1
|
Cai Y, Fang L, Chen F, Zhong P, Zheng X, Xing H, Fan R, Yuan L, Peng W, Li X. Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101052. [PMID: 40034684 PMCID: PMC11873010 DOI: 10.1016/j.jpha.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 03/05/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lu Fang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Fei Chen
- Department of Pharmacy, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| | - Peiling Zhong
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Xiangru Zheng
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| |
Collapse
|
2
|
Jin X, Liu S, Chen S, Wang L, Cui Y, He J, Fang S, Li J, Chang Y. A systematic review on botany, ethnopharmacology, quality control, phytochemistry, pharmacology and toxicity of Arctium lappa L. fruit. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116223. [PMID: 36781057 DOI: 10.1016/j.jep.2023.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.
Collapse
Affiliation(s)
- Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Wang G, Ge L, Liu T, Zheng Z, Chen L. The therapeutic potential of arctigenin against multiple human diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154647. [PMID: 36628833 DOI: 10.1016/j.phymed.2023.154647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Arctigenin (ATG), a dibenzyl butyrolactone lignan compound, is one of the major bioactive components from the medicinal plant Arctium lappa. ATG possesses remarkable therapeutic potential against a wide range of human diseases, such as cancers, immune disorders and chronical diseases. The molecular mechanisms behind the biological effects of ATG have been intensively studied. PURPOSE This review aims to systematically summarize the updated knowledge of the proteins and signaling pathways behind the curative property of ATG, and further analyze the potential connections between them. METHOD SciFinder, Pubmed, Web of Science and Cochrane Library databases were queried for publications reporting the therapeutic properties of ATG. "Arctigenin", "disease", "cancer", "inflammation", "organ damage", "infection", "toxicity" and "pharmacokinetics" were used as the searching titles. RESULT 625 publications were identified and 95 met the inclusion criteria and exclusion criteria. 42 studies described the molecular mechanisms implicated in ATG treatments. Several proteins including phosphodiesterase subtype 4D (PDE4D), estrogen receptor (ER) β, protein phosphatase 2A (PP2A), phosphoinositide 3-kinase (PI3K) and transmembrane protein 16A (TMEM16A) are targeted by ATG in different settings. The frequently described signaling pathways are TLR4/NF-κB, PI3K/AKT/mTOR, AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (Nrf-2) signalings. CONCLUSION Inhibition of PI3K/AKT pathway and activation of AMPK signaling play the pivotal roles in the therapeutic effects of ATG. PI3K/AKT and AMPK signaling widely link to other signaling pathways, modulating various biological processes such as anti-inflammation, anti-oxidative stress, anti-fibrosis, anti-ER stress, anti-steatosis and pro-apoptosis, which constitute the curative mechanisms of ATG against multiple human diseases.
Collapse
Affiliation(s)
- Guanming Wang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Tongyu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zhihui Zheng
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Lijun Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
4
|
Wang SX, Yan JS, Chan YS. Advancements in MAFLD Modeling with Human Cell and Organoid Models. Int J Mol Sci 2022; 23:11850. [PMID: 36233151 PMCID: PMC9569457 DOI: 10.3390/ijms231911850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is one of the most prevalent liver diseases and has no approved therapeutics. The high failure rates witnessed in late-phase MAFLD drug trials reflect the complexity of the disease, and how the disease develops and progresses remains to be fully understood. In vitro, human disease models play a pivotal role in mechanistic studies to unravel novel disease drivers and in drug testing studies to evaluate human-specific responses. This review focuses on MAFLD disease modeling using human cell and organoid models. The spectrum of patient-derived primary cells and immortalized cell lines employed to model various liver parenchymal and non-parenchymal cell types essential for MAFLD development and progression is discussed. Diverse forms of cell culture platforms utilized to recapitulate tissue-level pathophysiology in different stages of the disease are also reviewed.
Collapse
Affiliation(s)
- Shi-Xiang Wang
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ji-Song Yan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yun-Shen Chan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| |
Collapse
|
5
|
Zeng W, Sun L, Zhu H, Wu X, Xu L, Xu L. A composite arctigenin/caffeine/glucose formulation enhances anti-fatigue effect. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
7
|
An energy-restricted high-protein diet supplemented with β-cryptoxanthin alleviated oxidative stress and inflammation in nonalcoholic fatty liver disease: a randomized controlled trial. Nutr Res 2020; 73:15-26. [DOI: 10.1016/j.nutres.2019.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022]
|
8
|
Song Y, Li X, Liu Y, Hu Y, Yang R. Arctigenin improves lipid metabolism by regulating AMP-activated protein kinase and downstream signaling pathways. J Cell Biochem 2019; 120:13275-13288. [PMID: 30891825 DOI: 10.1002/jcb.28602] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/16/2022]
Abstract
Although it has been reported that arctigenin (ARG) can reduce the body weight and inhibit adipogenic differentiation by activating AMP-activated protein kinase (AMPK), the exact signals responsible for the ARG-mediated antiobesity mechanism through AMPK are not well understood. In this study, we investigated the potential improvement of AGR on lipid metabolism using a high-fat diet (HFD)-induced hyperlipidemia rats and 3T3-L1 mature adipocytes. The levels of AMPK and its downstream factors were examined by Western blot analysis and real-time fluorescent quantitative polymerase chain reaction. We observed that ARG lowered the HFD-induced body weight and the levels of serum lipid. Moreover, ARG clearly alleviated fat deposition in the liver and reduced epididymal fat accumulation. ARG also suppressed lipogenesis and lipolysis but promoted fatty acid β-oxidation in adipocytes. Most importantly, ARG increased the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and upregulated the messenger RNA levels of downstream genes related to fatty acid β-oxidation, such as carnitine palmitoyltransferase 1 and acyl-CoA oxidase 1 but downregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBP1c) and their targets, including lipogenesis-related genes such as CCAAT/enhancer-binding protein α, lipoprotein lipase, adipocyte protein 2, and fatty acid synthase (FAS), as well as lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase. The activity of FAS was also decreased by ARG. We conclude that AMPK activation is important for the pharmacological effects of ARG. ARG may improve lipid metabolism by regulating the AMPK-ACC and AMPK-PPARγ/SREBP1c signaling pathways.
Collapse
Affiliation(s)
- Yuzhou Song
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiao Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yunyun Liu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yingjie Hu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruiyi Yang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Role of AMP activated protein kinase signaling pathway in intestinal development of mammals. Ann Anat 2018; 220:51-54. [DOI: 10.1016/j.aanat.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|