1
|
Tanaka M, Kanazashi M, Tsumori T, Fujino H. Prazosin improves insulin-induced anabolic signaling by protecting capillary regression in the soleus muscle of hindlimb-unloaded rats. J Diabetes Metab Disord 2024; 23:1989-1999. [PMID: 39610479 PMCID: PMC11599836 DOI: 10.1007/s40200-024-01454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 11/30/2024]
Abstract
Purpose Reduced capillary number in skeletal muscle due to disuse can hinder the delivery of insulin and amino acid delivery to muscle cells, diminishing insulin activity and muscle protein synthesis, ultimately contributing to anabolic resistance. However, it remains unknown whether mitigating capillary regression during inactivity improves anabolic resistance. This study aimed to investigate the effect of increasing capillary number through the administration of prazosin, which can increase blood flow and prevent capillary regression, on anabolic resistance in skeletal muscle induced by disuse. Methods Male Sprague Dawley rats were divided into control and hindlimb unloading (HU) groups, with half of each group receiving prazosin (50 mg/L) in their drinking water for 2 weeks. Histological analysis of the soleus muscles was conducted to measure the capillary-to-fiber (C/F) ratio, while western blotting was performed to measure the activation of the Akt/mTORC1 muscle protein synthesis pathway before and after insulin stimulation. Results The C/F ratios were significantly lower in the HU and HU + Prz groups than in the control group but were significantly higher in the HU + Prz group than in the HU group. Following insulin stimulation, the phosphorylation levels of Akt, p70S6K, and S6RP increased in all groups, with a significantly greater increase observed in the HU + Prz group compared to the HU group, indicating improved molecular signaling related to muscle protein synthesis. Conclusion Administration of prazosin during hindlimb unloading mitigated capillary regression and enhanced insulin-stimulated muscle protein synthesis response. These findings suggest that enhancing capillary number may reduce the anabolic resistance caused by muscle disuse. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01454-y.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913 Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053 Japan
| | - Toshiko Tsumori
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053 Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, 654-0142 Hyogo Japan
| |
Collapse
|
2
|
Jiwan NC, Appell CR, Sterling R, Shen CL, Luk HY. The Effect of Geranylgeraniol and Ginger on Satellite Cells Myogenic State in Type 2 Diabetic Rats. Curr Issues Mol Biol 2024; 46:12299-12310. [PMID: 39590324 PMCID: PMC11592527 DOI: 10.3390/cimb46110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with increased inflammation and reactive oxygen species (ROS) in muscles, leading to basal satellite cell (SC) myogenic impairment (i.e., reduction in SC pool), which is critical for maintaining skeletal muscle mass. T2D may contribute to muscle atrophy, possibly due to reductions in the SC pool. Geranylgeraniol (GGOH) and ginger can reduce inflammation and enhance SC myogenesis in damaged muscles, thereby alleviating muscle atrophy; however, their effect on basal SC myogenic state and muscle mass in T2D rats is limited. Rats consumed a control diet (CON), high-fat diet with 35 mg/kg of streptozotocin (HFD), a HFD with 800 mg/kg body weight of GGOH (GG), or a HFD with 0.75% ginger root extract (GRE). In the eighth week, their soleus muscles were analyzed for Pax7, MyoD, and MSTN gene and protein expression, SC myogenic state, and muscle cross-sectional area (CSA). The HFD group had a significantly lower number of Pax7+/MyoD- and Pax7+/MSTN+ cells, less Pax7 and MyoD gene expression, and less MyoD and MSTN protein expression, with a smaller CSA than the CON group. Compared to the GG and GRE groups, the HFD group had a significantly lower number of Pax7+/MSTN+ cells, less MyoD protein expression, and smaller CSA. The GRE group also had a significantly lower number of Pax7-/MyoD+ and greater MSTN protein expression than the HFD group. Nevertheless, the CON group had a significantly greater number of Pax7+/MyoD- than the GG and GRE groups, and a greater number of Pax7-/MyoD+ cells than the GRE group with a larger CSA than the GG group. GGOH and ginger persevered muscle CSA, possibly through increased MyoD and the ability to maintain the SC pool in T2D rats.
Collapse
Affiliation(s)
- Nigel C. Jiwan
- Department of Kinesiology, Hope College, Holland, MI 49423, USA;
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Casey R. Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Raoul Sterling
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| |
Collapse
|
3
|
Zamary KM, Bruno RS. Advances in nutrition approaches to support vascular and gut health: 2023 David Kritchevsky Award winners. Nutr Res 2024; 124:111-115. [PMID: 38574579 DOI: 10.1016/j.nutres.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Kaitlyn M Zamary
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
4
|
Bruno RS, Zamary K. Reemergence from the pandemic, annual awards, and editorial office updates: from the desk of the Editor-in-Chief, Nutrition Research. Nutr Res 2024; 123:131-136. [PMID: 37474411 DOI: 10.1016/j.nutres.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210.
| | - Katie Zamary
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
5
|
AMPK Phosphorylation Impacts Apoptosis in Differentiating Myoblasts Isolated from Atrophied Rat Soleus Muscle. Cells 2023; 12:cells12060920. [PMID: 36980261 PMCID: PMC10047078 DOI: 10.3390/cells12060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Regrowth of atrophied myofibers depends on muscle satellite cells (SCs) that exist outside the plasma membrane. Muscle atrophy appears to result in reduced number of SCs due to apoptosis. Given reduced AMP-activated protein kinase (AMPK) activity during differentiation of primary myoblasts derived from atrophic muscle, we hypothesized that there may be a potential link between AMPK and susceptibility of differentiating myoblasts to apoptosis. The aim of this study was to estimate the effect of AMPK activation (via AICAR treatment) on apoptosis in differentiating myoblasts derived from atrophied rat soleus muscle. Thirty rats were randomly assigned to the following two groups: control (C, n = 10) and 7-day hindlimb suspension (HS, n = 20). Myoblasts derived from the soleus muscles of HS rats were divided into two parts: AICAR-treated cells and non-treated cells. Apoptotic processes were evaluated by using TUNEL assay, RT-PCR and WB. In differentiating myoblasts derived from the atrophied soleus, there was a significant decrease (p < 0.05) in AMPK and ACC phosphorylation in parallel with increased number of apoptotic nuclei and a significant upregulation of pro-apoptotic markers (caspase-3, -9, BAX, p53) compared to the cells derived from control muscles. AICAR treatment of atrophic muscle-derived myoblasts during differentiation prevented reductions in AMPK and ACC phosphorylation as well as maintained the number of apoptotic nuclei and the expression of pro-apoptotic markers at the control levels. Thus, the maintenance of AMPK activity can suppress enhanced apoptosis in differentiating myoblasts derived from atrophied rat soleus muscle.
Collapse
|
6
|
Cultured Myoblasts Derived from Rat Soleus Muscle Show Altered Regulation of Proliferation and Myogenesis during the Course of Mechanical Unloading. Int J Mol Sci 2022; 23:ijms23169150. [PMID: 36012431 PMCID: PMC9409304 DOI: 10.3390/ijms23169150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The structure and function of soleus muscle fibers undergo substantial remodeling under real or simulated microgravity conditions. However, unloading-induced changes in the functional activity of skeletal muscle primary myoblasts remain poorly studied. The purpose of our study was to investigate how short-term and long-term mechanical unloading would affect cultured myoblasts derived from rat soleus muscle. Mechanical unloading was simulated by rat hindlimb suspension model (HS). Myoblasts were purified from rat soleus at basal conditions and after 1, 3, 7, and 14 days of HS. Myoblasts were expanded in vitro, and the myogenic nature was confirmed by their ability to differentiate as well as by immunostaining/mRNA expression of myogenic markers. The proliferation activity at different time points after HS was analyzed, and transcriptome analysis was performed. We have shown that soleus-derived myoblasts differently respond to an early and later stage of HS. At the early stage of HS, the proliferative activity of myoblasts was slightly decreased, and processes related to myogenesis activation were downregulated. At the later stage of HS, we observed a decrease in myoblast proliferative potential and spontaneous upregulation of the pro-myogenic program.
Collapse
|
7
|
Mortreux M, Rosa‐Caldwell ME, Stiehl ID, Sung D, Thomas NT, Fry CS, Rutkove SB. Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiol Rep 2021; 9:e15042. [PMID: 34612585 PMCID: PMC8493566 DOI: 10.14814/phy2.15042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ground-based animal models have been used extensively to understand the effects of microgravity on various physiological systems. Among them, hindlimb suspension (HLS), developed in 1979 in rats, remains the gold-standard and allows researchers to study the consequences of total unloading of the hind limbs while inducing a cephalic fluid shift. While this model has already brought valuable insights to space biology, few studies have directly compared functional decrements in the muscles of males and females during HLS. We exposed 28 adult Wistar rats (14 males and 14 females) to 14 days of HLS or normal loading (NL) to better assess how sex impacts disuse-induced muscle deconditioning. Females better maintained muscle function during HLS than males, as shown by a more moderate reduction in grip strength at 7 days (males: -37.5 ± 3.1%, females: -22.4 ± 6.5%, compared to baseline), that remains stable during the second week of unloading (males: -53.3 ± 5.7%, females: -22.4 ± 5.5%, compared to day 0) while the males exhibit a steady decrease over time (effect of sex × loading p = 0.0002, effect of sex × time × loading p = 0.0099). This was further supported by analyzing the force production in response to a tetanic stimulus. Further functional analyses using force production were also shown to correspond to sex differences in relative loss of muscle mass and CSA. Moreover, our functional data were supported by histomorphometric analyzes, and we highlighted differences in relative muscle loss and CSA. Specifically, female rats seem to experience a lesser muscle deconditioning during disuse than males thus emphasizing the need for more studies that will assess male and female animals concomitantly to develop tailored, effective countermeasures for all astronauts.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Megan E. Rosa‐Caldwell
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Ian D. Stiehl
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Physics and AstronomyDartmouth CollegeHanoverNew HampshireUSA
| | - Dong‐Min Sung
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Nicholas T. Thomas
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher S. Fry
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Seward B. Rutkove
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|
8
|
Tanaka M, Ikeji T, Nakanishi R, Hirabayashi T, Ono K, Hirayama Y, Tategaki A, Kondo H, Ishihara A, Fujino H. Protective effects of Enterococcus faecium strain R30 supplementation on decreased muscle endurance under disuse in rats. Exp Physiol 2021; 106:1961-1970. [PMID: 34216158 DOI: 10.1113/ep089677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch by altering the autonomic nervous system in atrophied skeletal muscles? What is the main finding and its importance? R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres by upregulating peroxisome proliferator-activated receptor-γ coactivator-1α and activating the calcineurin-nuclear factor of activated T-cells signalling pathway, thus ameliorating the decrease in muscle endurance associated with disuse. ABSTRACT Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, was hypothesized to attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres in atrophied skeletal muscles. We further postulated that the prevention of slow-to-fast fibre shifts would suppress the decreased muscle endurance associated with atrophy. To evaluate the protective effects of R30, we analysed slow-to-fast fibre shifts and disuse-associated reduced muscle endurance. R30 was administered to rats with an acclimation period of 7 days before hindlimb unloading (HU) for 2 weeks. The composition ratio of the fibre type and the expression levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), calcineurin and nuclear factor of activated T-cells (NFAT) were measured. Muscle endurance was evaluated at the end of the 2-week HU period in an in situ environment. R30 supplementation suppressed the slow-to-fast fibre switch and decreased the HU-induced expression of PGC-1α proteins and the deactivation of the calcineurin-NFAT pathway. Furthermore, R30 prevented a decrease in HU-associated muscle endurance in calf muscles. These results indicate that R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres via the upregulation of PGC-1α and the activation of the calcineurin-NFAT signalling pathway, thereby ameliorating the decrease in muscle endurance associated with disuse.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Takuya Ikeji
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Faculty of Rehabilitation, Department of Physical Therapy, Kobe international University, Kobe, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kohei Ono
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Hirayama
- Biotechnology Research Laboratories, Kaneka Corporation, Takasago, Japan
| | - Airo Tategaki
- Biotechnology Research Laboratories, Kaneka Corporation, Takasago, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Akihiko Ishihara
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
9
|
Vilchinskaya NA, Shenkman BS. Myosatellite Cells under Gravitational Unloading Conditions. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Nakanishi R, Tanaka M, Maeshige N, Kondo H, Roy RR, Fujino H. Nucleoprotein-enriched diet enhances protein synthesis pathway and satellite cell activation via ERK1/2 phosphorylation in unloaded rat muscles. Exp Physiol 2021; 106:1587-1596. [PMID: 33878233 DOI: 10.1113/ep089337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The purpose of this study was to determine whether the nucleotides in a nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in soleus muscle mass and fibre size. What is the main finding and its importance? The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy. ABSTRACT Hindlimb unloading decreases both the protein synthesis pathway and satellite cell activation and results in muscle atrophy. Nucleotides are included in nucleoprotein and provide the benefits of increasing extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. ERK1/2 phosphorylation is also important in the activation of satellite cells, especially for myoblast proliferation and stimulating protein synthesis pathways. Therefore, we hypothesized that nucleotides in the nucleoproteins would ameliorate muscle atrophy by increasing the protein synthesis pathways and satellite cell activation during hindlimb unloading in rat soleus muscle. Twenty-four female Wistar rats were divided into four groups: control rats fed a basal diet without nucleoprotein (CON), control rats fed a nucleoprotein-enriched diet (CON+NP), hindlimb-unloaded rats fed a basal diet (HU) or hindlimb-unloaded rats fed a nucleoprotein-enriched diet (HU+NP). HU for 2 weeks resulted in reductions in phosphorylation of p70S6K and rpS6, the numbers of myoblast determination protein (MyoD)- and myogenin- positive nuclei, type I muscle fibre size and muscle mass. Both CON+NP and HU+NP rats showed an increase in ERK1/2, phosphorylation of p70S6K and rpS6, and the numbers of MyoD- and myogenin-positive nuclei compared with their basal diet groups. The NP diet also ameliorated the unloading-associated decrease in type I muscle fibre size and muscle mass. The results indicate that the nucleotides in the nucleoprotein-enriched diet could ameliorate the unloading-associated decrease in type I fibre size and muscle mass, most probably owing to the activation of protein synthesis pathways and satellite cell proliferation and differentiation via ERK1/2 phosphorylation. Thus, nucleotide supplementation appears to be an effective countermeasure for muscle atrophy.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe, Hyogo, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan.,Department of Physical Therapy, Faculty of Human Science, Osaka University of Human Science, Settsu, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Hiroyo Kondo
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| |
Collapse
|
11
|
Mirzoev TM. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci 2020; 21:ijms21217940. [PMID: 33114683 PMCID: PMC7663166 DOI: 10.3390/ijms21217940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fibers have a unique capacity to adjust their metabolism and phenotype in response to alternations in mechanical loading. Indeed, chronic mechanical loading leads to an increase in skeletal muscle mass, while prolonged mechanical unloading results in a significant decrease in muscle mass (muscle atrophy). The maintenance of skeletal muscle mass is dependent on the balance between rates of muscle protein synthesis and breakdown. While molecular mechanisms regulating protein synthesis during mechanical unloading have been relatively well studied, signaling events implicated in protein turnover during skeletal muscle recovery from unloading are poorly defined. A better understanding of the molecular events that underpin muscle mass recovery following disuse-induced atrophy is of significant importance for both clinical and space medicine. This review focuses on the molecular mechanisms that may be involved in the activation of protein synthesis and subsequent restoration of muscle mass after a period of mechanical unloading. In addition, the efficiency of strategies proposed to improve muscle protein gain during recovery is also discussed.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
12
|
Kanazashi M, Tanaka M, Maezawa T, Fujino H. Effects of reloading after chronic neuromuscular inactivity on the three-dimensional capillary architecture in rat soleus muscle. Acta Histochem 2020; 122:151617. [PMID: 33066839 DOI: 10.1016/j.acthis.2020.151617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
The purpose of the study was to investigate the effects of ambulatory reloading following hindlimb unloading on the three-dimensional (3D) capillary architecture of rat soleus muscle. In this study, 15 male Sprague-Dawley rats were used. The rats were randomly assigned to the following 3 groups: a normal weight bearing control group (CON), 14 days of hindlimb unloading group (HU), and 14 days of hindlimb unloading followed by 7 days of ambulatory reloading group (HU-RL). The capillary diameter and volume were measured using confocal laser microscopy, and capillary number was determined by two-dimensional (2D) capillary staining in the soleus muscle of each group. The capillary diameter and volume as well as the capillary number were significantly lower in the HU group than in the CON group and significantly higher in the HU-RL group than in the HU group. These results provided novel information about the effectiveness of reloading following unloading on not only the 2D increase in capillary number but also the 3D capillary remodeling in the diameter and volume within the unloaded soleus muscle.
Collapse
|
13
|
Lepley LK, Davi SM, Burland JP, Lepley AS. Muscle Atrophy After ACL Injury: Implications for Clinical Practice. Sports Health 2020; 12:579-586. [PMID: 32866081 DOI: 10.1177/1941738120944256] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Distinct from the muscle atrophy that develops from inactivity or disuse, atrophy that occurs after traumatic joint injury continues despite the patient being actively engaged in exercise. Recognizing the multitude of factors and cascade of events that are present and negatively influence the regulation of muscle mass after traumatic joint injury will likely enable clinicians to design more effective treatment strategies. To provide sports medicine practitioners with the best strategies to optimize muscle mass, the purpose of this clinical review is to discuss the predominant mechanisms that control muscle atrophy for disuse and posttraumatic scenarios, and to highlight how they differ. EVIDENCE ACQUISITION Articles that reported on disuse atrophy and muscle atrophy after traumatic joint injury were collected from peer-reviewed sources available on PubMed (2000 through December 2019). Search terms included the following: disuse muscle atrophy OR disuse muscle mass OR anterior cruciate ligament OR ACL AND mechanism OR muscle loss OR atrophy OR neurological disruption OR rehabilitation OR exercise. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 5. RESULTS We highlight that (1) muscle atrophy after traumatic joint injury is due to a broad range of atrophy-inducing factors that are resistant to standard resistance exercises and need to be effectively targeted with treatments and (2) neurological disruptions after traumatic joint injury uncouple the nervous system from muscle tissue, contributing to a more complex manifestation of muscle loss as well as degraded tissue quality. CONCLUSION Atrophy occurring after traumatic joint injury is distinctly different from the muscle atrophy that develops from disuse and is likely due to the broad range of atrophy-inducing factors that are present after injury. Clinicians must challenge the standard prescriptive approach to combating muscle atrophy from simply prescribing physical activity to targeting the neurophysiological origins of muscle atrophy after traumatic joint injury.
Collapse
Affiliation(s)
- Lindsey K Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven M Davi
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Julie P Burland
- Spaulding National Running Center, Harvard Medical School, Boston, Massachusetts
| | - Adam S Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M, Tsuchida K. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci 2020; 21:ijms21051628. [PMID: 32120896 PMCID: PMC7084395 DOI: 10.3390/ijms21051628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Shiori Funasaki
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Ikumi Hijikata
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Mizuki Maekawa
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan;
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
- Correspondence: ; Tel.: +81-562-93-9384
| |
Collapse
|
15
|
McKenna CF, Fry CS. Altered satellite cell dynamics accompany skeletal muscle atrophy during chronic illness, disuse, and aging. Curr Opin Clin Nutr Metab Care 2017; 20:447-452. [PMID: 28795971 PMCID: PMC5810415 DOI: 10.1097/mco.0000000000000409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review explores recent research investigating the contribution of satellite cells (skeletal muscle stem cells) during muscle fiber atrophy as seen in periods of disuse, illness, and aging. RECENT FINDINGS Studies indicate reduced satellite cell activity and density in a variety of acute and chronic conditions characterized by robust muscle wasting. The direct contribution of satellite cells to unloading/denervation and chronic illness-induced atrophy remains controversial. Inflammation that accompanies acute trauma and illness likely impedes proper satellite cell differentiation and myogenesis, promoting the rapid onset of muscle wasting in these conditions. Transgenic mouse studies provide surprising evidence that age-related declines in satellite cell function and abundance are not causally related to the onset of sarcopenia in sedentary animals. SUMMARY Recent clinical and preclinical studies indicate reduced abundance and dysregulated satellite cell activity that accompany muscle atrophy during periods of disuse, illness, and aging, providing evidence for their therapeutic potential.
Collapse
Affiliation(s)
- Colleen F. McKenna
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|