1
|
Jiang W, Glaeser JD, Kaneda G, Sheyn J, Wechsler JT, Stephan S, Salehi K, Chan JL, Tawackoli W, Avalos P, Johnson C, Castaneda C, Kanim LEA, Tanasansomboon T, Burda JE, Shelest O, Yameen H, Perry TG, Kropf M, Cuellar JM, Seliktar D, Bae HW, Stone LS, Sheyn D. Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats. Sci Transl Med 2023; 15:eadg7020. [PMID: 38055799 DOI: 10.1126/scitranslmed.adg7020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023]
Abstract
Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacob T Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen Stephan
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julie L Chan
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Johnson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chloe Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Linda E A Kanim
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Teerachat Tanasansomboon
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center of Excellence in Biomechanics and Innovative Spine Surgery, Department of Orthopedics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joshua E Burda
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haneen Yameen
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Tiffany G Perry
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Kropf
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason M Cuellar
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dror Seliktar
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Hyun W Bae
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura S Stone
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa 3200003, Israel
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Glaeser JD, Tawackoli W, Ju DG, Yang JH, Kanim LEA, Salehi K, Yu V, Saidara E, Vit J, Khnkoyan Z, NaPier Z, Stone LS, Bae HW, Sheyn D. Optimization of a rat lumbar IVD degeneration model for low back pain. JOR Spine 2020; 3:e1092. [PMID: 32613167 PMCID: PMC7323460 DOI: 10.1002/jsp2.1092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Intervertebral disc (IVD) degeneration is often associated with low back pain and radiating leg pain. The purpose of this study is to develop a reproducible and standardized preclinical model of painful lumbar IVD degeneration by evaluation of structural and behavioral changes in response to IVD injury with increasing needle sizes. This model can be used to develop new therapies for IVD degeneration. METHODS Forty-five female Sprague Dawley rats underwent anterior lumbar disc needle puncture at levels L4-5 and L5-6 under fluoroscopic guidance. Animals were randomly assigned to four different experimental groups: needle sizes of 18 Gauge (G), 21G, 23G, and sham control. To monitor the progression of IVD degeneration and pain, the following methods were employed: μMRI, qRT-PCR, histology, and biobehavioral analysis. RESULTS T1- and T2-weighted μMRI analysis showed a correlation between the degree of IVD degeneration and needle diameter, with the most severe degeneration in the 18G group. mRNA expression of markers for IVD degeneration markers were dysregulated in the 18G and 21G groups, while pro-nociceptive markers were increased in the 18G group only. Hematoxylin and Eosin (H&E) and Alcian Blue/Picrosirius Red staining confirmed the most pronounced IVD degeneration in the 18G group. Randall-Selitto and von Frey tests showed increased hindpaw sensitivity in the 18G group. CONCLUSION Our findings demonstrate that anterior disc injury with an 18G needle creates severe IVD degeneration and mechanical hypersensitivity, while the 21G needle results in moderate degeneration with no increased pain sensitivity. Therefore, needle sizes should be selected depending on the desired phenotype for the pre-clinical model.
Collapse
Affiliation(s)
- Juliane D. Glaeser
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Derek G. Ju
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jae H. Yang
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Orthopedic SurgeryKorea University Guro HospitalSeoulSouth Korea
| | - Linda EA Kanim
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Victoria Yu
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Evan Saidara
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jean‐Phillipe Vit
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zhanna Khnkoyan
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zachary NaPier
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Laura S. Stone
- McGill University, Faculty of DentistryAlan Edwards Centre for Research on PainMontrealCanada
| | - Hyun W. Bae
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Molecular pain markers correlate with pH-sensitive MRI signal in a pig model of disc degeneration. Sci Rep 2018; 8:17363. [PMID: 30478330 PMCID: PMC6255799 DOI: 10.1038/s41598-018-34582-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of chronic low back pain that affects millions of people every year. Yet identification of the specific IVD causing this pain is based on qualitative visual interpretation rather than objective findings. One possible approach to diagnosing pain-associated IVD could be to identify acidic IVDs, as decreased pH within an IVD has been postulated to mediate discogenic pain. We hypothesized that quantitative chemical exchange saturation transfer (qCEST) MRI could detect pH changes in IVDs, and thence be used to diagnose pathologically painful IVDs objectively and noninvasively. To test this hypothesis, a surgical model of IVD degeneration in Yucatan minipigs was used. Direct measurement of pH inside the degenerated IVDs revealed a significant drop in pH after degeneration, which correlated with a significant increase in the qCEST signal. Gene analysis of harvested degenerated IVDs revealed significant upregulation of pain-, nerve- and inflammatory-related markers after IVD degeneration. A strong positive correlation was observed between the expression of pain markers and the increase in the qCEST signal. Collectively, these findings suggest that this approach might be used to identify which IVD is causing low back pain, thereby providing valuable guidance for pain and surgical management.
Collapse
|
4
|
Zhang YL, Li B, Zhou ZH. A cross-sectional study: serum CCL3/MIP-1α levels may reflect lumbar intervertebral disk degeneration in Han Chinese people. J Pain Res 2018; 11:497-503. [PMID: 29551909 PMCID: PMC5842780 DOI: 10.2147/jpr.s152349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background The macrophage inflammatory protein-1α (MIP-1α), also named chemokine cytokine ligand 3 (CCL3), has been detected in nucleus pulposus and increased following cytokine stimulation. Objective The current study was performed to explore the relationship between serum CCL3/MIP-1α levels with lumbar intervertebral disk degeneration (IDD). Patients and methods A total of 132 disk degeneration patients confirmed by magnetic resonance imaging and 126 healthy controls were enrolled in the current study. Radiological evaluation of the IDD was conducted using a 3.0-T magnetic resonance imaging scanner for entire lumbar vertebra region. Degeneration of intervertebral disk was assessed by Schneiderman criteria. Serum CCL3/MIP-1α levels were investigated using a sandwich enzyme-linked immunosorbent assay. The Visual Analog Scale scores and Oswestry Disability Index index were recorded for clinical severity. Results Elevated concentrations of CCL3 in serum were found in IDD patients compared with asymptomatic volunteers. The case group included 49 IDD patients with grade 1, 42 with grade 2, and 41 with grade 3. Grade 3 and 2 had significantly higher CCL3 concentrations in serum compared with those with grade 1. The serum CCL3 levels were positively related to the degree of disk degeneration. In addition, the serum CCL3 levels also demonstrated a significant correlation with the clinical severity determined by Visual Analog Scale scores and Oswestry Disability Index index. Conclusion Serum CCL3 may serve as a biomarker of IDD.
Collapse
Affiliation(s)
- Yi-Li Zhang
- School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,School of Health Services Management, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Bei Li
- School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,School of Health Services Management, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Zeng-Huan Zhou
- School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
5
|
Choi SH, Adsul N, Kim HS, Jang JS, Jang IT, Oh SH. Magnetic Resonance Imaging Undetectable Epiduroscopic Hotspot in Chronic Diskogenic Back Pain-Does Sinuvertebral Neuropathy Actually Exist? World Neurosurg 2017; 110:354-358. [PMID: 29203308 DOI: 10.1016/j.wneu.2017.11.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The causes of chronic diskogenic back pain have not yet been clearly identified. Neural ingrowth around the annulus is widely considered to be one of the possible cause. However, neuropathy around the annulus has yet to be observed visually. We report a case of a hotspot that was observed in an epiduroscopic view, but not in imaging findings. CASE DESCRIPTION A 46-year-old woman was admitted with pain in the back, left buttock, and posterior thigh for 2 years. A straight leg raising test was positive on the left side, and left great toe dorsiflexion was decreased to grade 3/5. The Visual Analog Scale pain score was 7/10. On the basis of her symptoms, epidural block, medial branch block, sacroiliac joint block, piriformis muscle injection, physical therapy, and medication were attempted, but no improvement in symptoms was observed. A provocation test was performed at the L3-L4, L4-L5, and L5-S1 intervertebral disks, and severe pain was induced in the L5-S1 intervertebral disk, which was not suspicious on magnetic resonance imaging. We performed transforaminal epiduroscopic laser ablation on L5-S1 and found a hotspot on L5-S1 during the procedure. During laser provocation of the hotspot, the patient complained of severe pain in her lower back and legs, and her pain decreased after ablation of hotspot with laser and improvement in motor weakness was noticed. CONCLUSION In this study, we observed annulus hotspots, which have not been observed in imaging studies such as computed tomography or magnetic resonance imaging in patients with chronic back pain and leg pain, and observed remarkable symptom improvement after transforaminal epiduroscopic laser ablation.
Collapse
Affiliation(s)
- Sung Ho Choi
- Department of Neurosurgery, Nanoori Suwon Hospital, Suwon, Korea
| | - Nitin Adsul
- Department of Neurosurgery, Nanoori Suwon Hospital, Suwon, Korea
| | - Hyeun Sung Kim
- Department of Neurosurgery, Nanoori Suwon Hospital, Suwon, Korea.
| | - Jee-Soo Jang
- Department of Neurosurgery, Nanoori Suwon Hospital, Suwon, Korea
| | - Il-Tae Jang
- Department of Neurosurgery, Nanoori Hospital, Seoul, Korea
| | - Seong-Hoon Oh
- Department of Neurosurgery, Nanoori Incheon Hospital, Incheon, Korea
| |
Collapse
|
6
|
Abstract
BACKGROUND CONTEXT The ability to adequately measure a phenomenon is critical to studying and understanding it. Since 1957, a variety of subjective visual grading methods have been used to assess disc degeneration, but these have been limited by gross ordinal scales and imprecision, as well as suboptimal reliability. Conceptually sound, objective, precise measurements are needed to advance knowledge of disc degeneration and its causes, progression, and consequences. PURPOSE This study aimed to investigate the reliability and validity of a new system ("SpIn" for spine insight) to quantitatively measure lumbar disc degeneration or pathology. STUDY DESIGN This is a measurement study using cross-sectional and longitudinal data. PATIENT SAMPLE The subjects were 108 men from 35 to 63 years of age at baseline. OUTCOME MEASURES SpIn measures were validated using age, Pfirrmann grade, and other magnetic resonance imaging (MRI)-based disc and vertebral measurements associated with degeneration. METHODS The lumbar spine was imaged using a 1.5 T Magnetom MRI scanner at baseline and a 1.5 T Avanto scanner at 15-year follow-up, forming two scanner-age groups. After the disc was manually traced on mid-disc axial MR images, image analysis software automatically measured distances, areas, and mean signal of regions of interest to calculate the new ratio-based disc degeneration measurements (SpIn). Repeated measurements were conducted on 30 subjects to estimate intra- and inter-rater reliability. Univariate methods and multiple regression modeling were used to compare associations of SpIn values and Pfirrmann grade, as a reference standard, with age and other degenerative and morphologic changes over follow-up. The MRI data used in the study were collected with support from the National Institutes of Health (NIH) National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and the Finnish Work Environment Fund. One author (TV) has a patent interest in SpIn. RESULTS Intra-rater and inter-rater measurements for SpIn yielded correlation coefficients of at least 0.98. Associations with age were clearly weaker for Pfirrmann grade than for SpIn. The variance in age explained by axial SpIn values ranged from 15.0% to 23.4% (adjusted R2), depending on spinal level and scanner-age group, as compared with 5.9%-12.9% for Pfirrmann grade. Although both SpIn values and Pfirrmann grades were associated with familial aggregation, associations were generally higher with Pfirrmann grade. Baseline SpIn values and Pfirrmann grade were both associated with subsequent, structural degenerative changes in lumbar discs and vertebrae over the 15-year follow-up, but all associations were stronger with SpIn. CONCLUSIONS SpIn provides a highly reliable, objective, continuous digital measurement of disc degeneration, which uses routinely acquired MRI and could benefit related research.
Collapse
|
7
|
Cao P, Wu EX. In vivo diffusion MRS investigation of non-water molecules in biological tissues. NMR IN BIOMEDICINE 2017; 30:e3481. [PMID: 26797798 DOI: 10.1002/nbm.3481] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Diffusion MRS of non-water molecules offers great potential in directly revealing various tissue microstructures and physiology at both cellular and subcellular levels. In brain, 1 H diffusion MRS has been demonstrated as a new tool for probing normal tissue microstructures and their pathological changes. In skeletal muscle, 1 H diffusion MRS could characterize slow and restricted intramyocellular lipid diffusion, providing a sensitive marker for metabolic alterations, while 31 P diffusion MRS can measure ATP and PCr diffusion, which may reflect the capacity of cellular energy transport, complementing the information from frequently used 31 P MRS in muscle. In intervertebral disk, 1 H diffusion MRS can directly monitor extracellular matrix integrity by quantifying the mobility of macromolecules such as proteoglycans and collagens. In tumor tissue, 13 C diffusion MRS could probe intracellular glycolytic metabolism, while 1 H diffusion MRS may separate the spectrally overlapped lactate and lipid resonances. In this review, recent diffusion MRS studies of these biologically relevant non-water molecules under normal and diseased conditions will be presented. Technical considerations for diffusion MRS experiments will be discussed. With advances in MRI hardware and diffusion methodology, diffusion MRS of non-water molecules is expected to provide increasingly valuable and biologically specific information on tissue microstructures and physiology, complementing the traditional diffusion MRI of small and ubiquitous water molecules. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peng Cao
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Hwang D, Kim S, Abeydeera NA, Statum S, Masuda K, Chung CB, Siriwanarangsun P, Bae WC. Quantitative magnetic resonance imaging of the lumbar intervertebral discs. Quant Imaging Med Surg 2016; 6:744-755. [PMID: 28090450 DOI: 10.21037/qims.2016.12.09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human lumbar spine is composed of multiple tissue components that serve to provide structural stability and proper nutrition. Conventional magnetic resonance (MR) imaging techniques have been useful for evaluation of IVD, but inadequate at imaging the discovertebral junction and ligamentous tissues due primarily to their short T2 nature. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal from these short T2 tissues, thereby allowing direct and quantitative evaluation. This article discusses the anatomy of the lumbar spine, MR techniques available for morphologic and quantitative MR evaluation of long and short T2 tissues of the lumbar spine, considerations for T2 relaxation modeling and fitting, and existing and new techniques for spine image post-processing, focusing on segmentation. This article will be of interest to radiologic and orthopaedic researchers performing lumbar spine imaging.
Collapse
Affiliation(s)
- Dosik Hwang
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Sewon Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Nirusha A Abeydeera
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Sheronda Statum
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Palanan Siriwanarangsun
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA;; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Won C Bae
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Tourell MC, Kirkwood M, Pearcy MJ, Momot KI, Little JP. Load-induced changes in the diffusion tensor of ovine anulus fibrosus: A pilot MRI study. J Magn Reson Imaging 2016; 45:1723-1735. [PMID: 28500665 DOI: 10.1002/jmri.25531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To assess the feasibility of diffusion tensor imaging (DTI) for evaluating changes in anulus fibrosus (AF) microstructure following uniaxial compression. MATERIALS AND METHODS Six axially aligned samples of AF were obtained from a merino sheep disc; two each from the anterior, lateral, and posterior regions. The samples were mechanically loaded in axial compression during five cycles at a rate and maximum compressive strain that reflected physiological conditions. DTI was conducted at 7T for each sample before and after mechanical testing. RESULTS The mechanical response of all samples in unconfined compression was nonlinear. A stiffer response during the first loading cycle, compared to the remaining cycles, was observed. Change in diffusion parameters appeared to be region-dependent. The mean fractional anisotropy increased following mechanical testing. This was smallest in the lateral (2% and 9%) and largest in the anterior and posterior samples (17-25%). The mean average diffusivity remained relatively constant (<2%) after mechanical testing in the lateral and posterior samples, but increased (by 5%) in the anterior samples. The mean angle made by the principal eigenvector with the spine axis in the lateral samples was 73° and remained relatively constant (<2%) following mechanical testing. This angle was smaller in the anterior (55°) and posterior (47°) regions and increased by 6-16° following mechanical testing. CONCLUSION These preliminary results suggest that axial compression reorients the collagen fibers, such that they become more consistently aligned parallel to the plane of the endplates. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1723-1735.
Collapse
Affiliation(s)
- Monique C Tourell
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Margaret Kirkwood
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Mark J Pearcy
- Paediatric Spine Research Group, Centre for Children's Health Research @ IHBI, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Konstantin I Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - J Paige Little
- Paediatric Spine Research Group, Centre for Children's Health Research @ IHBI, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
10
|
Authors' Reply to Wang: "On Magnetic Resonance Imaging of Intervertebral Disc Ageing". Sports Med 2016; 47:189-191. [PMID: 27549103 DOI: 10.1007/s40279-016-0612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Wright AC, Yoder JH, Vresilovic EJ, Elliott DM. Theory of MRI contrast in the annulus fibrosus of the intervertebral disc. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:711-22. [PMID: 26755061 DOI: 10.1007/s10334-015-0522-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Here we develop a three-dimensional analytic model for MR image contrast of collagen lamellae in the annulus fibrosus of the intervertebral disc of the spine, based on the dependence of the MRI signal on collagen fiber orientation. MATERIALS AND METHODS High-resolution MRI scans were performed at 1.5 and 7 T on intact whole disc specimens from ovine, bovine, and human spines. An analytic model that approximates the three-dimensional curvature of the disc lamellae was developed to explain inter-lamellar contrast and intensity variations in the annulus. The model is based on the known anisotropic dipolar relaxation of water in tissues with ordered collagen. RESULTS Simulated MRI data were generated that reproduced many features of the actual MRI data. The calculated inter-lamellar image contrast demonstrated a strong dependence on the collagen fiber angle and on the circumferential location within the annulus. CONCLUSION This analytic model may be useful for interpreting MR images of the disc and for predicting experimental conditions that will optimize MR image contrast in the annulus fibrosus.
Collapse
Affiliation(s)
- Alexander C Wright
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathon H Yoder
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward J Vresilovic
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
12
|
Ben-Abraham EI, Chen J, Felmlee JP, Rossman P, Manduca A, An KN, Ehman RL. Feasibility of MR elastography of the intervertebral disc. Magn Reson Imaging 2015; 39:132-137. [PMID: 26743429 DOI: 10.1016/j.mri.2015.12.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 12/27/2015] [Indexed: 01/07/2023]
Abstract
Low back pain (LBP) is a costly and widely prevalent health disorder in the U.S. One of the most common causes of LBP is degenerative disc disease (DDD). There are many imaging techniques to characterize disc degeneration; however, there is no way to directly assess the material properties of the intervertebral disc (IVD) within the intact spine. Magnetic resonance elastography (MRE) is an MRI-based technique for non-invasively mapping the mechanical properties of tissues in vivo. The purpose of this study was to investigate the feasibility of using MRE to detect shear wave propagation in and determine the shear stiffness of an axial cross-section of an ex vivo baboon IVD, and compare with shear displacements from a finite element model of an IVD motion segment in response to harmonic shear vibration. MRE was performed on two baboon lumbar spine motion segments (L3-L4) with the posterior elements removed at a range of frequencies (1000-1500Hz) using a standard clinical 1.5T MR scanner. Propagating waves were visualized in an axial cross-section of the baboon IVDs in all three motion-encoding directions, which resembled wave patterns predicted using finite element modeling. The baboon nucleus pulposus showed an average shear stiffness of 79±15kPa at 1000Hz. These results suggest that MRE is capable of visualizing shear wave propagation in the IVD, assessing the stiffness of the nucleus of the IVD, and can differentiate the nucleus and annulus regions.
Collapse
Affiliation(s)
- Ephraim I Ben-Abraham
- Mayo Graduate School, Biomedical Engineering and Physiology Track, Mayo Clinic, Rochester, Minnesota, USA.
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Phil Rossman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
13
|
Tan TL, Borkowski SL, Sangiorgio SN, Campbell PA, Ebramzadeh E. Imaging Criteria for the Quantification of Disc Degeneration. JBJS Rev 2015; 3:01874474-201502000-00002. [DOI: 10.2106/jbjs.rvw.n.00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Mwale F, Wang HT, Roughley P, Antoniou J, Haglund L. Link N and mesenchymal stem cells can induce regeneration of the early degenerate intervertebral disc. Tissue Eng Part A 2014; 20:2942-9. [PMID: 24786145 DOI: 10.1089/ten.tea.2013.0749] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Link N is a naturally occurring peptide that can stimulate proteoglycan synthesis in intervertebral disc (IVD) cells. IVD repair can also potentially be enhanced by mesenchymal stem cell (MSC) supplementation to maximize extracellular matrix (ECM) production. In a previous study, we have shown that Link N can inhibit osteogenesis and increase the chondrogenesis of MSCs in vitro. The aim of the present study was to determine the potential of MSCs and Link N alone or in combination with regard to tissue repair in the degenerate disc. Bovine IVDs with trypsin-induced degeneration were treated with MSCs, Link N, or a combination of MSCs and Link N. Trypsin-treated discs were also injected with phosphate-buffered saline to serve as a degeneration control. The ECM proteins and proteoglycans were extracted from the inner nucleus pulposus (NP) of the discs, and sulfated glycosaminoglycans (GAGs) were analyzed by the dimethyl methylene blue dye-binding assay. The expression of type II collagen was analyzed by western blot. To track the MSCs after injection, MSCs were labeled with PKH67 and observed under confocal microscopy after the 2 week culture period. The GAG content significantly increased compared with the degeneration control when degenerate discs were treated with MSCs, Link N, or a combination of both Link N and MSCs. Histological analysis revealed that the newly synthesized proteoglycan was able to diffuse throughout the ECM and restore tissue content even in areas remote from the cells. The quantity of extractable type II collagen was also increased when the degenerate discs were treated with MSCs and Link N, either alone or together. MSCs survived, integrated in the tissue, and were found distributed throughout the NP after the 2 week culture period. MSCs and Link N can restore GAG content in degenerate discs, when administered separately or together. Treatment with MSCs and Link N can also increase the expression of type II collagen. The results support the concept that biological repair of disc degeneration is feasible, and that the administration of either MSCs or Link N has therapeutic potential in early stages of the disease.
Collapse
Affiliation(s)
- Fackson Mwale
- 1 Division of Orthopaedic Surgery, McGill University , Montreal, Canada
| | | | | | | | | |
Collapse
|
15
|
Wang AM, Cao P, Yee A, Chan D, Wu EX. Detection of extracellular matrix degradation in intervertebral disc degeneration by diffusion magnetic resonance spectroscopy. Magn Reson Med 2014; 73:1703-12. [PMID: 24817583 DOI: 10.1002/mrm.25289] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
Abstract
PURPOSE To investigate whether diffusion magnetic resonance spectroscopy (MRS) can detect the extracellular matrix (ECM) degradation during intervertebral disc degeneration (IVDD) by the increased mobility of ECM macromolecules such as proteoglycans and collagens. METHODS Fresh bovine intervertebral discs were injected with papain solution to induce ECM degradation. The apparent diffusion coefficients (ADCs), T2 values, and contents of ECM macromolecules and water resonances were measured longitudinally in the nucleus pulposus. RESULTS The macromolecule ADCs increased drastically at day 1 after papain injection, and continued increasing for 5 days. In contrast, the proteoglycan content exhibited a small and slow decrease after injection while the macromolecule T2 values, water T2, ADC, and content showed slight increase or no change. The protein gel electrophoresis analysis confirmed the gradually increased ECM fragmentation in accordance with the observed macromolecule ADC increases. CONCLUSION Diffusion MRS provides a new method to characterize the ECM degradation processes directly and sensitively. Macromolecule ADCs offer a potentially more sensitive and earlier marker for ECM degradation than the proteoglycan content and T2, and water MR properties during early IVDD. Such diffusion approach offers the possibility to directly monitor ECM integrity and degradation processes in vivo at molecular and microstructural levels in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Anna M Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
16
|
Cortes DH, Magland JF, Wright AC, Elliott DM. The shear modulus of the nucleus pulposus measured using magnetic resonance elastography: a potential biomarker for intervertebral disc degeneration. Magn Reson Med 2013; 72:211-9. [PMID: 23904333 DOI: 10.1002/mrm.24895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/20/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aims to: (1) measure the shear modulus of nucleus pulposus (NP) in intact human vertebra-disc-vertebra segments using a magnetic resonance elastography setup for a 7T whole-body scanner, (2) quantify the effect of disc degeneration on the NP shear modulus measured using magnetic resonance elastography, and (3) compare the NP shear modulus to other magnetic resonance-based biomarkers of dis degeneration. METHODS Thirty intact human disc segments were classified as normal, mild, or severely degenerated. The NP shear modulus was measured using a custom-made setup that included a novel inverse method less sensitive to noisy displacements. T2 relaxation time was measured at 7T. The accuracy of these parameters to classify different degrees of degeneration was evaluated using receiver operating characteristic curves. RESULTS The magnetic resonance elastography measure of shear modulus in the NP was able to differentiate between normal, mild degeneration, and severe degeneration. The T2 relaxation time was able to differentiate between normal and mild degeneration, but it could not distinguish between mild and severe degeneration. CONCLUSIONS This study shows that the NP shear modulus measured using magnetic resonance elastography is sensitive to disc degeneration and has the potential of being used as a clinical tool to quantify the mechanical integrity of the intervertebral disc.
Collapse
Affiliation(s)
- Daniel H Cortes
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | | | | | | |
Collapse
|
17
|
Bae WC, Statum S, Zhang Z, Yamaguchi T, Wolfson T, Gamst AC, Du J, Bydder GM, Masuda K, Chung CB. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 2012. [PMID: 23192776 DOI: 10.1148/radiol.12121181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE To image human disk-bone specimens by using conventional spin-echo (SE) and ultrashort echo time (TE) techniques, to describe the morphology at magnetic resonance (MR) imaging, and to identify tissue components contributing to high signal intensity near the cartilaginous endplates (CEPs). MATERIALS AND METHODS This study was exempt from institutional review board approval, and informed consent was not required. Five cadaveric lumbar spines (mean age, 61 years ± 11) were prepared into six sample types containing different combinations of disk, uncalcified CEP, calcified CEP, and subchondral bone components and were imaged with proton density-weighted SE (repetition time msec/TE msec, 2000/15) and ultrashort TE (300/0.008, 6.6, echo-subtraction) sequences. Images were evaluated to determine the presence of intermediate-to-high signal intensity in regions excluding the bone marrow. Logistic regression was used to determine which tissue components were significant predictors of the presence of signal intensity for each MR technique. RESULTS On ultrashort TE MR images, intact disk/uncalcified CEP/calcified CEP/bone samples exhibited bilaminar intermediate-to-high signal intensity in the region near the CEP, consistent with the histologic appearance of uncalcified and calcified CEPs. Conversely, proton density-weighted SE images exhibited low signal intensity in this region. Results of logistic regression suggested that the presence of uncalcified CEP (P = .023) and calcified CEP (P = .007) in the sample were strong predictors of the presence of signal intensity on ultrashort TE images, whereas the disk was the only predictor (P < .001) of signal intensity on proton density-weighted SE images. CONCLUSION Ultrashort TE imaging, unlike proton density-weighted SE imaging, enabled direct visualization of the uncalcified and calcified CEP. Evaluation of the morphology and identification of sources of signal intensity at ultrashort TE MR imaging provides opportunities to potentially aid in the understanding of degenerative disk disease.
Collapse
Affiliation(s)
- Won C Bae
- Department of Radiology, University of California-San Diego, 408 Dickinson St, San Diego, CA 92103-8226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|