1
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
2
|
Pedraza-Vázquez G, Mena-Montes B, Hernández-Álvarez D, Gómez-Verjan JC, Toledo-Pérez R, López-Teros MT, Königsberg M, Gómez-Quiroz LE, Luna-López A. A low-intensity lifelong exercise routine changes miRNA expression in aging and prevents osteosarcopenic obesity by modulating inflammation. Arch Gerontol Geriatr 2023; 105:104856. [PMID: 36399890 DOI: 10.1016/j.archger.2022.104856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Osteosarcopenic obesity (OSO) has been associated with increase immobility, falls, fractures, and other dysfunctions, which could increase mortality risk during aging. However, its etiology remains unknown. Recent studies revealed that sedentarism, fat gain, and epigenetic regulators are critical in its development. One effective intervention to prevent and treat OSO is exercise. Therefore, in the present study, by keeping rats in conditions of sedentarism and others under a low-intensity exercise routine, we established an experimental model of OSO. We determined the degree of sarcopenia, obesity, and osteopenia at different ages and analyzed the miRNA expression during the lifespan using miRNA microarrays from gastrocnemius muscle. Interestingly microarrays results showed that there is a set of miRNAs that changed their expression with exercise. The pathway enrichment analysis showed that these miRNAs are strongly associated with immune regulation. Further inflammatory profiles with IL-6/IL-10 and TNF-α/IL-10 ratios showed that exercised rats presented a lower pro-inflammatory profile than sedentary rats. Also, the body fat gain in the sedentary group increased the inflammatory profile, ultimately leading to muscle dysfunction. Exercise prevented strength loss over time and maintained skeletal muscle functionality over time. Differential expression of miRNAs suggests that they might participate in this process by regulating the inflammatory response associated with aging, thus preventing the development of OSO.
Collapse
Affiliation(s)
- Gibrán Pedraza-Vázquez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - Beatriz Mena-Montes
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - David Hernández-Álvarez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Rafael Toledo-Pérez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Luis E Gómez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Armando Luna-López
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico.
| |
Collapse
|
3
|
Alfaqih MS, Tarawan VM, Sylviana N, Goenawan H, Lesmana R, Susianti S. Effects of Vitamin D on Satellite Cells: A Systematic Review of In Vivo Studies. Nutrients 2022; 14:4558. [PMID: 36364820 PMCID: PMC9657163 DOI: 10.3390/nu14214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.
Collapse
Affiliation(s)
- Muhammad Subhan Alfaqih
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof Eyckman No.38, Bandung 45363, Indonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
4
|
Oku Y, Noda S, Yamada A, Nakaoka K, Goseki-Sone M. wenty-eight days of vitamin D restriction and/or a high-fat diet influenced bone mineral density and body composition in young adult female rats. Ann Anat 2022; 243:151945. [DOI: 10.1016/j.aanat.2022.151945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
|
5
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|
6
|
Jardim NS, Müller SG, Pase FM, Nogueira CW. Nuclear Factor [Erythroid-derived 2]-like 2 and Mitochondrial Transcription Factor A Contribute to Moderate-intensity Swimming Effectiveness against Memory Impairment in Young Mice Induced by Concomitant Exposure to a High-calorie Diet during the Early Life Period. Neuroscience 2020; 452:311-325. [PMID: 33246070 DOI: 10.1016/j.neuroscience.2020.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Increased energy food consumption during early-life has been associated with memory impairment. Swimming training has been reported to improve memory processes in rodent models. This study aimed to evaluate whether moderate-intensity swimming training counteracts learning and memory impairment in young mice fed a high-calorie diet during the early-life period. The contribution of hippocampal oxidative stress, as well as nuclear factor [erythroid-derived 2]-like 2/Kelch-like ECH-associated protein (NRF2/Keap-1/HO-1) and peroxisome proliferator-activated receptor gamma co-activator 1-alpha/mitochondrial transcription factor A (PCG-1α/mtTFA) signaling, in memory effects was also investigated. Three-week-old male Swiss mice received a high-calorie diet (20% fat; 20% carbohydrate enriched) or a standard diet from 21 to 49 postnatal days. Mice performed a moderate-intensity swimming protocol (5 days/week) and behavioral tests predictive of memory function. Mice fed a high-calorie diet and subjected to the swimming protocol performed better on short- and long-term spatial and object recognition memory tests than those fed a high-calorie diet. The swimming protocol modulated the hippocampal NRF2/Keap-1/HO-1 and mtTFA pathways in mice fed a high-calorie diet. Swimming training positively affected location and long-term memory, fat mass content, as well as NRF2/Keap-1/HO-1 and mtTFA proteins of control-diet-fed mice. In conclusion, a moderate-intensity swimming training evoked an adaptive response in mice fed a high-calorie diet by restoring different types of memory-impaired and hippocampal oxidative stress as well as upregulated the NRF2/Keap-1/HO-1 and mtTFA pathways.
Collapse
Affiliation(s)
- Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Sabrina Grendene Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Flávia Matos Pase
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
7
|
Wang L, Shan T. Factors inducing transdifferentiation of myoblasts into adipocytes. J Cell Physiol 2020; 236:2276-2289. [PMID: 32989814 DOI: 10.1002/jcp.30074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Fat infiltration in skeletal muscle is observed in several myopathies, is associated with muscular dysfunction, and is strongly correlated with insulin resistance, diabetes, obesity, and aging. In animal production, skeletal muscle fat (also known as intermuscular and intramuscular fat) is positively related to meat quality including tenderness, flavor, and juiciness. Thus, understanding the cell origin and regulation mechanism of skeletal muscle fat infiltration is important for developing therapies against human myopathies as well as for improving meat quality. Notably, age, sarcopenia, oxidative stress, injury, and regeneration can activate adipogenic differentiation potential in myoblasts and affect fat accumulation in skeletal muscle. In addition, several transcriptional and nutritional factors can directly induce transdifferentiation of myoblasts into adipocytes. In this review, we focused on the recent progress in understanding the muscle-to-adipocyte differentiation and summarized and discussed the genetic, nutritional, and physiological factors that can induce transdifferentiation of myoblasts into adipocytes. Moreover, the regulatory roles and mechanisms of these factors during the transdifferentiation process were also discussed.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
8
|
Rausch S, Barholz M, Föller M, Feger M. Vitamin A regulates fibroblast growth factor 23 (FGF23). Nutrition 2020; 79-80:110988. [PMID: 32961447 DOI: 10.1016/j.nut.2020.110988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Renal phosphate and vitamin D metabolism are regulated by proteohormone fibroblast growth factor 23 (FGF23), which is secreted by bone cells. FGF23 inhibits phosphate reabsorption and the production of calcitriol, active vitamin D (1,25(OH)2D3). FGF23 generated by other cells exerts further paracrine effects in the liver, heart, and immune system. The FGF23 plasma concentration is positively associated with the onset and progression of kidney and cardiovascular diseases, disclosing FGF23 as a potential disease biomarker. The effects of vitamin A on the expression of FGF23 are controversial. Vitamin A components, retinoids, are mainly effective through nuclear retinoic acid receptors (RAR) and exert different effects on bone. The aim of this study was to clarify whether vitamin A modulates the production of FGF23. METHODS We studied the relevance of vitamin A for FGF23 production. Fgf23 transcripts were determined by real-time quantitative polymerase chain reaction in UMR106 osteoblast-like cells and IDG-SW3 osteocytes. FGF23 protein in the cell culture supernatant was measured by enzyme-linked immunosorbent assay. RESULTS All-trans-retinoic acid, retinyl acetate, RAR agonist TTNPB (4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid), and 13-cis-retinoic acid downregulated the expression of the Fgf23 gene in a dose-dependent manner. This effect was significantly attenuated by RAR antagonist AGN193109 (4-[2-[5,6-Dihydro-5,5-dimethyl-8-(4-methylphenyl)-2-naphthalenyl]ethynyl]benzoic acid). CONCLUSION The present study demonstrated that vitamin A is a potent suppressor of FGF23 production through RAR.
Collapse
Affiliation(s)
- Steffen Rausch
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michelle Barholz
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
9
|
Gu H, Huang Z, Chen G, Zhou K, Zhang Y, Chen J, Xu J, Yin X. Network and pathway-based analyses of genes associated with osteoporosis. Medicine (Baltimore) 2020; 99:e19120. [PMID: 32080087 PMCID: PMC7034680 DOI: 10.1097/md.0000000000019120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is a disease characterized by bone mass loss, bone microstructure damage, increased bone fragility, and easy fracture. The molecular mechanism underlying OP remains unclear.In this study, we identified 217 genes associated with OP, and formed a gene set [OP-related genes gene set (OPgset)].The highly enriched GOs and pathways showed OPgset genes were significantly involved in multiple biological processes (skeletal system development, ossification, and osteoblast differentiation), and several OP-related pathways (Wnt signaling pathway, osteoclast differentiation, steroid hormone biosynthesis, and adipocytokine signaling pathway). Besides, pathway crosstalk analysis indicated three major modules, with first module consisted of pathways mainly involved in bone development-related signaling pathways, second module in Wnt-related signaling pathway and third module in metabolic pathways. Further, we calculated degree centrality of a node and selected ten key genes/proteins, including TGFB1, IL6, WNT3A, TNF, PTH, TP53, WNT1, IGF1, IL10, and SERPINE1. We analyze the K-core and construct three k-core sub-networks of OPgset genes.In summary, we for the first time explored the molecular mechanism underlying OP via network- and pathway-based methods, results from our study will improve our understanding of the pathogenesis of OP. In addition, these methods performed in this study can be used to explore pathogenesis and genes related to a specific disease.
Collapse
|