1
|
Mak KM, Shekhar AC. Soybean polyenylphosphatidylcholine (PPC) is beneficial in liver and extrahepatic tissue injury: An update in experimental research. Anat Rec (Hoboken) 2024; 307:2162-2186. [PMID: 37814787 DOI: 10.1002/ar.25333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Polyenylphosphatidylcholine (PPC) is a purified polyunsaturated phosphatidylcholine extract of soybeans. This article updates PPC's beneficial effects on various forms of liver cell injury and other tissues in experimental research. PPC downregulates hepatocyte CYP2E1 expression and associated hepatotoxicity, as well as attenuates oxidative stress, apoptosis, lipoprotein oxidation and steatosis in alcoholic and nonalcoholic liver injury. PPC inhibits pro-inflammatory cytokine production, while stimulating anti-inflammatory cytokine secretion in ethanol or lipopolysaccharide-stimulated Kupffer cells/macrophages. It promotes M2-type macrophage polarization and metabolic reprogramming of glucose and lipid metabolism. PPC mitigates steatosis in NAFLD through inhibiting polarization of pro-inflammatory M1-type Kupffer cells, alleviating metabolic inflammation, remodeling hepatic lipid metabolism, correcting imbalances between lipogenesis and lipolysis and enhancing lipoprotein secretion from hepatocytes. PPC is antifibrotic by preventing progression of alcoholic hepatic fibrosis in baboons and also prevents CCl4-induced fibrosis in rats. PPC supplementation replenishes the phosphatidylcholine content of damaged cell membranes, resulting in increased membrane fluidity and functioning. Phosphatidylcholine repletion prevents increased membrane curvature of the endoplasmic reticulum and Golgi and decreases sterol regulatory element binding protein-1-mediated lipogenesis, reducing steatosis. PPC remodels gut microbiota and affects hepatic lipid metabolism via the gut-hepatic-axis and also alleviates brain inflammatory responses and cognitive impairment via the gut-brain-axis. Additionally, PPC protects extrahepatic tissues from injury caused by various toxic compounds by reducing oxidative stress, inflammation, and membrane damage. It also stimulates liver regeneration, enhances sensitivity of cancer cells to radiotherapy/chemotherapy, and inhibits experimental hepatocarcinogenesis. PPC's beneficial effects justify it as a supportive treatment of liver disease.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
3
|
Shi T, Wu L, Ma W, Ju L, Bai M, Chen X, Liu S, Yang X, Shi J. Nonalcoholic Fatty Liver Disease: Pathogenesis and Treatment in Traditional Chinese Medicine and Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8749564. [PMID: 31998400 PMCID: PMC6969649 DOI: 10.1155/2020/8749564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide and probably destined to become the leading cause of end-stage liver disease in the coming decades, affecting both adults and children. Faced with the severe challenges for the prevention and control of NAFLD, this article discusses the understanding and mechanism of NAFLD from Chinese and Western medicine. Moreover, the progress regarding its treatment in both Chinese and Western medicine is also summarized. Both Chinese medicine and Western medicine have their own characteristics and clinical efficacy advantages in treating diseases. The purpose of this article is to hope that Chinese and Western medicine have complementary advantages, complementing each other to improve clinical NAFLD therapy prevention and treatment methods to receive more and more attention throughout the global medical community.
Collapse
Affiliation(s)
- Tingting Shi
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Li Wu
- Center of Clinical Evaluation, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, Zhejiang, China
| | - Wenjun Ma
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Liping Ju
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Minghui Bai
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xiaowei Chen
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Shourong Liu
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Kunming 650500, Yunnan, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
5
|
Zhang G, Hu Y, Lu LG. Opportunity and challenge for diagnosis and treatment of hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2015; 23:5743-5749. [DOI: 10.11569/wcjd.v23.i36.5743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a wound-healing response to all kinds of chronic liver injuries, which is characterized by extracellular matrix remodeling. Hepatic fibrosis ultimately leads to cirrhosis and even hepatic cell carcinoma. Thus, diagnosis and treatment of hepatic fibrosis are important for the management of chronic liver diseases. Recently, the study of hepatic fibrogenesis has witnessed tremendous progress, with many new diagnostic and therapeutic options emerging. This article mainly discusses the opportunity and challenge for diagnosis and treatment of hepatic fibrosis.
Collapse
|
6
|
Ko SH, Park JH, Kim SY, Lee SW, Chun SS, Park E. Antioxidant Effects of Spinach (Spinacia oleracea L.) Supplementation in Hyperlipidemic Rats. Prev Nutr Food Sci 2014; 19:19-26. [PMID: 24772405 PMCID: PMC3999804 DOI: 10.3746/pnf.2014.19.1.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 01/14/2023] Open
Abstract
Increased consumption of fresh vegetables that are high in polyphenols has been associated with a reduced risk of oxidative stress-induced disease. The present study aimed to evaluate the antioxidant effects of spinach in vitro and in vivo in hyperlipidemic rats. For measurement of in vitro antioxidant activity, spinach was subjected to hot water extraction (WE) or ethanol extraction (EE) and examined for total polyphenol content (TPC), oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA), and antigenotoxic activity. The in vivo antioxidant activity of spinach was assessed using blood and liver lipid profiles and antioxidant status in rats fed a high fat-cholesterol diet (HFCD) for 6 weeks. The TPC of WE and EE were shown as 1.5±0.0 and 0.5±0.0 mg GAE/g, respectively. Increasing the concentration of the extracts resulted in increased ORAC value, CAA, and antigenotoxic activity for all extracts tested. HFCD-fed rats displayed hyperlipidemia and increased oxidative stress, as indicated by a significant rise in blood and liver lipid profiles, an increase in plasma conjugated diene concentration, an increase in liver thiobarbituric acid reactive substances (TBARS) level, and a significant decrease in manganese superoxide dismutase (Mn-SOD) activity compared with rats fed normal diet. However, administration of 5% spinach showed a beneficial effect in HFCD rats, as indicated by decreased liver TBARS level and DNA damage in leukocyte and increased plasma conjugated dienes and Mn-SOD activity. Thus, the antioxidant activity of spinach may be an effective way to ameliorate high fat and cholesterol diet-induced oxidative stress.
Collapse
Affiliation(s)
- Sang-Heui Ko
- Department of Food and Nutrition, Sunchon National University, Jeonnam 540-950, Korea
| | - Jae-Hee Park
- Department of Food and Nutritional Science, Kyungnam University, Gyeongnam 631-701, Korea
| | - So-Yun Kim
- Department of Food and Nutritional Science, Kyungnam University, Gyeongnam 631-701, Korea
| | - Seon Woo Lee
- Department of Food and Nutritional Science, Kyungnam University, Gyeongnam 631-701, Korea
| | - Soon-Sil Chun
- Department of Food and Nutrition, Sunchon National University, Jeonnam 540-950, Korea
| | - Eunju Park
- Department of Food and Nutritional Science, Kyungnam University, Gyeongnam 631-701, Korea
| |
Collapse
|
7
|
Dey A. Cytochrome P450 2E1: its clinical aspects and a brief perspective on the current research scenario. Subcell Biochem 2013; 67:1-104. [PMID: 23400917 DOI: 10.1007/978-94-007-5881-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Research on Cytochrome P450 2E1 (CYP2E1), a key enzyme in alcohol metabolism has been very well documented in literature. Besides the involvement of CYP2E1 in alcohol metabolism as illustrated through the studies discussed in the chapter, recent studies have thrown light on several other aspects of CYP2E1 i.e. its extrahepatic expression, its involvement in several diseases and pathophysiological conditions; and CYP2E1 mediated carcinogenesis and modulation of drug efficacy. Studies involving these interesting facets of CYP2E1 have been discussed in the chapter focusing on the recent observations or ongoing studies illustrating the crucial role of CYP2E1 in disease development and drug metabolism.
Collapse
Affiliation(s)
- Aparajita Dey
- AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai, Tamil Nadu, 600044, India,
| |
Collapse
|
8
|
Gyamfi D, Everitt HE, Tewfik I, Clemens DL, Patel VB. Hepatic mitochondrial dysfunction induced by fatty acids and ethanol. Free Radic Biol Med 2012; 53:2131-2145. [PMID: 23010494 DOI: 10.1016/j.freeradbiomed.2012.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 02/08/2023]
Abstract
Understanding the key aspects of the pathogenesis of alcoholic fatty liver disease particularly alterations to mitochondrial function remains to be resolved. The role of fatty acids in this regard requires further investigation due to their involvement in fatty liver disease and obesity. This study aimed to characterize the early effects of saturated and unsaturated fatty acids alone on liver mitochondrial function and during concomitant ethanol exposure using isolated liver mitochondria and VA-13 cells (Hep G2 cells that efficiently express alcohol dehydrogenase). Liver mitochondria or VA-13 cells were treated with increasing concentrations of palmitic or arachidonic acid (1 to 160 μM) for 24 h with or without 100 mM ethanol. The results showed that in isolated liver mitochondria both palmitic and arachidonic acids significantly reduced state 3 respiration in a concentration-dependent manner (P<0.001), implicating their ionophoric activities. Increased ROS production occurred in a dose-dependent manner especially in the presence of rotenone (complex I inhibitor), which was significantly more prominent in arachidonic acid at 80 μM (+970%, P<0.001) than palmitic acid (+40%, P<0.01). In VA-13 cells, ethanol alone and both fatty acids (40 μM) were able to decrease the mitochondrial membrane potential and cellular ATP levels and increase lipid formation. ROS production was significantly increased with arachidonic acid (+110%, P<0.001) exhibiting a greater effect than palmitic acid (+39%, P<0.05). While in the presence of ethanol, the drop in the mitochondrial membrane potential, cellular ATP levels, and increased lipid formation were further enhanced by both fatty acids, but with greater effect in the case of arachidonic acid, which also correlated with significant cytotoxicity (P<0.001). This study confirms the ability of fatty acids to promote mitochondrial injury in the development of alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Daniel Gyamfi
- Department of Biomedical Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | | | | | | | | |
Collapse
|
9
|
Inoue M, Adachi M, Shimizu Y, Tsutsumi T, Tokumura A. Comparison of lysophospholipid levels in rat feces with those in a standard chow. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7062-7067. [PMID: 21648420 DOI: 10.1021/jf200986k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although lysophospholipids have attracted much attention due to their diverse physiological activities through their specific receptors, little is known about their metabolic fates in mammalian digestive systems after their ingestion as a minor food component. In this study, we analyzed five lysophospholipids in lipid extracts of a standard rat chow and feces of rats fed the chow by two-dimensional thin layer chromatography and liquid chromatography-tandem mass spectrometry. The most abundant lysophospholipid in the rat chow was lysophosphatidylcholine followed by lysophosphatidylethanolamine, lysophosphatidic acid (LPA), lysophosphatidylinositol and lysophosphatidylserine (LPS) in an increasing order, but their concentrations were very low in rat feces. Among the molecular species of LPS in the chow, only saturated species were detected in the feces in significant amounts. In addition, several molecular species of LPA remained in the feces in variable portions (saturated > monounsaturated > polyunsaturated). These results suggest that a portion of ingested LPA and LPS reach the rat large intestine, affecting physiological colon functions.
Collapse
Affiliation(s)
- Manami Inoue
- Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Thompson KJ, McKillop IH, Schrum LW. Targeting collagen expression in alcoholic liver disease. World J Gastroenterol 2011; 17:2473-81. [PMID: 21633652 PMCID: PMC3103805 DOI: 10.3748/wjg.v17.i20.2473] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/17/2011] [Accepted: 04/24/2011] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of liver disease and liver-related deaths globally, particularly in developed nations. Liver fibrosis is a consequence of ALD and other chronic liver insults, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Liver fibrosis is characterized by accumulation of excess extracellular matrix components, including type I collagen, which disrupts liver microcirculation and leads to injury. To date, there is no therapy for the treatment of liver fibrosis; thus treatments that either prevent the accumulation of type I collagen or hasten its degradation are desirable. The focus of this review is to examine the regulation of type I collagen in fibrogenic cells of the liver and to discuss current advances in therapeutics to eliminate excessive collagen deposition.
Collapse
|
12
|
Dey A, Kumar SM. Cytochrome P450 2E1 and hyperglycemia-induced liver injury. Cell Biol Toxicol 2011; 27:285-310. [PMID: 21455816 DOI: 10.1007/s10565-011-9188-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/03/2011] [Indexed: 12/25/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1), a microsomal enzyme involved in xenobiotic metabolism and generation of oxidative stress, has been implicated in promoting liver injury. The review deals with the changes in various cellular pathways in liver linked with the changes in regulation of CYP2E1 under hyperglycemic conditions. Some of the hepatic abnormalities associated with hyperglycemia-mediated induction of CYP2E1 include increased oxidative stress, changes in mitochondrial structure and function, apoptosis, nitrosative stress, and increased ketone body accumulation. Thus, changes in regulation of CYP2E1 are associated with the injurious effects of hyperglycemia in liver.
Collapse
Affiliation(s)
- Aparajita Dey
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai, India.
| | | |
Collapse
|
13
|
Proteomic analysis of liver proteins in rats fed with a high-fat diet in response to capsaicin treatments. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-010-0029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Son Y, Lee JH, Kim NH, Surh NY, Kim EC, Chung HT, Kang DG, Pae HO. Dilinoleoylphosphatidylcholine induces the expression of the anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Biofactors 2010; 36:210-5. [PMID: 20336709 DOI: 10.1002/biof.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1,2-Dilinoleoyl-sn-glycero-3-phosphocholine (DLPC), the main and active component of soybean lecithin, has been reported to exert anti-inflammatory effects, but the underlying mechanisms remain to be established. It was found that DLPC could induce the expression of the anti-inflammatory heme oxygenase-1 (HO-1) through the activation of nuclear erythroid 2-related factor 2 (Nrf2) in RAW264.7 macrophages. Pretreatment with DLPC suppressed the expression of inducible nitric oxide (NO) synthase (iNOS), one of proinflammatory enzymes, and reduced NO production in lipopolysaccharide (LPS)-stimulated macrophages. Similarly, DLPC also diminished the production of tumor necrosis factor-alpha (TNF-alpha), one of proinflammatory cytokines. Interestingly, the inhibitory effects of DLPC on LPS-induced iNOS expression and TNF-alpha production were reversed by tin protoporphyrin, a HO-1 inhibitor. Thus, HO-1 expression via Nrf2 activation may be one of the possible mechanisms explaining the anti-inflammatory effects of DLPC.
Collapse
Affiliation(s)
- Yong Son
- Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen H, Liu LJ, Zhu JJ, Xu B, Li R. Effect of soybean oligosaccharides on blood lipid, glucose levels and antioxidant enzymes activity in high fat rats. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.09.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010; 16:1366-76. [PMID: 20238404 PMCID: PMC2842529 DOI: 10.3748/wjg.v16.i11.1366] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
S-adenosyl-L-methionine (SAM) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione. SAM is also a key metabolite that regulates hepatocyte growth, differentiation and death. Hepatic SAM levels are decreased in animal models of alcohol liver injury and in patients with alcohol liver disease or viral cirrhosis. This review describes the protection by SAM against alcohol and cytochrome P450 2E1-dependent cytotoxicity both in vitro and in vivo and evaluates mechanisms for this protection.
Collapse
|
17
|
Omagari K, Kato S, Tsuneyama K, Hatta H, Sato M, Hamasaki M, Sadakane Y, Tashiro T, Fukuhata M, Miyata Y, Tamaru S, Tanaka K, Mune M. Olive leaf extract prevents spontaneous occurrence of non-alcoholic steatohepatitis in SHR/NDmcr-cp rats. Pathology 2010; 42:66-72. [PMID: 20025483 DOI: 10.3109/00313020903434389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Oxidative stress may play an important role in the pathogenesis of non-alcoholic steatohepatitis (NASH). Oleuropein, the active constituent of olive leaf, possesses anti-oxidant, hypoglycaemic, and hypolipidaemic activities. We aimed to investigate the preventive effects of olive leaf extract on hepatic fat accumulation in a rat model of NASH. METHODS Spontaneously hypertensive/NIH-corpulent rats were fed a diet of AIN-93G with or without olive leaf extract (500, 1000, 2000 mg/kg diet, and control; 5 rats each) for 23 weeks. Serological and histopathological findings, anti-oxidative activity, and the alteration of fatty acid synthesis in the liver were evaluated. RESULTS Histopathologically, a diet of AIN-93G containing more than 1000 mg/kg olive leaf extract had a preventive effect for the occurrence of NASH. Thioredoxin-1 expression in the liver was more evident in rats fed this diet, and 4-hydroxynonenal expression in the liver was less evident in these rats. There were no significant differences in the activities of hepatic carnitine palmitoyltransferase, fatty acid synthase, malic enzyme, and phosphatidic acid phosphohydrolase among the groups. CONCLUSIONS Our data suggest that olive leaf extract may help prevent NASH, presumably through its anti-oxidative activity.
Collapse
Affiliation(s)
- Katsuhisa Omagari
- Department of Nutritional Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marsman HA, Al-Saady RL, Heger M, van Gulik TM. How reproducible are rat steatosis models using high-fat diets? J Hepatol 2009; 51:822-3; author reply 824. [PMID: 19616337 DOI: 10.1016/j.jhep.2009.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Syn WK, Teaberry V, Choi SS, Diehl AM. Similarities and differences in the pathogenesis of alcoholic and nonalcoholic steatohepatitis. Semin Liver Dis 2009; 29:200-10. [PMID: 19387919 PMCID: PMC3644873 DOI: 10.1055/s-0029-1214375] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subpopulations of individuals with alcohol-induced fatty livers and nonalcoholic steatosis develop steatohepatitis. Steatohepatitis is defined histologically: increased numbers of injured and dying hepatocytes distinguish this condition from simple steatosis. The increased hepatocyte death is generally accompanied by hepatic accumulation of inflammatory cells and sometimes increases in myofibroblastic cells, leading to hepatic fibrosis and eventually, cirrhosis. The purpose of this review is to summarize similarities and differences in the pathogenesis of steatohepatitis in alcoholic fatty liver disease and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Vanessa Teaberry
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Steve S. Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC 27705
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|