1
|
Lu Q, Qin J, Xie S, Chen R, Wang X, Xu Y, Ban Y, Gao C, Li P, Zhou D, Tian X. Effects of Feed Restriction on Growth Performance, Nutrient Utilisation, Biochemical Parameters, and the Caecum Microbiota and Metabolites in Rabbits. Animals (Basel) 2025; 15:842. [PMID: 40150371 PMCID: PMC11939534 DOI: 10.3390/ani15060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The main objective of this research was to observe the effects of feed restriction on caecum microbiota and metabolites in rabbits. Forty-eight male 8-week-old rabbits with similar body weights (1872.11 ± 180.85 g) were randomly assigned to two treatments according to completely randomized design: (1) the control group received ad libitum access to feed (AL), and (2) the treatment received 80% of the feed consumed by the control (FR). The results showed that FR did not differ (p > 0.05) for average daily weight gain or feed conversion ratio between the two groups. FR treatment led to a significant increase (p < 0.05) in acid detergent fibre apparent faecal digestibility, nitrogen digestibility and retention, and gross energy digestibility and retention. The FR treatment showed significantly (p < 0.05) lower blood triglycerides, creatinine, high-density lipoprotein cholesterol, malondialdehyde, and hydroxyl free radicals but significantly (p < 0.05) greater total antioxidant capacity and superoxide dismutase. The FR group presented greater (p < 0.05) Firmicutes and Ruminococcus abundances but a lower (p < 0.05) Akkermansiaceae abundance in the caecal content. Moreover, 222 differentiated metabolites were identified, and beta-alanine metabolism was the top enriched pathway. Collectively, FR can improve nutrient utilisation, lipid metabolism, antioxidant activity, caecum microbiota, and metabolites in rabbits.
Collapse
Affiliation(s)
- Qi Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Jixiao Qin
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Shuanglong Xie
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Rui Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Xu Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Yiqing Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Yiming Ban
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Chengcheng Gao
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Peiyao Li
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| | - Di Zhou
- Guizhou Testing Centre for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Xingzhou Tian
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Q.L.); (J.Q.); (S.X.); (R.C.); (X.W.); (Y.X.); (Y.B.); (C.G.); (P.L.)
| |
Collapse
|
2
|
Caprara G, Pallavi R, Sanyal S, Pelicci PG. Dietary Restrictions and Cancer Prevention: State of the Art. Nutrients 2025; 17:503. [PMID: 39940361 PMCID: PMC11820753 DOI: 10.3390/nu17030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Worldwide, almost 10 million cancer deaths occurred in 2022, a number that is expected to rise to 16.3 million by 2040. Primary prevention has long been acknowledged as a crucial approach to reducing cancer incidence. In fact, between 30 and 50 percent of all tumors are known to be preventable by eating a healthy diet, staying active, avoiding alcohol, smoking, and being overweight. Accordingly, many international organizations have created tumor prevention guidelines, which underlie the importance of following a diet that emphasizes eating plant-based foods while minimizing the consumption of red/processed meat, sugars, processed foods, and alcohol. However, further research is needed to define the relationship between the effect of specific diets or nutritional components on cancer prevention. Interestingly, reductions in food intake and dietetic restrictions can extend the lifespan of yeast, nematodes, flies, and rodents. Despite controversial results in humans, those approaches have the potential to ameliorate health via direct and indirect effects on specific signaling pathways involved in cancer onset. Here, we describe the latest knowledge on the cancer-preventive potential of dietary restrictions and the biochemical processes involved. Molecular, preclinical, and clinical studies evaluating the effects of different fasting strategies will also be reviewed.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Shalini Sanyal
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| |
Collapse
|
3
|
Lee HY, Min KJ. Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan. Nutrients 2024; 16:4424. [PMID: 39771045 PMCID: PMC11678862 DOI: 10.3390/nu16244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR. As a potent intervention to slow down aging, DR has demonstrated promising effects on lipid metabolism, influencing the aging processes across various species. The current review focuses on the relationships among DR-related molecular signaling proteins such as the sirtuins, signaling pathways such as the target of rapamycin and the insulin/insulin-like growth factor (IGF)-1, lipid metabolism, and aging. Furthermore, the review presents research results on diet-associated changes in cell membrane lipids and alterations in lipid metabolism caused by commensal bacteria, highlighting the importance of lipid metabolism in aging. Overall, the review explores the interplay between diet, lipid metabolism, and aging, while presenting untapped areas for further understanding of the aging process.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
4
|
Zhang Q, Liu M, Zhang J, Jiang H, Ma C, Jian Y, Chen Y, Liu H, Chen H, Chen J, Sun X, Wang JS, Zhao X, Geng X, Song F, Zhou J. Macrophage MAPK7/AhR/STAT3 Signaling Mediates Mitochondrial ROS Burst and Enterohepatic Inflammatory Responses Induced by Deoxynivalenol Relevant to Low-Dose Exposure in Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18589-18602. [PMID: 39376183 DOI: 10.1021/acs.est.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Deoxynivalenol (DON) can induce endoplasmic reticulum (ER) stress, mitochondrial ROS burst, and macrophage polarization. Here, we investigated the mechanism linking the above three aspects with the dose range relevant to low-level exposure in children. At 0.5 μg/kg bw/day, we found remarkable liver and gut inflammatory responses after 6-week exposure in mice age comparable to humans 7-12 years old. Through antioxidant intervention, we found that ROS played a driver role in macrophage polarization and inflammatory responses induced by DON in the liver and gut. Further bioinformatics analysis uncovered that ER stress-associated protein MAPK7 (ERK5) may bind with AhR to initiate a mitochondrial ROS burst and macrophage M1 polarization. The downstream cellular events of MAPK7-AhR interaction may be mediated by the AhR/STAT3/p-STAT(Ser727) pathway. This mechanism was further supported by DON toxicity mitigation using cyanidin-3-glucoside (C-3-G), which docks to MAPK7 oligomerization region 200-400 aa and disrupts MAPK7-AhR interaction. Overall, our study provides novel evidence and mechanism for DON-induced inflammatory responses in the liver and gut system. Our findings call attention to the health risks associated with low-level DON exposure in the prepuberty children population.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Ming Liu
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Jing Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Huiyu Jiang
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Chuanmin Ma
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Yuanzhi Jian
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Yongchang Chen
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Hui Liu
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Hanri Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Jiaqi Chen
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-Sheng Wang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Xiulan Zhao
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Xingyi Geng
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Jun Zhou
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
5
|
Labetoulle M, Baudouin C, Benitez Del Castillo JM, Rolando M, Rescigno M, Messmer EM, Aragona P. How gut microbiota may impact ocular surface homeostasis and related disorders. Prog Retin Eye Res 2024; 100:101250. [PMID: 38460758 DOI: 10.1016/j.preteyeres.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Changes in the bacterial flora in the gut, also described as gut microbiota, are readily acknowledged to be associated with several systemic diseases, especially those with an inflammatory, neuronal, psychological or hormonal factor involved in the pathogenesis and/or the perception of the disease. Maintaining ocular surface homeostasis is also based on all these four factors, and there is accumulating evidence in the literature on the relationship between gut microbiota and ocular surface diseases. The mechanisms involved are mostly interconnected due to the interaction of central and peripheral neuronal networks, inflammatory effectors and the hormonal system. A better understanding of the influence of the gut microbiota on the maintenance of ocular surface homeostasis, and on the onset or persistence of ocular surface disorders could bring new insights and help elucidate the epidemiology and pathology of ocular surface dynamics in health and disease. Revealing the exact nature of these associations could be of paramount importance for developing a holistic approach using highly promising new therapeutic strategies targeting ocular surface diseases.
Collapse
Affiliation(s)
- Marc Labetoulle
- Ophthalmology Départment, Hopital Bicetre, APHP, Université Paris-Saclay, IDMIT Infrastructure, Fontenay-aux-Roses Cedex, France; Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France.
| | - Christophe Baudouin
- Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France
| | - Jose M Benitez Del Castillo
- Departamento de Oftalmología, Hospital Clínico San Carlos, Clínica Rementeria, Instituto Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense, Madrid, Spain
| | - Maurizio Rolando
- Ocular Surface and Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20090, MI, Italy
| | | | - Pasquale Aragona
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Zamary KM, Bruno RS. Advances in nutrition approaches to support vascular and gut health: 2023 David Kritchevsky Award winners. Nutr Res 2024; 124:111-115. [PMID: 38574579 DOI: 10.1016/j.nutres.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Kaitlyn M Zamary
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
7
|
Bruno RS, Zamary K. Reemergence from the pandemic, annual awards, and editorial office updates: from the desk of the Editor-in-Chief, Nutrition Research. Nutr Res 2024; 123:131-136. [PMID: 37474411 DOI: 10.1016/j.nutres.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210.
| | - Katie Zamary
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
8
|
Yin T, Ye R, Wang Q, Wang L, Xu W, Tu W, Xu G. Difficulties in eating out of home while diagnosed with inflammatory bowel disease: A qualitative interview study from China. PLoS One 2023; 18:e0288908. [PMID: 38051719 DOI: 10.1371/journal.pone.0288908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Meeting healthy dietary needs while eating out can be a challenging experience for adults with inflammatory bowel disease. This study examined the barriers experienced by adults with inflammatory bowel disease (IBD) when eating out. OBJECTIVE This study aimed to explore the perceptions of people with IBD on eating out barriers. DESIGN A qualitative study among individuals affected by IBD was conducted through semi-structured interviews. RESULTS Sixteen adults from China were diagnosed with IBD between 6 months and 20 years prior to the study. They were recruited from four tertiary care hospitals in Nanjing, China. The participants completed a semi-structured interview between April and September 2022. Self-perceived difficulties with eating and drinking when eating out were varied. After thematic analysis of the data, five main themes emerged: limited access to healthy and hygiene food; no pleasure of food enjoyment; financial strain; not feeling loved, supported or understood; and coping strategies for not meeting demand. CONCLUSIONS This study highlights the various barriers encountered by patients with inflammatory bowel disease when eating out. These findings will help people with IBD to encourage the formation of targeted health and well-being-related interventions. Knowledge of nutrition and diet should be provided in education and training programs administered to IBD.
Collapse
Affiliation(s)
- Tingting Yin
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Ye
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuqin Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Lulu Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Xu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Tu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Guihua Xu
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Purdel C, Margină D, Adam-Dima I, Ungurianu A. The Beneficial Effects of Dietary Interventions on Gut Microbiota-An Up-to-Date Critical Review and Future Perspectives. Nutrients 2023; 15:5005. [PMID: 38068863 PMCID: PMC10708505 DOI: 10.3390/nu15235005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Different dietary interventions, especially intermittent fasting, are widely used and promoted by physicians; these regimens have been studied lately for their impact on the gut microbiota composition/function and, consequently, on the general physiopathological processes of the host. Studies are showing that dietary components modulate the microbiota, and, at the same time, the host metabolism is deeply influenced by the different products resulting from nutrient transformation in the microbiota compartment. This reciprocal relationship can potentially influence even drug metabolism for chronic drug regimens, significantly impacting human health/disease. Recently, the influence of various dietary restrictions on the gut microbiota and the differences between the effects were investigated. In this review, we explored the current knowledge of different dietary restrictions on animal and human gut microbiota and the impact of these changes on human health.
Collapse
Affiliation(s)
- Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (I.A.-D.)
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Ines Adam-Dima
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (I.A.-D.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| |
Collapse
|
10
|
Häupl T, Sörensen T, Smiljanovic B, Darcy M, Scheder-Bieschin J, Steckhan N, Hartmann AM, Koppold DA, Stuhlmüller B, Skriner K, Walewska BM, Hoppe B, Bonin M, Burmester GR, Schendel P, Feist E, Liere K, Meixner M, Kessler C, Grützkau A, Michalsen A. Intestinal Microbiota Reduction Followed by Fasting Discloses Microbial Triggering of Inflammation in Rheumatoid Arthritis. J Clin Med 2023; 12:4359. [PMID: 37445394 DOI: 10.3390/jcm12134359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) synovitis is dominated by monocytes/macrophages with inflammatory patterns resembling microbial stimulation. In search of triggers, we reduced the intestinal microbiome in 20 RA patients (open label study DRKS00014097) by bowel cleansing and 7-day fasting (≤250 kcal/day) and performed immune monitoring and microbiome sequencing. Patients with metabolic syndrome (n = 10) served as a non-inflammatory control group. Scores of disease activity (DAS28/SDAI) declined within a few days and were improved in 19 of 20 RA patients after breaking the fast (median ∆DAS28 = -1.23; ∆SDAI = -43%) or even achieved remission (DAS28 < 2.6/n = 6; SDAI < 3.3/n = 3). Cytometric profiling with 46 different surface markers revealed the most pronounced phenomenon in RA to be an initially increased monocyte turnover, which improved within a few days after microbiota reduction and fasting. Serum levels of IL-6 and zonulin, an indicator of mucosal barrier disruption, decreased significantly. Endogenous cortisol levels increased during fasting but were insufficient to explain the marked improvement. Sequencing of the intestinal microbiota indicated that fasting reduced potentially arthritogenic bacteria and changed the microbial composition to species with broader metabolic capabilities. More eukaryotic, predominantly fungal colonizers were observed in RA, suggesting possible involvement. This study demonstrates a direct link between the intestinal microbiota and RA-specific inflammation that could be etiologically relevant and would support targeted nutritional interventions against gut dysbiosis as a causal therapeutic approach.
Collapse
Affiliation(s)
- Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
- Department of Rheumatology, Helios Fachklinik Vogelsang-Gommern GmbH, 39245 Gommern, Germany
| | - Till Sörensen
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Biljana Smiljanovic
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Marine Darcy
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Justus Scheder-Bieschin
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Nico Steckhan
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Anika M Hartmann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Daniela A Koppold
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 14109 Berlin, Germany
- Department of Pediatrics, Division of Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Bruno Stuhlmüller
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Karl Skriner
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Barbara M Walewska
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Berthold Hoppe
- Institute of Laboratory Medicine, Unfallkrankenhaus Berlin, 12683 Berlin, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Pascal Schendel
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
- Department of Rheumatology, Helios Fachklinik Vogelsang-Gommern GmbH, 39245 Gommern, Germany
| | - Karsten Liere
- Amedes Genetics, 10117 Berlin, Germany
- Services in Molecular Biology GmbH, 10115 Rüdersdorf, Germany
| | - Martin Meixner
- Amedes Genetics, 10117 Berlin, Germany
- Services in Molecular Biology GmbH, 10115 Rüdersdorf, Germany
| | - Christian Kessler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 14109 Berlin, Germany
| | | | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 14109 Berlin, Germany
| |
Collapse
|
11
|
Blachier F. Amino Acid-Derived Bacterial Metabolites in the Colorectal Luminal Fluid: Effects on Microbial Communication, Metabolism, Physiology, and Growth. Microorganisms 2023; 11:1317. [PMID: 37317289 DOI: 10.3390/microorganisms11051317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Undigested dietary and endogenous proteins, as well as unabsorbed amino acids, can move from the terminal part of the ileum into the large intestine, where they meet a dense microbial population. Exfoliated cells and mucus released from the large intestine epithelium also supply nitrogenous material to this microbial population. The bacteria in the large intestine luminal fluid release amino acids from the available proteins, and amino acids are then used for bacterial protein synthesis, energy production, and in other various catabolic pathways. The resulting metabolic intermediaries and end products can then accumulate in the colorectal fluid, and their concentrations appear to depend on different parameters, including microbiota composition and metabolic activity, substrate availability, and the capacity of absorptive colonocytes to absorb these metabolites. The aim of the present review is to present how amino acid-derived bacterial metabolites can affect microbial communication between both commensal and pathogenic microorganisms, as well as their metabolism, physiology, and growth.
Collapse
Affiliation(s)
- François Blachier
- Université Paris-Saclay, AgroParisTech, INRAe, UMR PNCA, 91120 Palaiseau, France
| |
Collapse
|
12
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
13
|
Hartmann AM, D’Urso M, Dell’Oro M, Koppold DA, Steckhan N, Michalsen A, Kandil FI, Kessler CS. Post Hoc Analysis of a Randomized Controlled Trial on Fasting and Plant-Based Diet in Rheumatoid Arthritis (NutriFast): Nutritional Supply and Impact on Dietary Behavior. Nutrients 2023; 15:nu15040851. [PMID: 36839208 PMCID: PMC9960429 DOI: 10.3390/nu15040851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
This study aimed at comparing the nutrient supply and dietary behaviors during a plant-based diet (PBD) combined with time-restricted eating (TRE) to standard dietary recommendations in rheumatoid arthritis patients. In this open-label, randomized, controlled clinical trial, patients were assigned to either a 7-day fast followed by an 11-week PBD including TRE (A) or a 12-week anti-inflammatory diet following official German guidelines (German Nutrition Society, DGE) (B). Dietary habits were assessed by 3-day food records at weeks -1, 4 and 9 and food frequency questionnaires. 41 out of 53 participants were included in a post-hoc per protocol analysis. Both groups had similar energy, carbohydrate, sugar, fiber and protein intake at week 4. Group A consumed significantly less total saturated fat than group B (15.9 ± 7.7 vs. 23.2 ± 10.3 g/day; p = 0.02). Regarding micronutrients, group B consumed more vitamin A, B12, D, riboflavin and calcium (each p ≤ 0.02). Zinc and calcium were below recommended intakes in both groups. Cluster analysis did not show clear group allocation after three months. Hence, dietary counselling for a PBD combined with TRE compared to a standard anti-inflammatory diet does not seem to lead to two different dietary clusters, i.e., actual different dietary behaviors as expected. Larger confirmatory studies are warranted to further define dietary recommendations for RA.
Collapse
Affiliation(s)
- Anika M. Hartmann
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Correspondence:
| | - Marina D’Urso
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Melanie Dell’Oro
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 10117 Berlin, Germany
| | - Daniela A. Koppold
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nico Steckhan
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Connected Healthcare, Hasso Plattner Institute, University of Potsdam, 10117 Potsdam, Germany
| | - Andreas Michalsen
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 10117 Berlin, Germany
| | - Farid I. Kandil
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christian S. Kessler
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 10117 Berlin, Germany
| |
Collapse
|
14
|
Assessment of the Gut Microbiota during Juice Fasting with and without Inulin Supplementation: A Feasibility Study in Healthy Volunteers. Foods 2022; 11:foods11223673. [PMID: 36429265 PMCID: PMC9689797 DOI: 10.3390/foods11223673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Prebiotic inulin consumption provides health benefits to the host and has also been associated with a reduction in hunger cravings. We conducted a pilot crossover study to investigate the feasibility of a juice fasting intervention with and without inulin supplementation. We also examined trends of how the microbial community in the human gut adapts to juice fasting as well as to inulin intake during juice fasting. Six healthy volunteers were fasting for three consecutive days consuming a total of 300 kcal daily provided by vegetable juices, framed by two days with a total daily calorie intake of 800 kcal, respectively. During one fasting period, participants consumed additionally 24 g of inulin daily. Stool samples were collected for the analysis of the microbial composition using 16S rRNA gene sequencing. Although no significant uniform changes were observed on the microbiome, quantitative changes in the microbial composition suggest a stronger decrease in alpha-diversity after fasting compared to the fasting intervention with additional inulin intake. The intake of inulin did not affect compliance for the fasting intervention but appeared to increase relative abundance of Bifidobacteria in participants who tolerated it well. Further studies with a larger sample size to overcome inter-individual microbiota differences are warranted to verify our observations.
Collapse
|
15
|
Ben Necib R, Manca C, Lacroix S, Martin C, Flamand N, Di Marzo V, Silvestri C. Hemp seed significantly modulates the endocannabinoidome and produces beneficial metabolic effects with improved intestinal barrier function and decreased inflammation in mice under a high-fat, high-sucrose diet as compared with linseed. Front Immunol 2022; 13:882455. [PMID: 36238310 PMCID: PMC9552265 DOI: 10.3389/fimmu.2022.882455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 fatty acids support cardiometabolic health and reduce chronic low-grade inflammation. These fatty acids may impart their health benefits partly by modulating the endocannabinoidome and the gut microbiome, both of which are key regulators of metabolism and the inflammatory response. Whole hemp seeds (Cannabis sativa) are of exceptional nutritional value, being rich in omega-3 fatty acids. We assessed the effects of dietary substitution (equivalent to about 2 tablespoons of seeds a day for humans) of whole hemp seeds in comparison with whole linseeds in a diet-induced obesity mouse model and determined their effects on obesity and the gut microbiome-endocannabinoidome axis. We show that whole hemp seed substitution did not affect weigh gain, adiposity, or food intake, whereas linseed substitution did, in association with higher fasting glucose levels, greater insulin release during an oral glucose tolerance test, and higher levels of liver triglycerides than controls. Furthermore, hemp seed substitution mitigated diet-induced obesity-associated increases in intestinal permeability and circulating PAI-1 levels, while having no effects on markers of inflammation in epididymal adipose tissue, which were, however, increased in mice fed linseeds. Both hemp seeds and linseeds were able to modify the expression of several endocannabinoidome genes and markedly increased the levels of several omega-3 fatty acid–derived endocannabinoidome bioactive lipids with previously suggested anti-inflammatory actions in a tissue specific manner, despite the relatively low level of seed substitution. While neither diet markedly modified the gut microbiome, mice on the hemp seed diet had higher abundance of Clostridiaceae 1 and Rikenellaceae than mice fed linseed or control diet, respectively. Thus, hemp seed-containing foods might represent a source of healthy fats that are not likely to exacerbate the metabolic consequences of obesogenic diets while producing intestinal permeability protective effects and some anti-inflammatory actions.
Collapse
Affiliation(s)
- Rim Ben Necib
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Claudia Manca
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Sébastien Lacroix
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Cyril Martin
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Nicolas Flamand
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
- École de nutrition, Faculté Des Sciences De l’Agriculture Et De l’Alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Quebec, QC, Canada
- *Correspondence: Cristoforo Silvestri,
| |
Collapse
|
16
|
Hernández-Calderón P, Wiedemann L, Benítez-Páez A. The microbiota composition drives personalized nutrition: Gut microbes as predictive biomarkers for the success of weight loss diets. Front Nutr 2022; 9:1006747. [PMID: 36211501 PMCID: PMC9537590 DOI: 10.3389/fnut.2022.1006747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
The investigation of the human gut microbiome during recent years has permitted us to understand its relevance for human health at a systemic level, making it possible to establish different functional axes (e.g., the gut-brain, gut-liver, and gut-lung axes), which support the organ-like status conferred to this microecological component of our body. The human gut microbiota is extremely variable but modifiable via diet, a fact that allows targeting of microbes through defined dietary strategies to uncover cost-effective therapies to minimize the burden of non-communicable diseases such as pandemic obesity and overweight and its metabolic comorbidities. Nevertheless, randomly controlled dietary interventions regularly exhibit low to moderate degrees of success in weight control, making their implementation difficult in clinical practice. Here, we review the predictive value of the baseline gut microbiota configurations to anticipate the success of dietary interventions aimed at weight loss, mostly based on caloric restriction regimes and oral fiber supplementation. This emergent research concept fits into precision medicine by considering different diet patterns and adopting the best one, based on the individual microbiota composition, to reach significant adiposity reduction and improve metabolic status. We review the results from this fresh perspective of investigation, taking into account studies released very recently. We also discuss some future outlooks in the field and potential pitfalls to overcome with the aim of gaining knowledge in the field and achieving breakthroughs in personalized nutrition.
Collapse
|
17
|
Yin M, Zhang L, Tang S, Matsuoka R, Xi Y, Tao N, Wang X. Egg Yolk Phospholipids Modulate Microbial Imbalance in the Intestinal Tract of Rats on a High‐Fructose Diet. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation Shanghai 201306 China
| | - Long Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation Shanghai 201306 China
| | - Shijie Tang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
| | - Ryosuke Matsuoka
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Yinci Xi
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Ningping Tao
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation Shanghai 201306 China
| |
Collapse
|
18
|
Hartmann AM, Dell'Oro M, Kessler CS, Schumann D, Steckhan N, Jeitler M, Fischer JM, Spoo M, Kriegel MA, Schneider JG, Häupl T, Kandil FI, Michalsen A, Koppold-Liebscher DA. Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open 2021; 11:e047758. [PMID: 34380725 PMCID: PMC8359474 DOI: 10.1136/bmjopen-2020-047758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have shown beneficial effects of therapeutic fasting and plant-based dietary interventions on disease activity in patients with rheumatoid arthritis (RA) for a duration of up to 1 year. To date, the effects of such interventions on the gut microbiome and on modern diagnostic markers in patients with RA have not been studied. This trial aims to investigate the clinical effects of therapeutic fasting and a plant-based diet in patients with RA, additionally considering current immunological diagnostic tools and microbiome analyses. METHODS/DESIGN This trial is an open-label, single-centre, randomised, controlled, parallel-group clinical trial. We will randomly assign 84 patients with RA under a stable standard therapy to either (1) therapeutic fasting followed by a plant-based dietary intervention or (2) to a conventional nutritional counselling focusing on an anti-inflammatory dietary pattern according to the recommendations of the Deutsche Gesellschaft für Ernährung (German society for nutrition). Primary outcome parameter is the group difference from baseline to 12 weeks on the Health Assessment Questionnaire (HAQ). Other secondary outcomes include established clinical criteria for disease activity and treatment response in RA (Disease Activity Score 28, Simple Disease Activity Index, ACR-Response Criteria), changes in self-reported health and physical functional ability, mood, stress, quality of life, dietary behaviour via 3-day food records and a modified Food Frequency Questionnaire, body composition, changes in the gut microbiome, metabolomics and cytometric parameters. Outcomes will be assessed at baseline and day 7, after 6 weeks, 12 weeks and after 6 months. ETHICS AND DISSEMINATION Ethical approval to process and analyse data, and to publish the results was obtained through the institutional review board of Charité-Universitätsmedizin Berlin. Results of this trial will be disseminated through peer-reviewed publications and scientific presentations. TRIAL REGISTRATION NUMBER NCT03856190.
Collapse
Affiliation(s)
- Anika M Hartmann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melanie Dell'Oro
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Christian S Kessler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Dania Schumann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nico Steckhan
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Jeitler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Jan Moritz Fischer
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michaela Spoo
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Martin A Kriegel
- Institute for Musculoskeletal Medicine, Department of Translational Rheumatology and Immunology, University of Münster, Münster, Germany
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jochen G Schneider
- Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Farid I Kandil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin-Wannsee Branch, Berlin, Germany
| | - Daniela A Koppold-Liebscher
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|