1
|
Malagnini M, Aldinio-Colbachini A, Opdam L, Di Giuliantonio A, Fasano A, Fourmond V, Léger C. Initial quality assessment and qualitative interpretation of protein film electrochemistry catalytic data. Bioelectrochemistry 2025; 165:108967. [PMID: 40117737 DOI: 10.1016/j.bioelechem.2025.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
When a redox enzyme is wired to an electrode under conditions of direct electron transfer (DET), its activity can be simply detected as a current. This approach has been reviewed extensively, but here we address a gap in the literature by discussing the initial qualitative interpretation and assessment of catalytic DET electrochemical data. Topics addressed here include electroactive coverage, turnover frequencies, mass transport limitations, film loss, redox-driven (in)activation, signal corrections, distinction between steady-state and transient responses, and identification of non-ideal behaviors. Based on our group's expertise, we provide explanations, general advice, and prescriptive guidance to help readers understand experimental issues.
Collapse
Affiliation(s)
| | | | - Laura Opdam
- Aix Marseille Univ, CNRS, BIP, Marseille, France
| | | | | | | | | |
Collapse
|
2
|
Shnier A, Velempini T, Falch A. Low cost rotating disc electrode built using accessible hand tools and 3D printing. HARDWAREX 2025; 21:e00626. [PMID: 39995748 PMCID: PMC11848141 DOI: 10.1016/j.ohx.2025.e00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Rotating disc electrodes (RDEs) are ubiquitous among electrochemistry labs for their versatility. They serve to mitigate the mass transport limitations in experiments through hydrodynamic control. Commercially available RDEs cost thousands of USD ($) making them unaffordable for many lower budget research groups or education institutions. Affordable designs exist in literature to make these, but precision machined parts are required. The presented prototype is fabricated using a 3D printed design and common hand tools, providing clean and reproducible data. This facilitates production in a wider range of environments for research and education applications, as is ideal in the South African context in which it was designed.
Collapse
Affiliation(s)
- Adam Shnier
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Tarisai Velempini
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Anzel Falch
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
3
|
Järvinen T, Pitkänen O, Laurila T, Mannerkorpi M, Saarakkala S, Kordas K. A customizable wireless potentiostat for assessing Ni(OH) 2 decorated vertically aligned MoS 2 thin films for electrochemical sensing of dopamine. NANOSCALE ADVANCES 2025; 7:1374-1383. [PMID: 39845132 PMCID: PMC11747886 DOI: 10.1039/d4na00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
In this study, we show that on-chip grown, vertically aligned MoS2 films that are decorated with Ni(OH)2 catalyst are suitable materials to be applied as working electrodes in electrochemical sensing. The constructed sensors display a highly repeatable response to dopamine, used as a model analyte, in a large dynamic range from 1 μM to 1 mM with a theoretical detection limit of 0.1 μM. In addition, to facilitate practical implementation of the sensor chips, we also demonstrate a low power wireless cyber-physical system that we designed and accommodated for cyclic voltammetry measurements. The developed cost-effective and portable instrument enables straightforward data acquisition, transfer and visualization through an Android mobile interface, and has an accuracy comparable to reference analysis of our sensors using a commercial table-top laboratory potentiostat.
Collapse
Affiliation(s)
- Topias Järvinen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu PO Box 4500 90014 Finland
| | - Olli Pitkänen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu PO Box 4500 90014 Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University PO Box 13500, 00076 Aalto Finland
| | - Minna Mannerkorpi
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu PO Box 5000 90014 Finland
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu PO Box 5000 90014 Finland
| | - Krisztian Kordas
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu PO Box 4500 90014 Finland
| |
Collapse
|
4
|
Walton A, Manno M, Dauenhauer PJ, Frisbie CD, McDonald D. ATLAS-MAP: An Automated Test Station for Gated Electronic Transport Measurements. ACS MEASUREMENT SCIENCE AU 2024; 4:659-667. [PMID: 39713027 PMCID: PMC11659988 DOI: 10.1021/acsmeasuresciau.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 12/24/2024]
Abstract
The diversification of electronic materials in devices provides a strong incentive for methods to rapidly correlate device performance with fabrication decisions. In this work, we present a low-cost automated test station for gated electronic transport measurements of field-effect transistors. Utilizing open-source PyMeasure libraries for transparent instrument control, the "ATLAS-MAP" system serves as a customizable interface between sourcemeters and samples under test and is programmed to conduct transfer curve and van der Pauw methods with static and sweeping gate voltages. Zinc oxide transistors of variable thickness (5, 10, and 20 nm) and channel size (50 μm to 3 mm, of equal length and width) were fabricated to validate the design. Standardization of testing procedures and raw data formatting enabled automated data analysis. A detailed list of parts and code files for the system are provided.
Collapse
Affiliation(s)
- Amber Walton
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
- Department
of Chemical Engineering and Materials Science, Center for Programmable Energy Catalysis, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
| | - Michael Manno
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
| | - Paul J. Dauenhauer
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
- Department
of Chemical Engineering and Materials Science, Center for Programmable Energy Catalysis, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
| | - C. Daniel Frisbie
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
- Department
of Chemical Engineering and Materials Science, Center for Programmable Energy Catalysis, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
| | - Daniel McDonald
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
- Department
of Chemical Engineering and Materials Science, Center for Programmable Energy Catalysis, University of Minnesota, 421 Washington Ave. SE, Minneapolis 55455, Minnesota, United States
| |
Collapse
|
5
|
Grazioli C, Lanza E, Abate M, Bontempelli G, Dossi N. Lab-on kit: A 3D printed portable device for optical and electrochemical dual-mode detection. Talanta 2024; 275:126185. [PMID: 38705019 DOI: 10.1016/j.talanta.2024.126185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The hyphenation of electrochemical methods and optical methods in a single portable device is expected to be a challenging combination to enhance the information which can be gained on complex chemical systems. In this paper, a low-cost spectrophotometric device based on low-cost electronics integrated with an electroanalytical cell equipped with a screen printed electrode (SPE) and assembled exploiting a DIY approach, is presented. This easy to use device allowed spectrophotometric and electroanalytical measurements to be performed simultaneously providing simultaneous information and enabling concomitant comparison and autovalidation of the results collected. The analytical robustness and precision of the proposed system was successfully tested on solutions containing mixtures of Patent Blue (E-131) and Brilliant Blue (Erioglaucine E-133), two food dyes displaying optical and redox properties very similar to each other.
Collapse
Affiliation(s)
- Cristian Grazioli
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Elisa Lanza
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Michele Abate
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Gino Bontempelli
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Nicolò Dossi
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy.
| |
Collapse
|
6
|
Vamos I, Kertesz V. HunStat - a simple and low-cost potentiostat for analytical and educational purposes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4198-4204. [PMID: 38860466 DOI: 10.1039/d4ay00791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We have developed a truly low-cost (15 USD), simple do-it-yourself (DIY) potentiostat with compact dimensions. The output potential range of this device is between ±1.65 V. The developed instrument takes advantage of a Seeeduino XIAO microcontroller equipped with 10 bit digital-to-analog (D/A) and 12 bit analog-to-digital (A/D) converters and supports various voltammetry techniques, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). Interested users are provided with circuit diagrams, bill of materials, and design files. Additionally, software components are also provided free of charge, including an Arduino sketch and control software. The software enables easy manipulation of electrochemical parameters and visualization of results. The presented design introduces a simple and low-cost DIY potentiostat recommended for both analytical and educational purposes.
Collapse
Affiliation(s)
- Istvan Vamos
- Lajos Petrik Vocational Chemistry School, Budapest, Hungary
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, USA.
| |
Collapse
|
7
|
Lagnika L, Avosse SI, Bouraima FO, Sindedji CB, Dakle M, Gueret R, Fort L, Gimbert Y, Napporn TW, Zigah D, Aubouy A, Maisonhaute E. Voltammetric techniques for low-cost on-site routine analysis of thymol in the medicinal plant Ocimum gratissimum. Talanta 2024; 269:125411. [PMID: 38008023 DOI: 10.1016/j.talanta.2023.125411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
The composition of essential oils varies according to culture conditions and climate, which induces a need for simple and inexpensive characterization methods close to the place of extraction. This appears particularly important for developing countries. Herein, we develop an analytical strategy to determine the thymol content in Ocimum Gratissimum, a medicinal plant from Benin. The protocol is based on electrochemical techniques (cyclic and square wave voltammetry) implemented with a low cost potentiostat. Thymol is a phenol derivative and was directly oxidized at the electrode surface. We had to resort to submillimolar concentrations (25-300 μM) in order to minimize production of phenol oligomers that passivate the electrode. We worked first on two essential oils and realized that in one of them the thymol concentration was below our detection method. These results were confirmed by gas chromatography - mass spectrometry. Furthermore, we optimized the detection protocol to analyze an infusion made directly from the leaves of the plant. Finally, we studied whether the cost of the electrochemical cell may also be minimized by using pencil lead as working and counter electrodes.
Collapse
Affiliation(s)
- Latifou Lagnika
- Laboratoire de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin.
| | - Solange Imelda Avosse
- Laboratoire de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Faridath Oyélékan Bouraima
- Laboratoire de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Candide Bidossessi Sindedji
- Laboratoire de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Mathieu Dakle
- Laboratoire de Biochimie et Substances Naturelles Bioactives, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Rodolphe Gueret
- Département de Chimie Moléculaire - DCM UMR 5250, CNRS/Université Grenoble Alpes, UGA, 38000 Grenoble, France
| | - Laure Fort
- Département de Chimie Moléculaire - DCM UMR 5250, CNRS/Université Grenoble Alpes, UGA, 38000 Grenoble, France
| | - Yves Gimbert
- Département de Chimie Moléculaire - DCM UMR 5250, CNRS/Université Grenoble Alpes, UGA, 38000 Grenoble, France; Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, F-75252, Paris, Cedex5, France
| | - Teko W Napporn
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073, Poitiers, France
| | - Dodzi Zigah
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073, Poitiers, France
| | - Agnès Aubouy
- UMR152 PHARMADEV, Toulouse University, IRD, UPS, France; Institut de Recherche Clinique du Bénin (IRCB), Abomey Calavi, Benin.
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 Place Jussieu, F-75252, Paris, Cedex5, France.
| |
Collapse
|
8
|
Ibrahim NFA, Noor AM, Sabani N, Zakaria Z, Wahab AA, Manaf AA, Johari S. We-VoltamoStat: A wearable potentiostat for voltammetry analysis with a smartphone interface. HARDWAREX 2023; 15:e00441. [PMID: 37396412 PMCID: PMC10314292 DOI: 10.1016/j.ohx.2023.e00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Wearable technology, such as electronic components integrated into clothing or worn as accessories, is becoming increasingly prevalent in fields like healthcare and biomedical monitoring. These devices allow for continuous monitoring of important biomarkers for medical diagnosis, monitoring of physiological health, and evaluation. However, an open-source wearable potentiostat is a relatively new technology that still faces several design limitations such as short battery lifetime, bulky size, heavy weight, and the requirement for a wire for data transmission, which affects comfortability during long periods of measurement. In this work, an open-source wearable potentiostat device named We-VoltamoStat is developed to allow interested parties to use and modify the device for creating new products, research, and teaching purposes. The proposed device includes improved and added features, such as wireless real-time signal monitoring and data collection. It also has an ultra-low power consumption battery estimated to deliver 15 mA during operating mode for 33 h and 20 min and 5 mA during standby mode for 100 h without recharging. Its convenience for wearable applications, tough design, and compact size of 67x54x38 mm make it suitable for wearable applications. Cost-effectiveness is another advantage, with a price less than 120 USD. Validation performance tests indicate that the device has good accuracy, with an R2 value of 0.99 for linear regression of test accuracy on milli-, micro-, and nano-Ampere detection. In the future, it is recommended to improve the design and add more features to the device, including new applications for wearable potentiostats.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology (MicTEC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology (MicTEC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center (SERC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor, Bahru 81310, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology (MicTEC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
9
|
Snizhko D, Zholudov Y, Kukoba A, Xu G. Potentiostat design keys for analytical applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Liu MM, Zhang FF, Liu H, Wu MJ, Liu ZJ, Huang PF. Cell viability and drug evaluation biosensing system based on disposable AuNPs/MWCNT nanocomposite modified screen-printed electrode for exocytosis dopamine detection. Talanta 2023; 254:124118. [PMID: 36470018 DOI: 10.1016/j.talanta.2022.124118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Cell viability, as an important index to evaluate drug effects, usually was measured by tetrazolium colorimetric assay, playing a key role in drug development and drug screening. Tedious operating procedures, unsatisfactory sensitivity and abominable environments perplex researchers to acquire more detailed in vivo-relevant biological information. Herein, a simple and low-cost cell viability and drug evaluation biosensing system-based on multiwalled carbon nanotubes, gold nanoparticles and Nafion modified screen-printed electrode (SPE) biosensor was constructed for detection of dopamine (DA) released from living cells to evaluate cytotoxicity of antineoplastic drugs such as cisplatin and resveratrol. The biosensing system was demonstrated to display exceptional selectivity, excellent flexibility and good stability toward DA measurement in complex bio-samples. Additionally, the satisfactory recoveries of DA in real samples revealed the reliability and accuracy of the biosensing system in practical application. The IC50 curves respectively obtained by the biosensing system and tetrazolium colorimetric assay provided similar IC50 value but distinctly different dose-effect relationship, which confirmed the enormous potential of the biosensor in cell viability and described drug efficacy profiles in cell function. In short, the cell viability and drug evaluation system using SPE biosensor paves a new way in drug screening and pharmaceutical application to measure bioactive molecule such as DA.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Feng-Feng Zhang
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Mei-Juan Wu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhou-Jie Liu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Pin-Fang Huang
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
11
|
Grazioli C, Dossi N, Cesaro F, Svigelj R, Toniolo R, Bontempelli G. A 3D printed Do-It-Yourself miniaturized device with a sensor responsive at six different wavelengths for reflectance measurements on paper-based supports. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|