1
|
Aboueldis GR, Abdelazeez WM, Suliman AA, Mohammed DM. Therapeutic efficacy of secondary metabolites produced from cell suspension culture of Vaccinium corymbosum L. mitigates high-fat-diet-induced metabolic syndrome in rat model. FOOD BIOSCI 2025; 68:106795. [DOI: 10.1016/j.fbio.2025.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
2
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adipose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA;
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany;
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Croft AJ, Kelly C, Chen D, Haw TJ, Sverdlov AL, Ngo DTM. Overexpression of Mitochondrial Catalase within Adipose Tissue Does Not Confer Systemic Metabolic Protection against Diet-Induced Obesity. Antioxidants (Basel) 2023; 12:antiox12051137. [PMID: 37238003 DOI: 10.3390/antiox12051137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is associated with significant metabolic co-morbidities, such as diabetes, hypertension, and dyslipidaemia, as well as a range of cardiovascular diseases, all of which lead to increased hospitalisations, morbidity, and mortality. Adipose tissue dysfunction caused by chronic nutrient stress can result in oxidative stress, mitochondrial dysfunction, inflammation, hypoxia, and insulin resistance. Thus, we hypothesised that reducing adipose tissue oxidative stress via adipose tissue-targeted overexpression of the antioxidant mitochondrial catalase (mCAT) may improve systemic metabolic function. We crossed mCAT (floxed) and Adipoq-Cre mice to generate mice overexpressing catalase with a mitochondrial targeting sequence predominantly in adipose tissue, designated AdipoQ-mCAT. Under normal diet conditions, the AdipoQ-mCAT transgenic mice demonstrated increased weight gain, adipocyte remodelling, and metabolic dysfunction compared to the wild-type mice. Under obesogenic dietary conditions (16 weeks of high fat/high sucrose feeding), the AdipoQ-mCAT mice did not result in incremental impairment of adipose structure and function but in fact, were protected from further metabolic impairment compared to the obese wild-type mice. While AdipoQ-mCAT overexpression was unable to improve systemic metabolic function per se, our results highlight the critical role of physiological H2O2 signalling in metabolism and adipose tissue function.
Collapse
Affiliation(s)
- Amanda J Croft
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Conagh Kelly
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Dongqing Chen
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Tatt Jhong Haw
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Aaron L Sverdlov
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter New England Local Health District, Newcastle, NSW 2267, Australia
| | - Doan T M Ngo
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|