1
|
Wang X, Zhang Y, Hu H, Wei N. Detection of retinal nerve fiber layer in patients with high myopia complicated with glaucoma by optical coherence tomography. Technol Health Care 2025:9287329241296770. [PMID: 40033738 DOI: 10.1177/09287329241296770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE To detect the changes in the thickness of the Retinal Nerve Fiber Layer (RNFL) in patients with High Myopia (HM) complicated with glaucoma through Optical Coherence Tomography (OCT). METHODS 80 patients (160 eyes) with HM complicated with glaucoma treated from March 2018 to March 2020 were enrolled as the experimental group, and 60 healthy volunteers (120 eyes) undergoing physical examination in the same period were selected as the control group. OCT measured their RNFL thicknesses. RESULTS Compared with that in the control group, the nasal, supratemporal, subnasal, supranasal, and infratemporal RNFL thickness and overall mean RNFL thickness in the experimental group was significantly decreased, while the temporal RNFL thickness was significantly increased in the experimental group (P < 0.05). According to the diopter, patients in the experimental group were assigned into group A (n = 25, 50 eyes, diopter range: ≥ -6.00 D and ≤ -8.00 D), group B (n = 30, 60 eyes, diopter range: > -8.00 D and ≤ -10.00 D) and group C (n = 25, 50 eyes, diopter range: > -10.00 D). The nasal, supratemporal, subnasal, supranasal, and infratemporal RNFL thickness and overall mean RNFL thickness in group A were significantly greater than those in groups B and C (P < 0.05). Spearman correlation analysis revealed that the absolute value of diopter was negatively correlated with the nasal, supratemporal, subnasal, supranasal, and infratemporal RNFL thickness and overall mean RNFL thickness (P < 0.05), and positively correlated with the thickness of temporal RNFL (P < 0.05). CONCLUSION In patients with HM complicated with glaucoma, RNFL is thinner in all quadrants except for temporal RNFL.
Collapse
Affiliation(s)
- Xin Wang
- School of Nursing and Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yinglang Zhang
- Zhengzhou Ophthalmic Hospital, Zhengzhou, Henan Province, China
| | - Hongbo Hu
- Zhengzhou Ophthalmic Hospital, Zhengzhou, Henan Province, China
| | - Ning Wei
- Zhengzhou Ophthalmic Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Jalili J, Walker E, Bowd C, Belghith A, Goldbaum MH, Fazio MA, Girkin CA, De Moraes CG, Liebmann JM, Weinreb RN, Zangwill LM, Christopher M. Deep Learning Approach Predicts Longitudinal Retinal Nerve Fiber Layer Thickness Changes. Bioengineering (Basel) 2025; 12:139. [PMID: 40001659 PMCID: PMC11851649 DOI: 10.3390/bioengineering12020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
This study aims to develop deep learning (DL) models to predict the retinal nerve fiber layer (RNFL) thickness changes in glaucoma, facilitating the early diagnosis and monitoring of disease progression. Using the longitudinal data from two glaucoma studies (Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES)), we constructed models using optical coherence tomography (OCT) scans from 251 participants (437 eyes). The models were trained to predict the RNFL thickness at a future visit based on previous scans. We evaluated four models: linear regression (LR), support vector regression (SVR), gradient boosting regression (GBR), and a custom 1D convolutional neural network (CNN). The GBR model achieved the best performance in predicting pointwise RNFL thickness changes (MAE = 5.2 μm, R2 = 0.91), while the custom 1D CNN excelled in predicting changes to average global and sectoral RNFL thickness, providing greater resolution and outperforming the traditional models (MAEs from 2.0-4.2 μm, R2 from 0.94-0.98). Our custom models used a novel approach that incorporated longitudinal OCT imaging to achieve consistent performance across different demographics and disease severities, offering potential clinical decision support for glaucoma diagnosis. Patient-level data splitting enhances the evaluation robustness, while predicting detailed RNFL thickness provides a comprehensive understanding of the structural changes over time.
Collapse
Grants
- R00EY030942, R01EY027510, R01EY034146 R01EY11008, P30EY022589, R01EY026590, EY022039, EY021818, R01EY023704, R01EY029058, EY19869, R21 EY027945, T35 EY033704 NEI NIH HHS
- OT2OD032644 NIH HHS
- The Glaucoma Foundation. Unrestricted grant from Research to Prevent Blindness (New York, NY).
Collapse
Affiliation(s)
- Jalil Jalili
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Evan Walker
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Christopher Bowd
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Akram Belghith
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Michael H. Goldbaum
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Massimo A. Fazio
- Department of Ophthalmology and Vision Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Christopher A. Girkin
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Carlos Gustavo De Moraes
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY 10032, USA; (C.G.D.M.); (J.M.L.)
| | - Jeffrey M. Liebmann
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY 10032, USA; (C.G.D.M.); (J.M.L.)
| | - Robert N. Weinreb
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Linda M. Zangwill
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Mark Christopher
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| |
Collapse
|
3
|
Zhu Y, Salowe R, Chow C, Li S, Bastani O, O’Brien JM. Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection. Bioengineering (Basel) 2024; 11:122. [PMID: 38391608 PMCID: PMC10886285 DOI: 10.3390/bioengineering11020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Glaucoma, the leading cause of irreversible blindness worldwide, comprises a group of progressive optic neuropathies requiring early detection and lifelong treatment to preserve vision. Artificial intelligence (AI) technologies are now demonstrating transformative potential across the spectrum of clinical glaucoma care. This review summarizes current capabilities, future outlooks, and practical translation considerations. For enhanced screening, algorithms analyzing retinal photographs and machine learning models synthesizing risk factors can identify high-risk patients needing diagnostic workup and close follow-up. To augment definitive diagnosis, deep learning techniques detect characteristic glaucomatous patterns by interpreting results from optical coherence tomography, visual field testing, fundus photography, and other ocular imaging. AI-powered platforms also enable continuous monitoring, with algorithms that analyze longitudinal data alerting physicians about rapid disease progression. By integrating predictive analytics with patient-specific parameters, AI can also guide precision medicine for individualized glaucoma treatment selections. Advances in robotic surgery and computer-based guidance demonstrate AI's potential to improve surgical outcomes and surgical training. Beyond the clinic, AI chatbots and reminder systems could provide patient education and counseling to promote medication adherence. However, thoughtful approaches to clinical integration, usability, diversity, and ethical implications remain critical to successfully implementing these emerging technologies. This review highlights AI's vast capabilities to transform glaucoma care while summarizing key achievements, future prospects, and practical considerations to progress from bench to bedside.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.Z.); (R.S.); (C.C.)
| | - Rebecca Salowe
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.Z.); (R.S.); (C.C.)
| | - Caven Chow
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.Z.); (R.S.); (C.C.)
| | - Shuo Li
- Department of Computer & Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.L.); (O.B.)
| | - Osbert Bastani
- Department of Computer & Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.L.); (O.B.)
| | - Joan M. O’Brien
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.Z.); (R.S.); (C.C.)
| |
Collapse
|
4
|
Thakur S, Dinh LL, Lavanya R, Quek TC, Liu Y, Cheng CY. Use of artificial intelligence in forecasting glaucoma progression. Taiwan J Ophthalmol 2023; 13:168-183. [PMID: 37484617 PMCID: PMC10361424 DOI: 10.4103/tjo.tjo-d-23-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 07/25/2023] Open
Abstract
Artificial intelligence (AI) has been widely used in ophthalmology for disease detection and monitoring progression. For glaucoma research, AI has been used to understand progression patterns and forecast disease trajectory based on analysis of clinical and imaging data. Techniques such as machine learning, natural language processing, and deep learning have been employed for this purpose. The results from studies using AI for forecasting glaucoma progression however vary considerably due to dataset constraints, lack of a standard progression definition and differences in methodology and approach. While glaucoma detection and screening have been the focus of most research that has been published in the last few years, in this narrative review we focus on studies that specifically address glaucoma progression. We also summarize the current evidence, highlight studies that have translational potential, and provide suggestions on how future research that addresses glaucoma progression can be improved.
Collapse
Affiliation(s)
- Sahil Thakur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Linh Le Dinh
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Raghavan Lavanya
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Ten Cheer Quek
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yong Liu
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Ophthalmology, Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
5
|
Chen D, Ran Ran A, Fang Tan T, Ramachandran R, Li F, Cheung CY, Yousefi S, Tham CCY, Ting DSW, Zhang X, Al-Aswad LA. Applications of Artificial Intelligence and Deep Learning in Glaucoma. Asia Pac J Ophthalmol (Phila) 2023; 12:80-93. [PMID: 36706335 DOI: 10.1097/apo.0000000000000596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2022] [Indexed: 01/28/2023] Open
Abstract
Diagnosis and detection of progression of glaucoma remains challenging. Artificial intelligence-based tools have the potential to improve and standardize the assessment of glaucoma but development of these algorithms is difficult given the multimodal and variable nature of the diagnosis. Currently, most algorithms are focused on a single imaging modality, specifically screening and diagnosis based on fundus photos or optical coherence tomography images. Use of anterior segment optical coherence tomography and goniophotographs is limited. The majority of algorithms designed for disease progression prediction are based on visual fields. No studies in our literature search assessed the use of artificial intelligence for treatment response prediction and no studies conducted prospective testing of their algorithms. Additional challenges to the development of artificial intelligence-based tools include scarcity of data and a lack of consensus in diagnostic criteria. Although research in the use of artificial intelligence for glaucoma is promising, additional work is needed to develop clinically usable tools.
Collapse
Affiliation(s)
- Dinah Chen
- Department of Ophthalmology, NYU Langone Health, New York City, NY
- Genentech Inc, South San Francisco, CA
| | - An Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fang Tan
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Center, Singapore
| | | | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Siamak Yousefi
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN
| | - Clement C Y Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel S W Ting
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Center, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | | |
Collapse
|
6
|
Yousefi S. Clinical Applications of Artificial Intelligence in Glaucoma. J Ophthalmic Vis Res 2023; 18:97-112. [PMID: 36937202 PMCID: PMC10020779 DOI: 10.18502/jovr.v18i1.12730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 02/25/2023] Open
Abstract
Ophthalmology is one of the major imaging-intensive fields of medicine and thus has potential for extensive applications of artificial intelligence (AI) to advance diagnosis, drug efficacy, and other treatment-related aspects of ocular disease. AI has made impressive progress in ophthalmology within the past few years and two autonomous AI-enabled systems have received US regulatory approvals for autonomously screening for mid-level or advanced diabetic retinopathy and macular edema. While no autonomous AI-enabled system for glaucoma screening has yet received US regulatory approval, numerous assistive AI-enabled software tools are already employed in commercialized instruments for quantifying retinal images and visual fields to augment glaucoma research and clinical practice. In this literature review (non-systematic), we provide an overview of AI applications in glaucoma, and highlight some limitations and considerations for AI integration and adoption into clinical practice.
Collapse
Affiliation(s)
- Siamak Yousefi
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
7
|
Thompson AC, Falconi A, Sappington RM. Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging. FRONTIERS IN OPHTHALMOLOGY 2022; 2:937205. [PMID: 38983522 PMCID: PMC11182271 DOI: 10.3389/fopht.2022.937205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/22/2022] [Indexed: 07/11/2024]
Abstract
Glaucoma is a leading cause of progressive blindness and visual impairment worldwide. Microstructural evidence of glaucomatous damage to the optic nerve head and associated tissues can be visualized using optical coherence tomography (OCT). In recent years, development of novel deep learning (DL) algorithms has led to innovative advances and improvements in automated detection of glaucomatous damage and progression on OCT imaging. DL algorithms have also been trained utilizing OCT data to improve detection of glaucomatous damage on fundus photography, thus improving the potential utility of color photos which can be more easily collected in a wider range of clinical and screening settings. This review highlights ten years of contributions to glaucoma detection through advances in deep learning models trained utilizing OCT structural data and posits future directions for translation of these discoveries into the field of aging and the basic sciences.
Collapse
Affiliation(s)
- Atalie C. Thompson
- Department of Surgical Ophthalmology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine, Gerontology, and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Aurelio Falconi
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Rebecca M. Sappington
- Department of Surgical Ophthalmology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
8
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
9
|
Schuman JS, Angeles Ramos Cadena MDL, McGee R, Al-Aswad LA, Medeiros FA. A Case for The Use of Artificial Intelligence in Glaucoma Assessment. Ophthalmol Glaucoma 2021; 5:e3-e13. [PMID: 34954220 PMCID: PMC9133028 DOI: 10.1016/j.ogla.2021.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
We hypothesize that artificial intelligence applied to relevant clinical testing in glaucoma has the potential to enhance the ability to detect glaucoma. This premise was discussed at the recent Collaborative Community for Ophthalmic Imaging meeting, "The Future of Artificial Intelligence-Enabled Ophthalmic Image Interpretation: Accelerating Innovation and Implementation Pathways," held virtually September 3-4, 2020. The Collaborative Community in Ophthalmic Imaging (CCOI) is an independent self-governing consortium of stakeholders with broad international representation from academic institutions, government agencies, and the private sector whose mission is to act as a forum for the purpose of helping speed innovation in healthcare technology. It was one of the first two such organizations officially designated by the FDA in September 2019 in response to their announcement of the collaborative community program as a strategic priority for 2018-2020. Further information on the CCOI can be found online at their website (https://www.cc-oi.org/about). Artificial intelligence for glaucoma diagnosis would have high utility globally, as access to care is limited in many parts of the world and half of all people with glaucoma are unaware of their illness. The application of artificial intelligence technology to glaucoma diagnosis has the potential to broadly increase access to care worldwide, in essence flattening the Earth by providing expert level evaluation to individuals even in the most remote regions of the planet.
Collapse
Affiliation(s)
- Joel S Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA; Center for Neural Science, NYU, New York, NY, USA; Neuroscience Institute, NYU Langone Health, New York, NY, USA.
| | | | - Rebecca McGee
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Lama A Al-Aswad
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA; Department of Population Health, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Felipe A Medeiros
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|