and electrophilic attack regions. Moreover, the bioisosteric replacement approach was successfully applied to design two new analogs of each compound with similar biological activities and low energy scores. Furthermore, ADME-T and Drug-likeness results revealed the promising pharmacokinetic properties and oral bioavailability of these compounds. Thus, compounds L24, L32, and their analogs can undergo further analysis and optimization in order to design new lead compounds with higher efficacy toward Parkinson's disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00139-3.
Collapse
Affiliation(s)
- Merzaka Mettai
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ismail Daoud
- Department of Matter Sciences, University Mohamed Khider, BP 145 RP, 07000 Biskra, Algeria
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Fouzia Mesli
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Samir Kenouche
- Group of Modeling of Chemical Systems using Quantum Calculations, Applied Chemistry Laboratory, University of Mohamed Khider, 07000 Biskra, Algeria
| | - Nadjib Melkemi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Rania Kherachi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ahlem Belkadi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| |
Collapse
|
3
|
Kondeva-Burdina M, Mitkov J, Valkova I, Peikova L, Georgieva M, Zlatkov A. Quantitative Structure-Neurotoxicity Assessment and In Vitro Evaluation of Neuroprotective and MAO-B Inhibitory Activities of Series N'-substituted 3-(1,3,7-trimethyl-xanthin-8-ylthio)propanehydrazides. Molecules 2022; 27:molecules27165321. [PMID: 36014559 PMCID: PMC9414684 DOI: 10.3390/molecules27165321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotoxic, neuroprotective and MAO-B inhibitory effects of series N'-substituted 3-(1,3,7-trimethyl-xanthin-8-ylthio)propanehydrazides are evaluated. The results indicate compounds N'-(2,3-dimethoxybenzylidene)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-ylthio)propanehydrazide (6k) and N'-(2-hydroxybenzylidene)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-ylthio)propanehydrazide (6l) as most perspective. The performed QSTR analysis identified that the decreased lipophilicity and smaller dipole moments of the molecules are the structural features ensuring lower neurotoxicity. The obtained results may be used as initial information in the further design of (xanthinyl-8-ylthio)propanhydrazides with potential hMAOB inhibitory effect and pronounced neuroprotection.
Collapse
Affiliation(s)
- Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
- Correspondence:
| | - Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Iva Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Lily Peikova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Mannan A, Singh TG, Singh V, Garg N, Kaur A, Singh M. Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases. Curr Drug Targets 2021; 23:286-310. [PMID: 34238153 DOI: 10.2174/1389450122666210707120256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO's hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as potential treatment for neurological diseases.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
5
|
Multitarget therapeutic approaches for Alzheimer's and Parkinson's diseases: an opportunity or an illusion? Future Med Chem 2021; 13:1301-1309. [PMID: 34137271 DOI: 10.4155/fmc-2021-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the most prevalent neurodegenerative diseases and the leading causes of dementia worldwide. The etiology of these multifactorial pathologies is not completely known. The available therapeutic approaches can cause temporary relief of symptoms but cannot slow down their progression or cure them. Life-changing therapeutic solutions are urgently needed, as the number of people suffering from these pathologies has been increasing quickly over the last few decades. Several targets are being studied, and innovative approaches are being pursued to find new therapeutic options. This overview is focused on the most recent information regarding the paradigm of using multitarget compounds to treat both Alzheimer's and Parkinson's disease.
Collapse
|
6
|
Zhao J, Kumar M, Sharma J, Yuan Z. Arbutin effectively ameliorates the symptoms of Parkinson's disease: the role of adenosine receptors and cyclic adenosine monophosphate. Neural Regen Res 2021; 16:2030-2040. [PMID: 33642391 PMCID: PMC8343309 DOI: 10.4103/1673-5374.308102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An antagonistic communication exists between adenosinergic and dopaminergic signaling in the basal ganglia, which suggests that the suppression of adenosine A2A receptors-cyclic adenosine monophosphate pathway may be able to restore the disrupted dopamine transmission that results in motor symptoms in Parkinson’s disease (PD). Arbutin is a natural glycoside that possesses antioxidant, anti-inflammatory, and neuroprotective properties. The purpose of this study was to investigate whether arbutin could ameliorate the symptoms of PD and to examine the underlying mechanism. In this study, Swiss albino mouse models of PD were established by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine for 4 successive days, with the concurrent intraperitoneal administration of arbutin (50 and 100 mg/kg) for 7 days. The results showed that arbutin significantly reduced lipid peroxidation, total nitrite levels, and inflammation in the substantia nigra and striatum of PD mouse models. In addition, arbutin decreased the activity of endogenous antioxidants, reduced the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and γ-aminobutyric acid, and minimized neurodegeneration in the striatum. Arbutin also reduced the abnormal performance of PD mouse models in the open field test, bar test, pole test, and rotarod test. The therapeutic efficacy of arbutin was similar to that of madopar. The intraperitoneal injection of the A2AR agonist CGS21680 (0.5 mg/kg) attenuated the therapeutic effects of arbutin, whereas the intraperitoneal injection of forskolin (3 mg/kg) enhanced arbutin-mediated improvements. These findings suggest that arbutin can improve the performance of PD mouse models by inhibiting the function of the A2AR and enhancing the effects of cyclic adenosine monophosphate. This study was approved by the Institutional Animal Ethics Committee (1616/PO/Re/S/12/CPCSEA) on November 17, 2019 (approval No. IAEC/2019/010).
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Rajpura (Patiala), Punjab, India
| | - Jeevan Sharma
- Department of Pharmacology, Swift School of Pharmacy, Rajpura (Patiala), Punjab, India
| | - Zhihai Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Ilieva V, Kondeva-Burdina M, Georgieva T. In vitro analysis of the activity of human monoamine oxidase type B (hMAOB), treated with the cyanotoxin anatoxin-a: supposed factor of neurodegenerative diseases. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e50806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the hypothesis that an additional source of free radicals may be hydrogen peroxide formed by monoamino oxidase (MAO) -catalyzed deamination of catecholamines. Also, increased MAO-B activity in the brain has been linked to the development of some neurodegenerative diseases.
The toxicant we used to treat recombinant human MAO-B enzyme is the cyanotoxin аnatoxin-a. For anatoxin-a is known that it’s an agonist of neuronal acetylcholine receptors with 20 times greater affinity to them compared to the natural neurotransmitter.
In this study, we analyzed the effect of anatoxin at various selected concentrations on the activity of recombinant human MAO-B enzyme. The method we use is to analyze the activity of human MAO-B with the fluorimetric reagent Amplex UltraRed and the substrate tyramine hydrochloride.
The aim of this study is to analyze the effect of anatoxin-a on the hMAO-B enzyme activity and its influence as a factor for the development and progression of neurodegenerative diseases.
Collapse
|
8
|
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Curr Med Chem 2020; 27:4720-4740. [DOI: 10.2174/0929867327666200102120652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Multi-target drugs have gained considerable attention in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to drug resistance.
Single-target drugs, although highly selective, may not necessarily have better efficacy or fewer
side effects. Therefore, more attention is being paid to developing drugs that work on multiple
targets at the same time, but developing such drugs is a huge challenge for medicinal chemists.
Each target must have sufficient activity and have sufficiently characterized pharmacokinetic parameters.
Multi-target drugs, which have long been known and effectively used in clinical practice,
are briefly discussed in the present article. In addition, in this review, we will discuss the
possible applications of multi-target ligands to guide the repositioning of prospective drugs.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Kasabova-Angelova A, Tzankova D, Mitkov J, Georgieva M, Tzankova V, Zlatkov A, Kondeva-Burdina M. Xanthine Derivatives as Agents Affecting Non-dopaminergic Neuroprotection in Parkinson`s Disease. Curr Med Chem 2020; 27:2021-2036. [PMID: 30129404 DOI: 10.2174/0929867325666180821153316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative and debilitating disease that affects 1% of the elderly population. Patient's motor disability results in extreme difficulty to deal with daily activities. Conventional treatment is limited to dopamine replacement therapy, which fails to delay disease's progression and is often associated with a number of adverse reactions. Recent progress in understanding the mechanisms involved in PD has revealed new molecular targets for therapeutic approaches. Among them, caffeine and xanthine derivatives are promising drug candidates, because of the possible symptomatic benefits in PD. In fact, consumption of coffee correlates with a reduced risk of PD. Over the last decades, a lot of efforts have been made to uncover the therapeutic potential of xanthine structures. The substituted xanthine molecule is used as a scaffold for the synthesis of new compounds with protective effects in neurodegenerative diseases, including PD, asthma, cancer and others. The administration of the xanthines has been proposed as a non-dopaminergic strategy for neuroprotection in PD and the mechanisms of protection have been associated with antagonism of adenosine A2A receptors and Monoamine Oxidase type B (MAO-B) inhibition. The current review summarizes frequently suspected non-dopaminergic neuroprotective mechanisms and the possible beneficial effects of the xanthine derivatives in PD, along with some synthetic approaches to produce perspective xanthine derivatives as non-dopaminergic agents in PD treatment.
Collapse
Affiliation(s)
- Alexandra Kasabova-Angelova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
10
|
Kuder KJ, Załuski M, Schabikowski J, Latacz G, Olejarz‐Maciej A, Jaśko P, Doroz‐Płonka A, Brockmann A, Müller CE, Kieć‐Kononowicz K. Novel, Dual Target‐Directed Annelated Xanthine Derivatives Acting on Adenosine Receptors and Monoamine Oxidase B. ChemMedChem 2020; 15:772-786. [DOI: 10.1002/cmdc.201900717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Kamil J. Kuder
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Michał Załuski
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Agnieszka Olejarz‐Maciej
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Piotr Jaśko
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Agata Doroz‐Płonka
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Andreas Brockmann
- PharmaCenter Bonn, Pharmaceutical InstitutePharmaceutical Chemistry University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical InstitutePharmaceutical Chemistry University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Katarzyna Kieć‐Kononowicz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| |
Collapse
|
11
|
Parambi DGT. Treatment of Parkinson's Disease by MAO-B Inhibitors, New Therapies and Future Challenges - A Mini-Review. Comb Chem High Throughput Screen 2020; 23:847-861. [PMID: 32238135 DOI: 10.2174/1386207323666200402090557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND One of the most prevalent neurodegenerative diseases with increasing age is Parkinson's disease (PD). Its pathogenesis is unclear and mainly confined to glutamate toxicity and oxidative stress. The dyskinesia and motor fluctuations and neuroprotective potential are the major concerns which are still unmet in PD therapy. OBJECTIVE This article is a capsulization of the role of MAO-B in the treatment of PD, pharmacological properties, safety and efficiency, clinical evidence through random trials, future therapies and challenges. CONCLUSION MAO-B inhibitors are well tolerated for the treatment of PD because of their pharmacokinetic properties and neuroprotective action. Rasagiline and selegiline were recommended molecules for early PD and proven safe and provide a modest to significant rise in motor function, delay the use of levodopa and used in early PD. Moreover, safinamide is antiglutamatergic in action. When added to Levodopa, these molecules significantly reduce the offtime with a considerable improvement of non-motor symptoms. This review also discusses the new approaches in therapy like the use of biomarkers, neurorestorative growth factors, gene therapy, neuroimaging, neural transplantation, and nanotechnology. Clinical evidence illustrated that MAOB inhibitors are recommended as monotherapy and added on therapy to levodopa. A large study and further evidence are required in the field of future therapies to unwind the complexity of the disease.
Collapse
Affiliation(s)
- Della G T Parambi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jouf University, Sakaka, Jouf, Saudi Arabia
| |
Collapse
|
12
|
Kasabova-Angelova A, Kondeva-Burdina M, Mitkov J, Georgieva M, Tzankova V, Zlatkov A. Neuroprotective and MAOB inhibitory effects of a series of caffeine-8-thioglycolic acid amides. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, Marathakam A, Unnikrishnan MK, Carradori S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch Pharm (Weinheim) 2019; 352:e1900177. [PMID: 31478569 DOI: 10.1002/ardp.201900177] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
No drug has been approved to prevent neuronal cell loss in patients suffering from Parkinson's disease (PD) or Alzheimer's disease (AD); despite increased comprehension of the underlying molecular causes, therapies target cognitive functional improvement and motor fluctuation control. Drug design strategies that adopt the "one protein, one target" philosophy fail to address the multifactorial aetiologies of neurodegenerative disorders such as AD and PD optimally. On the contrary, restoring neurotransmitter levels by combined combinatorial inhibition of cholinesterases, monoamine oxidases, and adenosine A2A A receptors, in conjunction with strategies to counter oxidative stress and beta-amyloid plaque accumulation, would constitute a therapeutically robust, multitarget approach. This extensive review delineates the therapeutic advantages of combining dual-acting molecules that inhibit monoamine oxidases and cholinesterases and/or adenosine A2A A receptors, and describes the structure-activity relationships of compound classes that include, but are not limited to, alkaloids, coumarins, chalcones, donepezil-propargylamine conjugates, homoisoflavonoids, resveratrol analogs, hydrazones, and pyrazolines. In the wake of recent advances in network biology, in silico approaches, and omics, this review emphasizes the need to consider conceptually informed research strategies for drug discovery, in the context of the mounting burden posed by chronic neurodegenerative diseases with complex aetiologies and pathophysiologies involving multiple signalling pathways and numerous drug targets.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Saudi Arabia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sini T Inasu
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy and Research, Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Mitkov J, Kasabova-Angelova A, Kondeva-Burdina M, Tzankova V, Tzankova D, Georgieva M, Zlatkov A. Design, Synthesis and Evaluation of 8-Thiosubstituted 1,3,7- Trimethylxanthine Hydrazones with In-vitro Neuroprotective and MAO-B Inhibitory Activities. Med Chem 2019; 16:326-339. [PMID: 31146671 DOI: 10.2174/1573406415666190531121927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/28/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The syntheses and biological activities of 8-thiosubstituted-1,3,7- trimethylxanthine derivatives bearing an aromatic hydrazide-hydrazone fragment in the side chain at C8 are described. METHODS The chemical structures of the synthesized compounds 6a-m were confirmed based on their MS, FTIR, 1H NMR and 13C NMR analyses. RESULTS The in vitro investigations of neuroprotective effects manifested on cellular (human neuroblastoma cell line SH-SY5Y) and sub-cellular (isolated rat brain synaptosomes) levels show that compounds 6g and 6i demonstrate statistically significant activity. The performed monoamine oxidase B (MAO-B) inhibition study in vitro show that compounds 6g and 6i possess a significant MAO-B inhibition activity close to L-deprenyl. CONCLUSION These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Alexandra Kasabova-Angelova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000, Sofia, Bulgaria
| |
Collapse
|
15
|
Cheong SL, Federico S, Spalluto G, Klotz KN, Pastorin G. The current status of pharmacotherapy for the treatment of Parkinson's disease: transition from single-target to multitarget therapy. Drug Discov Today 2019; 24:1769-1783. [PMID: 31102728 DOI: 10.1016/j.drudis.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/02/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons. Motor features such as tremor, rigidity, bradykinesia and postural instability are common traits of PD. Current treatment options provide symptomatic relief to the condition but are unable to reverse disease progression. The conventional single-target therapeutic approach might not always induce the desired effect owing to the multifactorial nature of PD. Hence, multitarget strategies have been proposed to simultaneously target multiple proteins involved in the development of PD. Herein, we provide an overview of the pathogenesis of PD and the current pharmacotherapies. Furthermore, rationales and examples of multitarget approaches that have been tested in preclinical trials for the treatment of PD are also discussed.
Collapse
Affiliation(s)
- Siew L Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Malaysia.
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
16
|
Załuski M, Schabikowski J, Schlenk M, Olejarz-Maciej A, Kubas B, Karcz T, Kuder K, Latacz G, Zygmunt M, Synak D, Hinz S, Müller CE, Kieć-Kononowicz K. Novel multi-target directed ligands based on annelated xanthine scaffold with aromatic substituents acting on adenosine receptor and monoamine oxidase B. Synthesis, in vitro and in silico studies. Bioorg Med Chem 2019; 27:1195-1210. [PMID: 30808606 DOI: 10.1016/j.bmc.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
N9-Benzyl-substituted imidazo-, pyrimido- and 1,3-diazepino[2,1-f]purinediones were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blockade of monoamine oxidase B (MAO-B). A library of 37 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. A systematic modification of the tricyclic structures based on a xanthine core by enlargement of the third heterocyclic ring or attachment of various substituted benzyl moieties resulted in the development of 9-(2-chloro-6-fluorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (9u; Ki human A2AAR: 189 nM and IC50 human MAO-B: 570 nM) as the most potent dual acting ligand of the series displaying high selectivity versus related targets. Moreover, some potent, selective MAO-B inhibitors were identified in the group of pyrimido- and 1,3-diazepino[2,1-f]purinediones. Compound 10d (10-(3,4-dichlorobenzyl)-1,3-dimethyl-7,8,9,10-tetrahydro-1H-[1,3]diazepino[2,1-f]purine-2,4(3H,6H)-dione) displayed an IC50 value at human MAO-B of 83 nM. Analysis of structure-activity relationships was complemented by molecular docking studies based on previously published X-ray structures of the protein targets. An extended biological profile was determined for selected compounds including in vitro evaluation of potential hepatotoxicity calculated in silico and antioxidant properties as an additional desirable activity. The new molecules acting as dual target drugs may provide symptomatic relief as well as disease-modifying effects for neurodegenerative diseases, in particular Parkinson's disease.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Miriam Schlenk
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bartłomiej Kubas
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - David Synak
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
17
|
Kondeva-Burdina M, Georgieva M, Kasabova-Angelova A, Tzankova V, Zlatkov A. Preliminary in vitro evaluation of neuroprotective and monoamine oxidase type B inhibitory effects of newly synthesized 8-aminocaffeines. Neural Regen Res 2019; 14:971-972. [PMID: 30762003 PMCID: PMC6404505 DOI: 10.4103/1673-5374.250573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Perez-Castillo Y, Helguera AM, Cordeiro MNDS, Tejera E, Paz-Y-Mino C, Sanchez-Rodriguez A, Borges F, Cruz-Monteagudo M. Fusing Docking Scoring Functions Improves the Virtual Screening Performance for Discovering Parkinson's Disease Dual Target Ligands. Curr Neuropharmacol 2018; 15:1107-1116. [PMID: 28067172 PMCID: PMC5725543 DOI: 10.2174/1570159x15666170109143757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/18/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yunierkis Perez-Castillo
- Seccion Fisico Quimica y Matematicas, Departamento de Quimica, Universidad Tecnica Particular de Loja, San Cayetano Alto S/N, EC1101608 Loja, Ecuador.,Molecular Simulation and Drug Design Group, Centro de Bioactivos Quimicos (CBQ), Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Cuba
| | - Aliuska Morales Helguera
- Molecular Simulation and Drug Design Group, Centro de Bioactivos Quimicos (CBQ), Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Cuba
| | - M Natalia D S Cordeiro
- REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eduardo Tejera
- Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Cesar Paz-Y-Mino
- Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Aminael Sanchez-Rodriguez
- Departamento de Ciencias Naturales, Universidad Tecnica Particular de Loja, Calle Paris S/N, EC1101608 Loja, Ecuador
| | - Fernanda Borges
- CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Porto 4169-007, Portugal
| | - Maykel Cruz-Monteagudo
- Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador.,CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Porto 4169-007, Portugal
| |
Collapse
|
19
|
Koch P, Brunschweiger A, Namasivayam V, Ullrich S, Maruca A, Lazzaretto B, Küppers P, Hinz S, Hockemeyer J, Wiese M, Heer J, Alcaro S, Kiec-Kononowicz K, Müller CE. Probing Substituents in the 1- and 3-Position: Tetrahydropyrazino-Annelated Water-Soluble Xanthine Derivatives as Multi-Target Drugs With Potent Adenosine Receptor Antagonistic Activity. Front Chem 2018; 6:206. [PMID: 29998095 PMCID: PMC6028563 DOI: 10.3389/fchem.2018.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Tetrahydropyrazino-annelated theophylline (1,3-dimethylxanthine) derivatives have previously been shown to display increased water-solubility as compared to the parent xanthines due to their basic character. In the present study, we modified this promising scaffold by replacing the 1,3-dimethyl residues by a variety of alkyl groups including combinations of different substituents in both positions. Substituted benzyl or phenethyl residues were attached to the N8 of the resulting 1,3-dialkyl-tetrahydropyrazino[2,1-f ]purinediones with the aim to obtain multi-target drugs that block human A1 and A2A adenosine receptors (ARs) and monoaminoxidase B (MAO-B). 1,3-Diethyl-substituted derivatives showed high affinity for A1 ARs, e.g., 15d (PSB-18339, 8-m-bromobenzyl-substituted) displayed a Ki value of 13.6 nM combined with high selectivity. 1-Ethyl-3-propargyl-substituted derivatives exhibited increased A2A AR affinity. The 8-phenethyl derivative 20h was selective for the A2A AR (Ki 149 nM), while the corresponding 8-benzyl-substituted compound 20e (PSB-1869) blocked A1 and A2A ARs with equal potency (Ki A1, 180 nM; A2A, 282 nM). The 1-ethyl-3-methyl-substituted derivative 16a (PSB-18405) bearing a m,p-dichlorobenzyl residue at N8 blocked all three targets, A1 ARs (Ki 396 nM), A2A ARs (Ki 1,620 nM), and MAO-B (IC50 106 nM) with high selectivity vs. the other subtypes (A2B and A3 ARs, MAO-A), and can thus be considered as a multi-target drug. Our findings were rationalized by molecular docking studies based on previously published X-ray structures of the protein targets. The new drugs have potential for the treatment of neurodegenerative diseases, in particular Parkinson's disease.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Andreas Brunschweiger
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Stefan Ullrich
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Beatrice Lazzaretto
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Petra Küppers
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn, Bonn, Germany
| | - Jag Heer
- UCB Celltech, UCB Pharma S.A., Slough, United Kingdom
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Katarzyna Kiec-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Božić B, Rogan J, Poleti D, Rančić M, Trišović N, Božić B, Ušćumlić G. Synthesis, characterization and biological activity of 2-(5-arylidene-2,4-dioxotetrahydrothiazole-3-yl)propanoic acid derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
21
|
Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem 2016; 7:609-29. [PMID: 25921401 DOI: 10.4155/fmc.15.12] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Much progress has been made in designing analogues that can potentially confer neuroprotection against debilitating neurodegenerative disorders, yet the multifactorial pathogenesis of this cluster of diseases remains a stumbling block for the successful design of an 'ultimate' drug. However, with the growing popularity of the "one drug, multiple targets" paradigm, many researchers have successfully synthesized and evaluated drug-like molecules incorporating a propargylamine function that shows potential to serve as multifunctional drugs or multitarget-directed ligands. It is the aim of this review to highlight the reported activities of these propargylamine derivatives and their prospect to serve as drug candidates for the treatment of neurodegenerative disorders.
Collapse
|
22
|
Distinto S, Meleddu R, Yanez M, Cirilli R, Bianco G, Sanna ML, Arridu A, Cossu P, Cottiglia F, Faggi C, Ortuso F, Alcaro S, Maccioni E. Drug design, synthesis, in vitro and in silico evaluation of selective monoaminoxidase B inhibitors based on 3-acetyl-2-dichlorophenyl-5-aryl-2,3-dihydro-1,3,4-oxadiazole chemical scaffold. Eur J Med Chem 2016; 108:542-552. [DOI: 10.1016/j.ejmech.2015.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/18/2022]
|
23
|
Chavarria D, Silva T, Magalhães e Silva D, Remião F, Borges F. Lessons from black pepper: piperine and derivatives thereof. Expert Opin Ther Pat 2015; 26:245-64. [PMID: 26560940 DOI: 10.1517/13543776.2016.1118057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Piperine is a simple and pungent alkaloid found in the seeds of black pepper (Piper nigrum). Following its isolation and full characterization, the biological properties of piperine have been extensively studied, and piperine-like derivatives have shown an interesting range of pharmacological activities. In this context, significant advances have been made in the discovery of new chemical entities based on the piperine scaffold endowed with therapeutic potential. AREAS COVERED The aim of this review is to provide a thorough inquiry on the therapeutic potential of piperine and related derivatives. It provides an overview of recent developments in patented processes and applications thereof between 2000 and 2015. EXPERT OPINION Cumulative evidence shows that piperine is currently paving its way to become a privileged scaffold for the development of bioactive compounds with therapeutic application in multiple human diseases. In particular, piperine derivatives were shown to modulate the activity of several targets related to neurological disorders, including epilepsy, Parkinson's disease, depression and pain related disorders. Moreover, the efflux pump inhibitory ability of piperine and its analogues tackles important drug resistance mechanisms and may improve the clinical efficacy of antibiotic and anticancer drugs. Although the use of piperine as a scaffold for bioactive compounds is still in its early stages, the continuous exploration of this structure may lead to remarkable advances in drug discovery programs.
Collapse
Affiliation(s)
- D Chavarria
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - T Silva
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - D Magalhães e Silva
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - F Remião
- b UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - F Borges
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| |
Collapse
|
24
|
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35:790-848. [PMID: 25821194 DOI: 10.1002/med.21344] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
25
|
Latosińska JN, Latosińska M, Olejniczak GA, Seliger J, Žagar V. Topology of the Interactions Pattern in Pharmaceutically Relevant Polymorphs of Methylxanthines (Caffeine, Theobromine, and Theophiline): Combined Experimental (1H–14N Nuclear Quadrupole Double Resonance) and Computational (DFT and Hirshfeld-Based) Study. J Chem Inf Model 2014; 54:2570-84. [DOI: 10.1021/ci5004224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Janez Seliger
- “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of Ljubljana, Jadranska
19, 1000 Ljubljana, Slovenia
| | - Veselko Žagar
- “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Tzvetkov NT, Hinz S, Küppers P, Gastreich M, Müller CE. Indazole- and Indole-5-carboxamides: Selective and Reversible Monoamine Oxidase B Inhibitors with Subnanomolar Potency. J Med Chem 2014; 57:6679-703. [DOI: 10.1021/jm500729a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nikolay T. Tzvetkov
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Sonja Hinz
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Petra Küppers
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| |
Collapse
|
27
|
Polycyclic propargylamine and acetylene derivatives as multifunctional neuroprotective agents. Eur J Med Chem 2014; 80:122-34. [DOI: 10.1016/j.ejmech.2014.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 01/06/2023]
|
28
|
Brunschweiger A, Koch P, Schlenk M, Pineda F, Küppers P, Hinz S, Köse M, Ullrich S, Hockemeyer J, Wiese M, Heer J, Müller CE. 8-Benzyltetrahydropyrazino[2,1-f]purinediones: Water-Soluble Tricyclic Xanthine Derivatives as Multitarget Drugs for Neurodegenerative Diseases. ChemMedChem 2014; 9:1704-24. [DOI: 10.1002/cmdc.201402082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Indexed: 01/07/2023]
|
29
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
30
|
Ganesan A, Mohammadi N, Wang F. From building blocks of proteins to drugs: a quantum chemical study on structure–property relationships of phenylalanine, tyrosine and dopa. RSC Adv 2014. [DOI: 10.1039/c3ra47364c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2013; 18:219-43. [PMID: 24218136 DOI: 10.1007/s11030-013-9490-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022]
Abstract
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 , Rome, Italy
| | | | | | | | | |
Collapse
|
32
|
Koch P, Akkari R, Brunschweiger A, Borrmann T, Schlenk M, Küppers P, Köse M, Radjainia H, Hockemeyer J, Drabczyńska A, Kieć-Kononowicz K, Müller CE. 1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorg Med Chem 2013; 21:7435-52. [PMID: 24139167 DOI: 10.1016/j.bmc.2013.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC(50) human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC(50) MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Van der Walt MM, Terre’Blanche G, Petzer A, Lourens AC, Petzer JP. The adenosine A2A antagonistic properties of selected C8-substituted xanthines. Bioorg Chem 2013; 49:49-58. [DOI: 10.1016/j.bioorg.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
34
|
Ahmed MA, Azam F, Rghigh AM, Gbaj A, Zetrini AE. Structure-based design, synthesis, molecular docking, and biological activities of 2-(3-benzoylphenyl) propanoic acid derivatives as dual mechanism drugs. J Pharm Bioallied Sci 2013; 4:43-50. [PMID: 22368397 PMCID: PMC3283955 DOI: 10.4103/0975-7406.92728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/05/2011] [Accepted: 10/05/2011] [Indexed: 12/28/2022] Open
Abstract
Purpose: 2-(3-benzoyl phenyl)propanohydroxamic acid (2) and 2-{3-[(hydroxyimino)(phenyl)methyl]phenyl}propanoic acid (3) were synthesized from non-steroidal anti-inflammatory drug, ketoprofen as dual-mechanism drugs. Materials and Methods: Structures of the synthesized compounds were established by IR, 1H NMR, and mass spectroscopy. Both compounds were screened for their anti-inflammatory activity in rat paw edema model and in vitro antitumor activity against 60 human tumor cell lines. Flexible ligand docking studies were performed with different matrix metalloproteinases and cyclooxygenases to gain an insight into the structural preferences for their inhibition. Results: Compound (2) proved out to be more potent than ketoprofen in rat paw edema model. Both compounds showed moderate anticancer activity ranging from 1% to 23% inhibition of growth in 38 cell lines of 8 tumor subpanels at 10 μM concentration in a single dose experiment. Hydroxamic acid analogue was found to be more potent than ketoximic analogue in terms of its antitumor activity. Conclusion: Analysis of docking results together with experimental findings provide a good explanation for the biological activities associated with synthesized compounds which may be fruitful in designing dual-target-directed drugs that may inhibit cyclooxygenases and MMPs for the treatment of cancer.
Collapse
Affiliation(s)
- Musa A Ahmed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Garyounis University, Benghazi, Libya
| | | | | | | | | |
Collapse
|
35
|
Stössel A, Schlenk M, Hinz S, Küppers P, Heer J, Gütschow M, Müller CE. Dual targeting of adenosine A(2A) receptors and monoamine oxidase B by 4H-3,1-benzothiazin-4-ones. J Med Chem 2013; 56:4580-96. [PMID: 23631427 DOI: 10.1021/jm400336x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blockade of A2A adenosine receptors (A2AARs) and inhibition of monoamine oxidase B (MAO-B) in the brain are considered attractive strategies for the treatment of neurodegenerative diseases such as Parkinson's disease (PD). In the present study, benzothiazinones, e.g., 2-(3-chlorophenoxy)-N-(4-oxo-4H-3,1-benzothiazin-2-yl)acetamide (13), were identified as a novel class of potent MAO-B inhibitors (IC50 human MAO-B: 1.63 nM). Benzothiazinones with large substituents in the 2-position, e.g., methoxycinnamoylamino, phenylbutyrylamino, or chlorobenzylpiperazinylbenzamido residues (14, 17, 27, and 28), showed high affinity and selectivity for A2AARs (Ki human A2AAR: 39.5-69.5 nM). By optimizing benzothiazinones for both targets, the first potent, dual-acting A2AAR/MAO-B inhibitors with a nonxanthine structure were developed. The best derivative was N-(4-oxo-4H-3,1-benzothiazin-2-yl)-4-phenylbutanamide (17, Ki human A2A, 39.5 nM; IC50 human MAO-B, 34.9 nM; selective versus other AR subtypes and MAO-A), which inhibited A2AAR-induced cAMP accumulation and showed competitive, reversible MAO-B inhibition. The new compounds may be useful tools for validating the A2AAR/MAO-B dual target approach in PD.
Collapse
Affiliation(s)
- Anne Stössel
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Shahid M, Shahzad Cheema M, Klenner A, Younesi E, Hofmann-Apitius M. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling. Mol Inform 2013; 32:241-9. [PMID: 27481519 DOI: 10.1002/minf.201200116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
Abstract
Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors.
Collapse
Affiliation(s)
- Mohammad Shahid
- Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Muhammad Shahzad Cheema
- Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Alexander Klenner
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Erfan Younesi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany..
| |
Collapse
|
37
|
Rivara S, Piersanti G, Bartoccini F, Diamantini G, Pala D, Riccioni T, Stasi MA, Cabri W, Borsini F, Mor M, Tarzia G, Minetti P. Synthesis of (E)-8-(3-Chlorostyryl)caffeine Analogues Leading to 9-Deazaxanthine Derivatives as Dual A2A Antagonists/MAO-B Inhibitors. J Med Chem 2013; 56:1247-61. [DOI: 10.1021/jm301686s] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Silvia Rivara
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Giuseppe Diamantini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Daniele Pala
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Teresa Riccioni
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Maria Antonietta Stasi
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Walter Cabri
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Franco Borsini
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Marco Mor
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giorgio Tarzia
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Patrizia Minetti
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| |
Collapse
|
38
|
Naidoo V, Karanian DA, Vadivel SK, Locklear JR, Wood JT, Nasr M, Quizon PMP, Graves EE, Shukla V, Makriyannis A, Bahr BA. Equipotent inhibition of fatty acid amide hydrolase and monoacylglycerol lipase - dual targets of the endocannabinoid system to protect against seizure pathology. Neurotherapeutics 2012; 9:801-13. [PMID: 22270809 PMCID: PMC3480564 DOI: 10.1007/s13311-011-0100-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in the understanding of the endogenous cannabinoid system have led to several therapeutic indications for new classes of compounds that enhance cannabinergic responses. Endocannabinoid levels are elevated during pathogenic conditions, and inhibitors of endocannabinoid inactivation promote such on-demand responses. The endocannabinoids anandamide and 2-arachidonoyl glycerol have been implicated in protective signaling against excitotoxic episodes, including seizures. To better understand modulatory pathways that can exploit such responses, we used the new generation compound AM6701 that blocks both the anandamide-deactivating enzyme fatty acid amide hydrolase (FAAH) and the 2-arachidonoyl glycerol-deactivating enzyme monoacylglycerol lipase (MAGL) with equal potency. Also studied was the structural isomer AM6702 which is 44-fold more potent for inhibiting FAAH versus MAGL. When applied before and during kainic acid (KA) exposure to cultured hippocampal slices, AM6701 protected against the resulting excitotoxic events of calpain-mediated cytoskeletal damage, loss of presynaptic and postsynaptic proteins, and pyknotic changes in neurons. The equipotent inhibitor was more effective than its close relative AM6702 at protecting against the neurodegenerative cascade assessed in the slice model. In vivo, AM6701 was also the more effective compound for reducing the severity of KA-induced seizures and protecting against behavioral deficits linked to seizure damage. Corresponding with the behavioral improvements, cytoskeletal and synaptic protection was elicited by AM6701, as found in the KA-treated hippocampal slice model. It is proposed that the influence of AM6701 on FAAH and MAGL exerts a synergistic action on the endocannabinoid system, thereby promoting the protective nature of cannabinergic signaling to offset excitotoxic brain injury.
Collapse
Affiliation(s)
- Vinogran Naidoo
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
- Department of Biology, University of North Carolina Pembroke, Pembroke, North Carolina USA
| | - David A. Karanian
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, Connecticut USA
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | | | - Johnathan R. Locklear
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
| | - JodiAnne T. Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | - Mahmoud Nasr
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | - Pamela Marie P. Quizon
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
| | - Emily E. Graves
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
| | - Vidyanand Shukla
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts USA
| | | | - Ben A. Bahr
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina Pembroke, Pembroke, North Carolina 28372 USA
- Department of Biology, University of North Carolina Pembroke, Pembroke, North Carolina USA
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, Connecticut USA
| |
Collapse
|
39
|
Van der Schyf CJ. The use of multi-target drugs in the treatment of neurodegenerative diseases. Expert Rev Clin Pharmacol 2012; 4:293-8. [PMID: 22114774 DOI: 10.1586/ecp.11.13] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Azam F, Madi AM, Ali HI. Molecular Docking and Prediction of Pharmacokinetic Properties of Dual Mechanism Drugs that Block MAO-B and Adenosine A(2A) Receptors for the Treatment of Parkinson's Disease. J Young Pharm 2012; 4:184-92. [PMID: 23112538 PMCID: PMC3483529 DOI: 10.4103/0975-1483.100027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) inhibitory potential of adenosine A(2A) receptor (AA(2A)R) antagonists has raised the possibility of designing dual-target-directed drugs that may provide enhanced symptomatic relief and that may also slow the progression of Parkinson's disease (PD) by protecting against further neurodegeneration. To explain the dual inhibition of MAO-B and AA(2A)R at the molecular level, molecular docking technique was employed. Lamarckian genetic algorithm methodology was used for flexible ligand docking studies. A good correlation (R(2)= 0.524 and 0.627 for MAO-B and AA(2A)R, respectively) was established between docking predicted and experimental K(i) values, which confirms that the molecular docking approach is reliable to study the mechanism of dual interaction of caffeinyl analogs with MAO-B and AA(2A)R. Parameters for Lipinski's "Rule-of-Five" were also calculated to estimate the pharmacokinetic properties of dual-target-directed drugs where both MAO-B inhibition and AA(2A)R antagonism exhibited a positive correlation with calculated LogP having a correlation coefficient R(2) of 0.535 and 0.607, respectively. These results provide some beneficial clues in structural modification for designing new inhibitors as dual-target-directed drugs with desired pharmacokinetic properties for the treatment of PD.
Collapse
Affiliation(s)
- Faizul Azam
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Arwa M. Madi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
| | - Hamed I. Ali
- Department of Pharmaceutical Chemistry, Helwan University, Ain Helwan, Cairo, Egypt
| |
Collapse
|
41
|
Dunkel P, Chai CL, Sperlágh B, Huleatt PB, Mátyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2012; 21:1267-308. [PMID: 22741814 DOI: 10.1517/13543784.2012.703178] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION According to the definition of the Committee to Identify Neuroprotective Agents in Parkinson's Disease (CINAPS), "neuroprotection would be any intervention that favourably influences the disease process or underlying pathogenesis to produce enduring benefits for patients" [Meissner W, et al. Trends Pharmacol Sci 2004;25:249-253]. Preferably, neuroprotective agents should be used before or eventually during the prodromal phase of the diseases that could start decades before the appearance of symptoms. Although several symptomatic drugs are available, a disease-modifying agent is still elusive. AREAS COVERED The aim of the present review is to give an overview of neuroprotective agents being currently investigated for the treatment of AD, PD, HD and ALS in clinical phases. EXPERT OPINION Development of effective neuroprotective therapies resulting in clinically meaningful results is hampered by several factors in all research stages, both conceptual and methodological. Novel solutions might be offered by evaluation of new targets throughout clinical studies, therapies emerging from drug repositioning approaches, multi-target approaches and network pharmacology.
Collapse
Affiliation(s)
- Petra Dunkel
- Semmelweis University, Department of Organic Chemistry, Budapest, Hungary
| | | | | | | | | |
Collapse
|
42
|
El-Sadek MM, Hassan SY, El-Dayem NSA, Yacout GA. 5-(5-Aryl-1,3,4-oxadiazole-2-carbonyl)furan-3-carboxylate and new cyclic C-glycoside analogues from carbohydrate precursors with MAO-B, antimicrobial and antifungal activities. Molecules 2012; 17:7010-27. [PMID: 22678415 PMCID: PMC6268659 DOI: 10.3390/molecules17067010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 11/23/2022] Open
Abstract
Cyclization of acyclic C-glycoside derivatives 1a,b to 2a,b as the major isomers, and 4a,b as the minor isomers were carried out. The isopropylidene derivatives 3a,b were prepared, as well as the hydrazide derivative 6, which was condensed with a variety of aldehydes to give hydrazones 7a–e which were also prepared from the compounds 12a–e. Acetylation of 7a,d gave the corresponding acetyl derivatives 8a,d, respectively. In addition, the dicarbonyl compound 9 was prepared in the hydrate form, which reacted with a number of aroylhydrazines to give the corresponding bisaroyl-hydrazones 10a–d, which were cyclized into 1,3,4-oxadiazoles 11a–d. Furthermore, two of the prepared compounds were examined to show the ability to activate MAO-B. In addition a number of prepared compounds showed antibacterial and antiviral activities.
Collapse
Affiliation(s)
- Mohamed Mohamed El-Sadek
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21231, Egypt; (S.Y.H.); (N.S.A.E.-D.)
- Author to whom correspondence should be addressed; ; Tel.: +20-01-006-544-617; Fax: +20-3-593-2488
| | - Seham Yassen Hassan
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21231, Egypt; (S.Y.H.); (N.S.A.E.-D.)
| | - Nagwa Said Abd El-Dayem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21231, Egypt; (S.Y.H.); (N.S.A.E.-D.)
| | - Galila Ahmed Yacout
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21231, Egypt;
| |
Collapse
|
43
|
Bolognesi ML, Melchiorre C, Van der Schyf CJ, Youdim M. Discovery of Multi-Target Agents for Neurological Diseases via Ligand Design. DESIGNING MULTI-TARGET DRUGS 2012. [DOI: 10.1039/9781849734912-00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The incidence of neurological disorders in the developed world is rising in concert with an increase in human life expectancy, due in large part to better nutrition and health care. Even as drug discovery efforts are refocused on these disorders, there has been a dearth in the introduction of new disease-modifying therapies to prevent or delay their onset, or reverse their progression. Mounting evidence points to complex and heterogeneous etiopathologies that underlie these diseases. Therefore, it is unlikely that disorders in this class will be mitigated by any single drug that acts exclusively on a single pathway or target. The rational design of novel drug entities with the ability to simultaneously address multiple drug targets of a complex pathophysiology has recently emerged as a new paradigm in drug discovery. Similarly to the concept of multi-target agents within the psychopharmacology field, ligand design has gained an increasing prominence within the medicinal chemistry community. In this chapter we discuss several examples of select chemical scaffolds (polyamines, alkylxanthines, and propargyl carbamates) wherein these concepts were applied to develop novel drug candidates for Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Moussa Youdim
- Technion Israel Institute of Technology Haifa Israel
| |
Collapse
|
44
|
Joubert J, Geldenhuys WJ, Van der Schyf CJ, Oliver DW, Kruger HG, Govender T, Malan SF. Polycyclic cage structures as lipophilic scaffolds for neuroactive drugs. ChemMedChem 2012; 7:375-84. [PMID: 22307951 DOI: 10.1002/cmdc.201100559] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Indexed: 11/12/2022]
Abstract
Polycyclic cage scaffolds have been successfully used in the development of numerous lead compounds demonstrating activity in the central nervous system (CNS). Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, and stroke, as well as drug abuse, can be modulated with polycyclic cage derivatives. These cage moieties, including adamantane and pentacycloundecane derivatives, improve the pharmacokinetic and pharmacodynamic properties of conjugated parent drugs and serve as an important scaffold in the design of therapeutically active agents for the treatment of neurological disorders. In this Minireview, we focus on the recent developments in the field of polycyclic cage compounds, as well as the relationship between the lipophilic character of these cage-derived drugs and the ability of such compounds to target and reach the CNS and improve the pharmacodynamic properties of compounds conjugated to it.
Collapse
Affiliation(s)
- Jacques Joubert
- School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | | | | | | | | | | | | |
Collapse
|
45
|
Strydom B, Bergh JJ, Petzer JP. 8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase. Eur J Med Chem 2011; 46:3474-85. [DOI: 10.1016/j.ejmech.2011.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 01/03/2023]
|
46
|
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 2011; 132:280-99. [PMID: 21810444 DOI: 10.1016/j.pharmthera.2011.07.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.
Collapse
Affiliation(s)
- Marie Therese Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson's Disease, IRCCS National Institute of Neurology "C. Mondino", Pavia, Italy
| | | | | | | | | | | |
Collapse
|
47
|
mGluR4-positive allosteric modulation as potential treatment for Parkinson's disease. Future Med Chem 2011; 1:501-13. [PMID: 20161443 DOI: 10.4155/fmc.09.38] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although Parkinson's disease was first diagnosed nearly 200 years ago, its effective treatment still remains elusive for most of those diagnosed. The gold standard of treatment for most patients is 3,4-dihydroxy-L-phenylalanine. This drug works for most individuals early in the disease; however, resistant symptoms start to emerge after several years of treatment. There has been increased interest in finding novel therapies to help Parkinson's disease patients. Such strategies may have the benefit of not only treating the symptomatic issues of the disorder, but might also offer promise in protecting dopaminergic neurons from further degeneration. One such target that is now receiving much attention from the scientific community is the metabotropic glutamate receptor mGluR4. In this article, we briefly review Parkinson's disease and then recent work in the mGluR area, with a focus on the efforts being made toward finding and optimizing novel mGluR4 positive allosteric modulators (PAMs). Preclinically in rodent models, mGluR4 activation has offered much promise as a novel treatment of Parkinson's disease. Additionally, the specific use of PAMs, rather than direct-acting agonists at the orthosteric glutamate site, continues to be validated as a viable treatment option for this target. It is anticipated that continued progress in this area will further our understanding of the potential of mGluR4 modulation as a novel symptomatic and potentially disease-modifying treatment for Parkinson's disease.
Collapse
|
48
|
Perlaki G, Orsi G, Kovacs N, Schwarcz A, Pap Z, Kalmar Z, Plozer E, Csatho A, Gabriel R, Komoly S, Janszky I, Janszky J. Coffee consumption may influence hippocampal volume in young women. Brain Imaging Behav 2011; 5:274-84. [DOI: 10.1007/s11682-011-9131-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Patyar S, Prakash A, Medhi B. Dual inhibition: a novel promising pharmacological approach for different disease conditions. ACTA ACUST UNITED AC 2011; 63:459-71. [PMID: 21401597 DOI: 10.1111/j.2042-7158.2010.01236.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To overcome the problems associated with polypharmacy, which include medication non compliance, adverse drug reactions, drug-drug interactions and increased pill-burden, various strategies, such as sustained-release drugs and fixed-dose combination regimens (polypills), have been developed. Out of these, a novel and very much promising approach is the use of dual-action drugs. Amongst the dual-action drugs, there is a class of compounds known as dual inhibitors, which possess the dual inhibitory activity. The most common examples of dual inhibitors are rivastigmine, ladostigil, asenapine, phenserine, amitriptyline, clomipramine, doxepin and desipramine. This review article focuses on the conventional drugs used in different diseases which possess dual inhibition activity as well as those which are still in the preclinical/clinical phase.
Collapse
Affiliation(s)
- Sazal Patyar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, Delhi, India
| | | | | |
Collapse
|
50
|
Vavricka C, Han Q, Huang Y, Erickson SM, Harich K, Christensen BM, Li J. From L-dopa to dihydroxyphenylacetaldehyde: a toxic biochemical pathway plays a vital physiological function in insects. PLoS One 2011; 6:e16124. [PMID: 21283636 PMCID: PMC3026038 DOI: 10.1371/journal.pone.0016124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/08/2010] [Indexed: 11/28/2022] Open
Abstract
One protein in Aedes aegypti, classified into the aromatic amino acid decarboxylase (AAAD) family based on extremely high sequence homology (∼70%) with dopa decarboxylase (Ddc), was biochemically investigated. Our data revealed that this predicted AAAD protein use L-dopa as a substrate, as does Ddc, but it catalyzes the production of 3,4-dihydroxylphenylacetaldehyde (DHPAA) directly from L-dopa and apparently has nothing to do with the production of any aromatic amine. The protein is therefore named DHPAA synthase. This subsequently led to the identification of the same enzyme in Drosophila melanogaster, Anopheles gambiae and Culex quinquefasciatus by an initial prediction of putative DHPAA synthase based on sequence homology and subsequent verification of DHPAA synthase identity through protein expression and activity assays. DHPAA is highly toxic because its aldehyde group readily reacts with the primary amino groups of proteins, leading to protein crosslinking and inactivation. It has previously been demonstrated by several research groups that Drosophila DHPAA synthase was expressed in tissues that produce cuticle materials and apparent defects in regions of colorless, flexible cuticular structures have been observed in its gene mutants. The presence of free amino groups in proteins, the high reactivity of DHPAA with the free amino groups, and the genetically ascertained function of the Drosophila DHPAA synthase in the formation of colorless, flexible cuticle, when taken together, suggest that mosquito and Drosophila DHPAA synthases are involved in the formation of flexible cuticle through their reactive DHPAA-mediated protein crosslinking reactions. Our data illustrate how a seemingly highly toxic pathway can serve for an important physiological function in insects.
Collapse
Affiliation(s)
- Christopher Vavricka
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yongping Huang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Sara M. Erickson
- Department of Pathobiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kim Harich
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bruce M. Christensen
- Department of Pathobiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|