1
|
Kuang D, Romand S, Zvereva AS, Orlando Marchesano BM, Grenzi M, Buratti S, Yang Q, Zheng K, Valadorou D, Mylle E, Benedikty Z, Trtílek M, Tenje M, Spetea C, Van Damme D, Wurzinger B, Schwarzländer M, Teige M, Costa A, Stael S. The burning glass effect of water droplets triggers a high light-induced calcium response in the chloroplast stroma. Curr Biol 2025:S0960-9822(25)00562-7. [PMID: 40398414 DOI: 10.1016/j.cub.2025.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/16/2025] [Accepted: 04/28/2025] [Indexed: 05/23/2025]
Abstract
Plants rely on water and light for photosynthesis, but water droplets on leaves can focus light into high-intensity spots, risking photodamage. Excessive light can impair growth or induce cell death, making it essential for plants to detect and respond to light fluctuations. While Ca2+ signaling has been linked to high light (HL) acclimation, the subcellular dynamics remain unclear. Here, we investigate Ca2+ responses to HL exposure in Arabidopsis thaliana. Using a glass bead to simulate light-focusing by water droplets, a biphasic increase of Ca2+ concentration was detected in the chloroplast stroma by the genetically encoded calcium indicator YC3.6 and confirmed using a newly established stroma-localized R-GECO1 (NTRC-R-GECO1). The stromal response was largely independent of light wavelength and unaffected in phot1 phot2 and cry1 cry2 mutants. Chemical inhibition of photosynthetic electron transport, microscopy-based Fv/Fm experiments, and measurement of the reactive oxygen species (ROS)-redox balance with roGFP-based reporters and Singlet Oxygen Sensor Green (SOSG) chemical dye suggested that photodamage and singlet oxygen contribute to the stromal Ca2+ response. While blue and white light also triggered a Ca2+ response in the cytosol and nucleus, pharmacological inhibition with cyclopiazonic acid (CPA) and loss-of-function mutants of the Ca2+ transporters BIVALENT CATION TRANSPORTER 2 (BICAT2) and endoplasmic reticulum (ER)-type Ca2+-ATPase (ECA) suggested that the HL response depends on a Ca2+ exchange between the ER and chloroplast stroma. The response was primarily light dependent but accelerated by increasing external temperature. This study implicates a novel Ca2+-mediated acclimation mechanism to HL stress, a process of growing relevance in the context of climate change.
Collapse
Affiliation(s)
- Dominic Kuang
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Shanna Romand
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Anna S Zvereva
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Qun Yang
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Ke Zheng
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Dimitra Valadorou
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, 75103 Uppsala, Sweden
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Martin Trtílek
- Photon Systems Instruments, 66424 Drasov, Czech Republic
| | - Maria Tenje
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, 75103 Uppsala, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bernhard Wurzinger
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Markus Teige
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Alex Costa
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy; Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milan, Italy
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden.
| |
Collapse
|
2
|
Din SU, Ounjai P, Chairoungdua A, Surareungchai W. CO 2-Free On-Stage Incubator for Live Cell Imaging of Cholangiocarcinoma Cell Migration on Microfluidic Device. Methods Protoc 2024; 7:69. [PMID: 39311370 PMCID: PMC11417791 DOI: 10.3390/mps7050069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Long-term live cell imaging requires sophisticated and fully automated commercial-stage incubators equipped with specified inverted microscopes to regulate temperature, CO2 content, and humidity. In this study, we present a CO2-free on-stage incubator specifically designed for use across various cell culture platforms, enabling live cell imaging applications. A simple and transparent incubator was fabricated from acrylic sheets to be easily placed on the stages of most inverted microscopes. We successfully performed live-cell imaging of cholangiocarcinoma (CCA) cells and HeLa cell dynamics in both 2D and 3D microenvironments over three days. We also analyzed directed cell migration under high serum induction within a microfluidic device. Interesting phenomena such as "whole-colony migration", "novel type of collective cell migration" and "colony formation during cell and colony migration" are reported here for the first time, to the best of our knowledge. These phenomena may improve our understanding of the nature of cell migration and cancer metastasis.
Collapse
Affiliation(s)
- Shahab Ud Din
- Nanoscience & Nanotechnology Graduate Program, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Arthit Chairoungdua
- Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Werasak Surareungchai
- Nanoscience & Nanotechnology Graduate Program, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Hashemiesfahan M, Gelin P, Maisto A, Gardeniers H, De Malsche W. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control. MICROMACHINES 2024; 15:191. [PMID: 38398921 PMCID: PMC10892017 DOI: 10.3390/mi15020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Acoustofluidics is an emerging research field wherein either mixing or (bio)-particle separation is conducted. High-power acoustic streaming can produce more intense and rapid flow patterns, leading to faster and more efficient liquid mixing. However, without cooling, the temperature of the piezoelectric element that is used to supply acoustic power to the fluid could rise above 50% of the Curie point of the piezomaterial, thereby accelerating its aging degradation. In addition, the supply of excessive heat to a liquid may lead to irreproducible streaming effects and gas bubble formation. To control these phenomena, in this paper, we present a feedback temperature control system integrated into an acoustofluidic setup using bulk acoustic waves (BAWs) to elevate mass transfer and manipulation of particles. The system performance was tested by measuring mixing efficiency and determining the average velocity magnitude of acoustic streaming. The results show that the integrated temperature control system keeps the temperature at the set point even at high acoustic powers and improves the reproducibility of the acoustofluidic setup performance when the applied voltage is as high as 200 V.
Collapse
Affiliation(s)
- Mehrnaz Hashemiesfahan
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Pierre Gelin
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
| | - Antonio Maisto
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Wim De Malsche
- µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (P.G.); (A.M.)
| |
Collapse
|
4
|
Pohlit H, Bohlin J, Katiyar N, Hilborn J, Tenje M. Technology platform for facile handling of 3D hydrogel cell culture scaffolds. Sci Rep 2023; 13:12829. [PMID: 37550357 PMCID: PMC10406881 DOI: 10.1038/s41598-023-39081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Hydrogels are used extensively as cell-culture scaffolds for both 2D and 3D cell cultures due to their biocompatibility and the ease in which their mechanical and biological properties can be tailored to mimic natural tissue. The challenge when working with hydrogel-based scaffolds is in their handling, as hydrogels that mimic e.g. brain tissue, are both fragile and brittle when prepared as thin (sub-mm) membranes. Here, we describe a method for facile handling of thin hydrogel cell culture scaffolds by molding them onto a polycaprolactone (PCL) mesh support attached to a commonly used Transwell set-up in which the original membrane has been removed. In addition to demonstrating the assembly of this set-up, we also show some applications for this type of biological membrane. A polyethylene glycol (PEG)-gelatin hydrogel supports cell adhesion, and the structures can be used for biological barrier models comprising either one or multiple hydrogel layers. Here, we demonstrate the formation of a tight layer of an epithelial cell model comprising MDCK cells cultured over 9 days by following the build-up of the transepithelial electrical resistances. Second, by integrating a pure PEG hydrogel into the PCL mesh, significant swelling is induced, which leads to the formation of a non-adherent biological scaffold with a large curvature that is useful for spheroid formation. In conclusion, we demonstrate the development of a handling platform for hydrogel cell culture scaffolds for easy integration with conventional measurement techniques and miniaturized organs-on-chip systems.
Collapse
Affiliation(s)
- Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jan Bohlin
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Neeraj Katiyar
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Zhu H, Özkayar G, Lötters J, Tichem M, Ghatkesar MK. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications. Biomed Microdevices 2023; 25:19. [PMID: 37266714 DOI: 10.1007/s10544-023-00657-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Organ-on-a-chip (OoC) devices require the precise control of various media. This is mostly done using several fluid control components, which are much larger than the typical OoC device and connected through fluidic tubing, i.e., the fluidic system is not integrated, which inhibits the system's portability. Here, we explore the limits of fluidic system integration using off-the-shelf fluidic control components. A flow control configuration is proposed that uses a vacuum to generate a fluctuation-free flow and minimizes the number of components used in the system. 3D printing is used to fabricate a custom-designed platform box for mounting the chosen smallest footprint components. It provides flexibility in arranging the various components to create experiment-specific systems. A demonstrator system is realized for lung-on-a-chip experiments. The 3D-printed platform box is 290 mm long, 240 mm wide and 37 mm tall. After integrating all the components, it weighs 4.8 kg. The system comprises of a switch valve, flow and pressure controllers, and a vacuum pump to control the diverse media flows. The system generates liquid flow rates ranging from 1.5 [Formula: see text]Lmin[Formula: see text] to 68 [Formula: see text]Lmin[Formula: see text] in the cell chambers, and a cyclic vacuum of 280 mbar below atmospheric pressure with 0.5 Hz frequency in the side channels to induce mechanical strain on the cells-substrate. The components are modular for easy exchange. The battery operated platform box can be mounted on either upright or inverted microscopes and fits in a standard incubator. Overall, it is shown that a compact integrated and portable fluidic system for OoC experiments can be constructed using off-the-shelf components. For further down-scaling, the fluidic control components, like the pump, switch valves, and flow controllers, require significant miniaturization while having a wide flow rate range with high resolution.
Collapse
Affiliation(s)
- Haoyu Zhu
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Zuid-Holland, 2628CD, Delft, The Netherlands
| | - Gürhan Özkayar
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Zuid-Holland, 2628CD, Delft, The Netherlands
| | - Joost Lötters
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Zuid-Holland, 2628CD, Delft, The Netherlands
- Bronkhorst High-Tech BV, Nijverheidsstraat 1A, Ruurlo, 7261 AK, Gelderland, The Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, Integrated Devices and Systems, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, Overijssel, The Netherlands
| | - Marcel Tichem
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Zuid-Holland, 2628CD, Delft, The Netherlands
| | - Murali Krishna Ghatkesar
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Zuid-Holland, 2628CD, Delft, The Netherlands.
| |
Collapse
|
6
|
Dos-Reis-Delgado AA, Carmona-Dominguez A, Sosa-Avalos G, Jimenez-Saaib IH, Villegas-Cantu KE, Gallo-Villanueva RC, Perez-Gonzalez VH. Recent advances and challenges in temperature monitoring and control in microfluidic devices. Electrophoresis 2023; 44:268-297. [PMID: 36205631 PMCID: PMC10092670 DOI: 10.1002/elps.202200162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.
Collapse
Affiliation(s)
| | | | - Gerardo Sosa-Avalos
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Ivan H Jimenez-Saaib
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Karen E Villegas-Cantu
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | | | - Víctor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| |
Collapse
|
7
|
Microfluidics Temperature Compensating and Monitoring Based on Liquid Metal Heat Transfer. MICROMACHINES 2022; 13:mi13050792. [PMID: 35630259 PMCID: PMC9146403 DOI: 10.3390/mi13050792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022]
Abstract
Microfluidic devices offer excellent heat transfer, enabling the biochemical reactions to be more efficient. However, the precision of temperature sensing and control of microfluids is limited by the size effect. Here in this work, the relationship between the microfluids and the glass substrate of a typical microfluidic device is investigated. With an intelligent structure design and liquid metal, we demonstrated that a millimeter-scale industrial temperature sensor could be utilized for temperature sensing of micro-scale fluids. We proposed a heat transfer model based on this design, where the local correlations between the macro-scale temperature sensor and the micro-scale fluids were investigated. As a demonstration, a set of temperature-sensitive nucleic acid amplification tests were taken to show the precision of temperature control for micro-scale reagents. Comparations of theoretical and experimental data further verify the effectiveness of our heat transfer model. With the presented compensation approach, the slight fluorescent intensity changes caused by isothermal amplification polymerase chain reaction (PCR) temperature could be distinguished. For instance, the probability distribution plots of fluorescent intensity are significant from each other, even if the amplification temperature has a difference of 1 °C. Thus, this method may serve as a universal approach for micro–macro interface sensing and is helpful beyond microfluidic applications.
Collapse
|
8
|
Chamani F, Barnett I, Pyle M, Shrestha T, Prakash P. A Review of In Vitro Instrumentation Platforms for Evaluating Thermal Therapies in Experimental Cell Culture Models. Crit Rev Biomed Eng 2022; 50:39-67. [PMID: 36374822 DOI: 10.1615/critrevbiomedeng.2022043455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thermal therapies, the modulation of tissue temperature for therapeutic benefit, are in clinical use as adjuvant or stand-alone therapeutic modalities for a range of indications, and are under investigation for others. During delivery of thermal therapy in the clinic and in experimental settings, monitoring and control of spatio-temporal thermal profiles contributes to an increased likelihood of inducing desired bioeffects. In vitro thermal dosimetry studies have provided a strong basis for characterizing biological responses of cells to heat. To perform an accurate in vitro thermal analysis, a sample needs to be subjected to uniform heating, ideally raised from, and returned to, baseline immediately, for a known heating duration under ideal isothermal condition. This review presents an applications-based overview of in vitro heating instrumentation platforms. A variety of different approaches are surveyed, including external heating sources (i.e., CO2 incubators, circulating water baths, microheaters and microfluidic devices), microwave dielectric heating, lasers or the use of sound waves. We discuss critical heating parameters including temperature ramp rate (heat-up phase period), heating accuracy, complexity, peak temperature, and technical limitations of each heating modality.
Collapse
Affiliation(s)
- Faraz Chamani
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - India Barnett
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Marla Pyle
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Tej Shrestha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|