1
|
Wang N, Pei Z, Wang H, Zhao J, Lu W. Bifidobacterium longum Ameliorates Intestinal Inflammation and Metabolic Biomarkers in Mice Fed a High-Fat Diet with Gliadin by Indoleacrylic Acid. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10486-6. [PMID: 39982644 DOI: 10.1007/s12602-025-10486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Gliadin, abundant in flour-based foods and processed foods, has been widely researched for allergies. However, the impact of gliadin on the intestinal barrier of healthy individuals and the intervention effect of Bifidobacterium longum (B. longum) are rarely explored. Three strains (JCM1217, CCFM1216, CCFM1218) of B. longum with strong gliadin hydrolysis were screened from 18 strains. This study explored the effects of B. longum on mice with a 10-week high-fat diet and 6% gliadin (HFD + 6%G), assessing duodenal health, lipid metabolism, metabolomics, and gut microbiota in the duodenum and colon changes. Three B. longum strains were screened for gliadin hydrolysis to produce minimal R5 immunopeptide production. All three B. longum strains improved duodenal morphology, reduced intestinal permeability, reduced inflammation (IL-15), and activated tryptophan metabolism. Additionally, alterations in the microbiota of the duodenum and colon were also observed. Linear discriminant analysis (LDA) showed that the HFD + 6% G group significantly increased the abundance of Ileibacterium, Alistipes, Bacteroides, Candidatus, Saccharimonas, Streptococcus, Sediminibacterium, and Odoribacterium in the duodenum. The abundance of Blautia, Butyricimonas, Ruminococcaceae UCG-010, Parabacterioids, and Eubacterium nodatum in the colon was also increased. The B. longum CCFM1216 and B. longum CCFM1218 reversed the abundance of these strains. Specifically, B. longum CCFM1216 enhanced the duodenal barrier with indoleacrylic acid, beneficial for blood lipids and glucose. These strains may be used as probiotics for gliadin-related diseases.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Díaz-Del Cerro E, Garrido A, Cruces J, Ceprián N, De la Fuente M. Gliadin-Rich Diet Worsens Immune and Redox Impairments in Prematurely Aging Mice. Cells 2025; 14:279. [PMID: 39996751 PMCID: PMC11853666 DOI: 10.3390/cells14040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Gliadin is one of the most important fractions of gluten, a glycoprotein closely linked to the development of negative effects on physiological functions and the development of gastrointestinal diseases, such as celiac disease (CD). Research suggests that inadequate stress responses and anxiety states may trigger or at least contribute to the development of these pathological conditions. Peritoneal leukocytes from Prematurely Aging Mice (PAM), which are chronologically adult mice with compromised responses to stress and anxiety, exhibit functional changes when exposed in vitro to gliadin peptides, resembling some immune alterations found also in CD patients. This observation prompted us to investigate the effects of a gliadin-rich diet on immune function and redox state in PAM. In this study, adult female PAM were fed either a gluten-enriched diet (PAMD, 120 g/kg) or a standard diet (PAMC) for four weeks. Immune function parameters in peritoneal, splenic, and thymic leukocytes (phagocytosis, chemotaxis, Natural Killer activity, lymphoproliferation) and redox markers (glutathione reductase, glutathione peroxidase, reduced/oxidized glutathione, xanthine oxidase activity, lipid peroxidation) were evaluated. The results showed that PAMD exhibited more impaired immune function, lower antioxidant enzyme activities, and reduced glutathione concentrations, as well as higher oxidized glutathione and increased xanthine oxidase activity compared to PAMC. These findings suggest that a gliadin-rich diet worsens immune and redox impairments in PAM, resembling some of the alterations previously described in CD, and indicating the potential of this animal for studying gluten-induced immune dysregulation.
Collapse
Affiliation(s)
- Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (J.C.); (N.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Antonio Garrido
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
- Nanocaging Research Group, Department of Biosciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Julia Cruces
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (J.C.); (N.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Noemí Ceprián
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (J.C.); (N.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (J.C.); (N.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
3
|
Aguilar EC, Fernandes-Braga W, Santos EA, Leocádio PCL, Dos Santos Aggum Capettini L, Orellano LAA, Campos PP, Lemos VS, Soares FLP, Navia-Pelaez JM, Alvarez-Leite JI. Gluten worsens non-alcoholic fatty liver disease by affecting lipogenesis and fatty acid oxidation in diet-induced obese apolipoprotein E-deficient mice. Mol Cell Biochem 2024; 479:1335-1347. [PMID: 37402020 DOI: 10.1007/s11010-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Obesity is closely associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation and hepatocyte injury. Preclinical studies have shown exacerbated weight gain associated with an obesogenic gluten-containing diet. However, whether gluten affects obesity-induced hepatic lipid accumulation still remains unclear. We hypothesized that gluten intake could affect fatty liver development in high-fat diet (HFD)-induced obese mice. Thus, we aimed to investigate the impact of gluten intake on NAFLD in HFD-induced obese mice. Male apolipoprotein E-deficient (Apoe-/-) mice were fed with a HFD containing (GD) or not (GFD) vital wheat gluten (4.5%) for 10 weeks. Blood and liver were collected for further analysis. We found that gluten exacerbated weight gain, hepatic fat deposition, and hyperglycemia without affecting the serum lipid profile. Livers of the GD group showed a larger area of fibrosis, associated with the expression of collagen and MMP9, and higher expression of apoptosis-related factors, p53, p21, and caspase-3. The expression of lipogenic factors, such as PPARγ and Acc1, was more elevated and factors related to beta-oxidation, such as PPARα and Cpt1, were lower in the GD group compared to the GFD. Further, gluten intake induced a more significant expression of Cd36, suggesting higher uptake of free fatty acids. Finally, we found lower protein expression of PGC1α followed by lower activation of AMPK. Our data show that gluten-containing high-fat diet exacerbated NAFLD by affecting lipogenesis and fatty acid oxidation in obese Apoe-/- mice through a mechanism involving lower activation of AMPK.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil.
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elandia Aparecida Santos
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
| | | | | | - Paula Peixoto Campos
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Maria Navia-Pelaez
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Medicine, University of California San Diego, San Diego, USA
| | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, ICB - Federal University of Minas Gerais, Caixa Postal 486, Belo Horizonte, 30161-970, Brazil
| |
Collapse
|
4
|
Aguilar EC, Fernandes-Braga W, Leocádio PCL, Campos GP, Lemos VS, de Oliveira RP, Caetano de Faria AM, Dos Santos Aggum Capettini L, Alvarez-Leite JI. Dietary gluten worsens hepatic steatosis by increasing inflammation and oxidative stress in ApoE-/- mice fed a high-fat diet. Food Funct 2023; 14:3332-3347. [PMID: 36940107 DOI: 10.1039/d3fo00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder in the world. We have seen that gluten intake exacerbated obesity and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. In this study, we investigated the effect of gluten consumption on inflammation and oxidative stress in the liver of mice with NAFLD. Male ApoE-/- mice were fed a gluten-free (GF-HFD) or gluten-containing (G-HFD) high-fat diet for 10 weeks. Blood, liver, and spleen were collected to perform the analyses. The animals of the gluten group had increased hepatic steatosis, followed by increased serum AST and ALT. Gluten intake increased hepatic infiltration of neutrophils, macrophages, and eosinophils, as well as the levels of chemotaxis-related factors CCL2, Cxcl2, and Cxcr3. The production of the TNF, IL-1β, IFNγ, and IL-4 cytokines in the liver was also increased by gluten intake. Furthermore, gluten exacerbated the hepatic lipid peroxidation and nitrotyrosine deposition, which were associated with increased production of ROS and nitric oxide. These effects were related to increased expression of NADPH oxidase and iNOS, as well as decreased activity of superoxide dismutase and catalase enzymes. There was an increased hepatic expression of the NF-κB and AP1 transcription factors, corroborating the worsening effect of gluten on inflammation and oxidative stress. Finally, we found an increased frequency of CD4+FOXP3+ lymphocytes in the spleen and increased gene expression of Foxp3 in the livers of the G-HFD group. In conclusion, dietary gluten aggravates NAFLD, exacerbating hepatic inflammation and oxidative stress in obese ApoE-deficient mice.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil. .,Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, USA
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Ana Maria Caetano de Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | | | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Dhruva V, Lawson C, Green C, Newberry C. "The Gluten-Free Diet and Its Relationship with Metabolic Syndrome: Dietary Friend or Foe?". Curr Nutr Rep 2021; 10:282-287. [PMID: 34510390 DOI: 10.1007/s13668-021-00371-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Celiac disease (CD) is a prevalent digestive illness as well as a budding area of research in the field of gastroenterology. While investigations are underway to find new and improved pharmacological therapies for CD, the gluten-free diet (GFD) remains the only option to effectively manage the condition. RECENT FINDINGS While the GFD is recommended for patients diagnosed with CD and other gluten-related conditions, studies show the number of individuals on the GFD surpasses the projected number of patients with these medical indications (1). The implications of widespread adoption of this dietary approach are still being determined, with many patients believing this diet will improve overall health and cardiovascular risk. This review analyzes the relationship between a GFD and metabolic syndrome in both non-celiac and celiac patients, concluding that although the diet may slightly improve overall cardiac risk factors, weight, and/or insulin resistance, its use in the absence of a gluten-related disorder is controversial.
Collapse
Affiliation(s)
- Vishal Dhruva
- Rutgers New Jersey Medical School, 65 Bergen Street, Newark, NJ, 07103, USA
| | - Christy Lawson
- Division of Trauma and Critical Care Surgery, University of Tennessee Medical Center, 1932 Alcoa Hwy Ste 270, Knoxville, TN, 37920, USA
| | - Caitlin Green
- Division of Gastroenterology, Medical University of South Carolina, 1600 Midtown Avenue, Mount Pleasant, SC, 29464, USA
| | - Carolyn Newberry
- Division of Gastroenterology, Weill Cornell Medical Center, 445 East 69th Street, 4th Floor, New York, NY, 10021, USA.
| |
Collapse
|
6
|
Rodrigues JCG, Pinto P, Leitão LPC, Vinagre LWMS, Monte N, Fernandes MR, Khayat AS, de Assumpção PP, Santos NPCD, Santos SEBD. Influence of APOE locus on poor prognosis of COVID-19. Heliyon 2021; 7:e07379. [PMID: 34179542 PMCID: PMC8220252 DOI: 10.1016/j.heliyon.2021.e07379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/27/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
The COVID-19 pandemic has infected over 25 million of people worldwide, 5% of whom evolved to death and, among of the active cases, more than 60 thousand are classified as critical or severe. Recent studies revealed that ApoE, a protein encoded by APOE gene, may increase the risk of severe COVID-19 cases. ApoE has been involved with prevention of tissue damage and promotion of adaptative immune response in the lungs. This study investigated frequencies distribution of alleles that alter the ApoE expression in lung tissues to trace a profile of these variants and associate them to COVID-19 clinical outcomes. Data about APOE expression levels was obtained from the Genotype-Tissue Expression Project and the allele frequencies of APOE variants was acquired from the populations included in the phase 3 release of the 1000 Genomes Project. A total of 128 variants showed a significant impact on the APOE expression in lung tissues (p < 0.0001). Linkage Disequilibrium analysis revealed that 98 variants were closely grouped into seven distinct haplotype blocks, of which six were composed of variants that significantly decrease APOE gene expression in the lungs. Most of the haplotypes with higher impact on APOE expression showed greater frequencies in Europeans and lower in Africans, which implies that European populations might be more susceptible to SARS-CoV-2 infection. The present study indicates a potential genetic contribution of APOE expression-modifying variants in modulating the prognosis of COVID-19.
Collapse
Affiliation(s)
| | - Pablo Pinto
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | - Natasha Monte
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - André Salim Khayat
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | - Sidney Emanuel Batista dos Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
7
|
Nassir CMNCM, Ghazali MM, Hashim S, Idris NS, Yuen LS, Hui WJ, Norman HH, Gau CH, Jayabalan N, Na Y, Feng L, Ong LK, Abdul Hamid H, Ahamed HN, Mustapha M. Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Front Cardiovasc Med 2021; 8:632131. [PMID: 33718454 PMCID: PMC7943466 DOI: 10.3389/fcvm.2021.632131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger neuroinflammation and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and Parkinson disease. Despite being the most common neurodegenerative condition with cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable risk factors such as unhealthy diet including high intake of processed food, high-fat foods, and animal by-products are known to influence the non-neural peripheral events, such as in the gastrointestinal tract and cardiovascular stress through cellular inflammation and oxidation. One key outcome from such events, among others, includes the cellular activations that lead to elevated levels of endogenous cellular-derived circulating microparticles (MPs). MPs can be produced from various cellular origins including leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as microthrombogenic procoagulant that served as a plausible culprit for the vulnerable end-artery microcirculation in the brain as the end-organ leading to CSVD manifestations. However, little attention has been paid on the potential role of MPs in the onset and progression of CSVD spectrum. Corroboratively, the formation of MPs is known to be influenced by diet-induced cellular stress. Thus, this review aims to appraise the body of evidence on the dietary-related impacts on circulating MPs from non-neural peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical features of MPs in health and disease states; relevance of dietary patterns on MP release; preclinical studies pertaining to diet-based MPs contribution to disease; MP level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs manipulation with diet-based approach as a novel preventive measure for CSVD in an aging society worldwide.
Collapse
Affiliation(s)
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Suhaila Idris
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Lee Si Yuen
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wong Jia Hui
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Haziq Hazman Norman
- Anatomy Unit, International Medical School (IMS), Management and Science University (MSU), Shah Alam, Malaysia
| | - Chuang Huei Gau
- Department of Psychology and Counselling, Faculty of Arts and Social Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, University of Queensland (UQ), Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Yuri Na
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Linqing Feng
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, National Health and Medical Research Council (NHMRC), Heidelberg, VIC, Australia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian, Malaysia
| |
Collapse
|
8
|
Impact of Lifestyles (Diet and Exercise) on Vascular Health: Oxidative Stress and Endothelial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1496462. [PMID: 33062134 PMCID: PMC7533760 DOI: 10.1155/2020/1496462] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Healthy lifestyle and diet are associated with significant reduction in risk of obesity, type 2 diabetes, and cardiovascular diseases. Oxidative stress and the imbalance between prooxidants and antioxidants are linked to cardiovascular and metabolic diseases. Changes in antioxidant capacity of the body may lead to oxidative stress and vascular dysfunction. Diet is an important source of antioxidants, while exercise offers many health benefits as well. Recent findings have evidenced that diet and physical factors are correlated to oxidative stress. Diet and physical factors have debatable roles in modulating oxidative stress and effects on the endothelium. Since endothelium and oxidative stress play critical roles in cardiovascular and metabolic diseases, dietary and physical factors could have significant implications on prevention of the diseases. This review is aimed at summarizing the current knowledge on the impact of diet manipulation and physical factors on endothelium and oxidative stress, focusing on cardiovascular and metabolic diseases. We discuss the friend-and-foe role of dietary modification (including different diet styles, calorie restriction, and nutrient supplementation) on endothelium and oxidative stress, as well as the potential benefits and concerns of physical activity and exercise on endothelium and oxidative stress. A fine balance between oxidative stress and antioxidants is important for normal functions in the cells and interfering with this balance may lead to unfavorable effects. Further studies are needed to identify the best diet composition and exercise intensity.
Collapse
|
9
|
Tian Y, Song H, Qin W, Ding Z, Zhang Y, Shan W, Jin D. Mammalian STE20-Like Kinase 2 Promotes Lipopolysaccharides-Mediated Cardiomyocyte Inflammation and Apoptosis by Enhancing Mitochondrial Fission. Front Physiol 2020; 11:897. [PMID: 32848850 PMCID: PMC7424023 DOI: 10.3389/fphys.2020.00897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we analyzed the role of mammalian STE20-like protein kinase 2 (Mst2), a serine-threonine protein kinase, in Lipopolysaccharides (LPS)-mediated inflammation and apoptosis in the H9C2 cardiomyocytes. Mst2 mRNA and protein levels were significantly upregulated in the LPS-treated H9C2 cardiomyocytes. LPS treatment induced expression of IL-2, IL-8, and MMP9 mRNA and proteins in the H9C2 cardiomyocytes, and this was accompanied by increased caspase-3/9 mediating H9C2 cardiomyocyte apoptosis. LPS treatment also increased mitochondrial reactive oxygen species (ROS) and the levels of antioxidant enzymes, such as GSH, SOD, and GPX, in the H9C2 cardiomyocytes. The LPS-treated H9C2 cardiomyocytes showed lower cellular ATP levels and mitochondrial state-3/4 respiration but increased mitochondrial fragmentation, including upregulation of the mitochondrial fission genes Drp1, Mff, and Fis1. LPS-induced inflammation, mitochondrial ROS, mitochondrial fission, and apoptosis were all significantly suppressed by pre-treating the H9C2 cardiomyocytes with the Mst2 inhibitor, XMU-MP1. However, the beneficial effects of Mst2 inhibition by XMU-MP1 were abolished by carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), a potent activator of mitochondrial fission. These findings demonstrate that Mst2 mediates LPS-induced cardiomyocyte inflammation and apoptosis by increasing mitochondrial fission.
Collapse
Affiliation(s)
- Yanan Tian
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Haijiu Song
- The First Department of Medicine, Chengde City Hospital of traditional Chinese Medicine, Chengde, China
| | - Wei Qin
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zhenjiang Ding
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Weichao Shan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Dapeng Jin
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|