1
|
Santonoceta GDG, Sgarlata C. pH-Responsive Cobalt(II)-Coordinated Assembly Containing Quercetin for Antimicrobial Applications. Molecules 2023; 28:5581. [PMID: 37513453 PMCID: PMC10386366 DOI: 10.3390/molecules28145581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The development of novel drug delivery systems (DDSs) with promising antibacterial properties is essential for facing the emergency of increasing resistance to antimicrobial agents. The antibacterial features of quercetin and its metal complexes have been broadly investigated. However, several drawbacks affect their activity and effectiveness. In this work, we propose a DDS based on a pH-responsive cobalt(II)-coordinated assembly containing quercetin and polyacrylic acid. This system is suggested to trigger the release of the model drug in a pH-dependent mode by exploiting the localized acidic environment at the bacterial infection sites under anaerobic conditions. The delivery system has been designed by accurately examining the species and the multiple equilibria occurring in solution among the assembly components. The formation of cobalt(II) complexes with quercetin in the absence or presence of the pH-responsive polyacrylic acid was investigated in buffered aqueous solution at pH 7.4 using spectrophotometric (UV-Vis) and calorimetric (ITC) techniques. The determined binding affinities and thermodynamic parameters that resulted are essential for the development of a DDS with improved binding and release capabilities. Furthermore, the affinity of the polymer-cobalt(II) complex toward the model antimicrobial flavonoid was explored at the solid-liquid interface by quartz crystal microbalance (QCM-D) experiments, which provided marked evidence for drug loading and release under pH control.
Collapse
Affiliation(s)
| | - Carmelo Sgarlata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Sun Y, Liu X, Zhu Y, Han Y, Shen J, Bao B, Gao T, Lin J, Huang T, Xu J, Chai Y, Zheng X. Tunable and Controlled Release of Cobalt Ions from Metal-Organic Framework Hydrogel Nanocomposites Enhances Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59051-59066. [PMID: 34846853 DOI: 10.1021/acsami.1c16300] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cobalt (Co) ions, which can mimic hypoxia to promote angiogenesis, exhibit great potential for bone repair. However, a key point for the use of Co ions is that their release profile should be controllable and, more importantly, suitable for the bone regeneration process. Here, 2-ethylimidazole (eIm) was introduced into zeolitic imidazolate framework-67 (ZIF-67) to slow down Co-ion release and fabricate eIm-doped ZIF-67 (eIm/ZIF-67), which was combined into gelatin methacrylate (GelMA) to obtain an in situ photo-cross-linking nanocomposite hydrogel as a tunable Co-ion controlled release system. A tunable and controlled release of Co ions from the nanocomposite hydrogel was achieved by variation of linker composition, and GelMA with 75% eIm/ZIF-67 (with 75% eIm in the precursor solutions) could maintain a 21-day sustained release of Co ions, which is matched with early-stage angiogenesis during the bone formation process. Our in vitro study also showed that the GelMA@eIm/ZIF-67 hydrogel could reduce cytotoxicity and effectively promote the angiogenic activity of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Moreover, an in vivo rat calvarial defect model demonstrated that the GelMA@eIm/ZIF-67 hydrogel exhibited remarkably enhanced bone formation and neovascularization abilities and had good biocompatibility as shown in organ histopathological examinations. Therefore, this novel nanocomposite hydrogel has strong therapeutic potential as a desirable Co-ion controlled release system and a powerful proangiogenic/osteogenic agent for the treatment of bone defects.
Collapse
Affiliation(s)
- Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Yue Han
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Tengli Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, P. R. China
| |
Collapse
|
3
|
Dabravolski SA, Kavalionak YK. Effect of corn lectins on the intestinal transport of trace elements. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01261-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Lamela PA, Navoni JA, Pérez RD, Pérez CA, Vodopivez CL, Curtosi A, Bongiovanni GA. Analysis of occurrence, bioaccumulation and molecular targets of arsenic and other selected volcanic elements in Argentinean Patagonia and Antarctic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:379-391. [PMID: 31108358 DOI: 10.1016/j.scitotenv.2019.05.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
In Latin America, the high proportion of arsenic (As) in many groundwaters and phreatic aquifers is related to the volcanism of the Andean Range. Nevertheless, there is still very little published research on As and other elements occurrence, and/or transference to biota in Southern regions such as Argentinean Patagonia and the South Shetland Islands in Antarctica, where there are active volcanoes and geothermal processes. Therefore, this study was aimed to describe water quality from the main rivers of Argentinean Northern Patagonia through physicochemical analysis. The Patagonian and Antarctic biota (including samples of animal, plants, algae and bacteria) was characterized through the analysis of their As and other elemental concentrations (P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Br, Rb and Sr), by synchrotron radiation x-ray fluorescence spectroscopy (SRXRF). Finally, the analysis of metal and As-proteins associations in As-accumulating organisms was performed by SRXRF after sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A wide range of metal concentration including As (up to 950 μg/L As) was found in water samples from Patagonian rivers. A hierarchical cluster analysis revealed that the elemental concentration of analysed biological samples was related to volcanic environments and their place in the trophic chain. Moreover, the results suggest that Se, Co, Cu, Br, and Cl are strong predictors of As in biota. On the other hand, As was not detected in proteins from the studied samples, suggesting biotransformation into soluble As-organic compounds. This is the first study to describe environmental pollution as a consequence of active volcanism, and its influence on water quality and elemental composition of biota in Argentinean Northern Patagonia and Antarctica.
Collapse
Affiliation(s)
- Paula A Lamela
- PROBIEN (Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies), CONICET-CCT Northern Patagonia, National University of Comahue, Neuquén, Argentina
| | - Julio A Navoni
- PRODEMA (Post-Graduate Program in Development and Environment, Biosciences Center), Federal University of Rio Grande do Norte, Natal, RN, Brazil; PPgUSRN (Post-Graduate Program in Sustainable Use of Natural Resources), Federal Institute of Rio Grande do Norte, Natal, RN, Brazil
| | - Roberto D Pérez
- IFEG (Institute of Physic Enrique Gaviola), CONICET-UNC, School of Mathematics, Astronomy and Physics, National University of Córdoba, Córdoba, Argentina
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | - Antonio Curtosi
- IAA (Argentinean Antarctic Institute), Buenos Aires, Argentina
| | - Guillermina A Bongiovanni
- PROBIEN (Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies), CONICET-CCT Northern Patagonia, National University of Comahue, Neuquén, Argentina; School of Agricultural Sciences, National University of Comahue, Río Negro, Argentina.
| |
Collapse
|
5
|
de Souza RGM, Gomes AC, Navarro AM, Cunha LCD, Silva MAC, Junior FB, Mota JF. Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial. Nutrients 2019; 11:E1750. [PMID: 31366053 PMCID: PMC6723341 DOI: 10.3390/nu11081750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Obesity-induced inflammation is frequently associated with higher oxidative stress. In vitro and experimental studies have considered baru almonds (Dipteryx alata Vog) as a legume seed with high antioxidant capacity. The aim of this study was to evaluate whether baru almonds are capable of improving the inflammatory and antioxidant status in overweight and obese women. METHODS In a parallel-arm, randomized placebo-controlled trial, 46 overweight and obese women (age: 40 ± 11 years; body mass index: 33.3 ± 4.3) were randomly assigned to receive advice to follow a normocaloric and isoenergetic diet with placebo (PLA, n = 22) or similar advice plus 20 g baru almonds (BARU, n = 24) for 8 wk. Malondialdehyde (MDA), adiponectin, tumor necrosis factor-α, interleukin-6, interleukin-10, antioxidant enzymes activities (catalase-CAT; glutathione peroxidase-GPx; superoxide dismutase-SOD), and minerals were analyzed in plasma samples. RESULTS At baseline, groups were similar regarding the body composition, oxidative, and inflammatory parameters. The BARU group increased the activity of GPx (+0.08 U/mg, 95%CI + 0.05 to +0.12 vs. -0.07, 95%CI -0.12 to -0.03, p < 0.01) and plasma copper concentration (p = 0.037) when compared to the PLA group. No differences were observed between groups in CAT and SOD activity or MDA and cytokines concentrations. CONCLUSIONS Baru almond supplementation increased the GPx activity in overweight and obese women.
Collapse
Affiliation(s)
- Rávila Graziany Machado de Souza
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goias-UFG, Goiânia, 74605-080 GO, Brazil
| | - Aline Corado Gomes
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goias-UFG, Goiânia, 74605-080 GO, Brazil
| | - Anderson Marliere Navarro
- Department of Health Sciences; Faculty of Medicine, University of São Paulo-USP, Ribeirão Preto, 14049-900 SP, Brazil
| | - Luiz Carlos da Cunha
- Nucleus of Toxic-pharmacological Studies and Research (NEPET), Federal University of Goiás-UFG, Goiânia, 74605-220 GO, Brazil
| | - Marina Alves Coelho Silva
- Nucleus of Toxic-pharmacological Studies and Research (NEPET), Federal University of Goiás-UFG, Goiânia, 74605-220 GO, Brazil
| | - Fernando Barbosa Junior
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-FCRP/USP, Ribeirão Preto, 14040-903 SP, Brazil
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Federal University of Goias-UFG, Goiânia, 74605-080 GO, Brazil.
| |
Collapse
|
6
|
Vo TD, Lynch BS, Roberts A. Dietary Exposures to Common Emulsifiers and Their Impact on the Gut Microbiota: Is There a Cause for Concern? Compr Rev Food Sci Food Saf 2018; 18:31-47. [DOI: 10.1111/1541-4337.12410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Trung D. Vo
- the Intertek Scientific & Regulatory Consultancy; 2233 Argentia Road, Suite 201 Mississauga Ontario Canada L5N 2X7
| | - Barry S. Lynch
- the Intertek Scientific & Regulatory Consultancy; 2233 Argentia Road, Suite 201 Mississauga Ontario Canada L5N 2X7
| | - Ashley Roberts
- the Intertek Scientific & Regulatory Consultancy; 2233 Argentia Road, Suite 201 Mississauga Ontario Canada L5N 2X7
| |
Collapse
|