1
|
Kitawi R, Ledger S, Kelleher AD, Ahlenstiel CL. Advances in HIV Gene Therapy. Int J Mol Sci 2024; 25:2771. [PMID: 38474018 DOI: 10.3390/ijms25052771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Early gene therapy studies held great promise for the cure of heritable diseases, but the occurrence of various genotoxic events led to a pause in clinical trials and a more guarded approach to progress. Recent advances in genetic engineering technologies have reignited interest, leading to the approval of the first gene therapy product targeting genetic mutations in 2017. Gene therapy (GT) can be delivered either in vivo or ex vivo. An ex vivo approach to gene therapy is advantageous, as it allows for the characterization of the gene-modified cells and the selection of desired properties before patient administration. Autologous cells can also be used during this process which eliminates the possibility of immune rejection. This review highlights the various stages of ex vivo gene therapy, current research developments that have increased the efficiency and safety of this process, and a comprehensive summary of Human Immunodeficiency Virus (HIV) gene therapy studies, the majority of which have employed the ex vivo approach.
Collapse
Affiliation(s)
- Rose Kitawi
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chantelle L Ahlenstiel
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
2
|
Poletti V, Montepeloso A, Pellin D, Biffi A. Prostaglandin E2 as transduction enhancer affects competitive engraftment of human hematopoietic stem and progenitor cells. Mol Ther Methods Clin Dev 2023; 31:101131. [PMID: 37920236 PMCID: PMC10618226 DOI: 10.1016/j.omtm.2023.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Ex vivo gene therapy (GT) is a promising treatment for inherited genetic diseases. An ideal transduction protocol should determine high gene marking in long-term self-renewing hematopoietic stem cells (HSCs), preserving their repopulation potential during in vitro manipulation. In the context of the improvement of a clinically applicable transduction protocol, we tested prostaglandin E2 (PGE2) as a transduction enhancer (TE). The addition of PGE2 shortly before transduction of human CD34+ cells determined a significant transduction increase in the in vitro cell progeny paralleled by a significant reduction of their clonogenic potential. This effect increased with the duration of PGE2 exposure and correlated with an increase of CXCR4 expression. Blockage of CXCR4 with AMD3100 (plerixafor, Mozobil) did not affect transduction efficiency but partially rescued CD34+ clonogenic impairment in vitro. Once transplanted in vivo in a competitive repopulation assay, human CD34+ cells transduced with PGE2 contributed significantly less than cells transduced with a standard protocol to the repopulation of recipient mice, indicating a relative repopulation disadvantage of the PGE2-treated CD34+ cells and a counter-selection for the PGE2-treated cell progeny in vivo. In conclusion, our data indicate the need for risk/benefit evaluations in the use of PGE2 as a TE for clinical protocols of GT.
Collapse
Affiliation(s)
- Valentina Poletti
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Woman’s and Child Health Department, University of Padova, 35128 Padova, Italy
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
- Pediatric Research Institute Città Della Speranza, 35127 Padova, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Danilo Pellin
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Woman’s and Child Health Department, University of Padova, 35128 Padova, Italy
- Gene Therapy Program, Boston Children’s Dana-Farber Cancer and Blood Disorder Center, Boston, MA 02115, USA
- Pediatric Research Institute Città Della Speranza, 35127 Padova, Italy
| |
Collapse
|
3
|
Malach P, Kay C, Tinworth C, Patel F, Joosse B, Wade J, Rosa do Carmo M, Donovan B, Brugman M, Montiel-Equihua C, Francis N. Identification of a small molecule for enhancing lentiviral transduction of T cells. Mol Ther Methods Clin Dev 2023; 31:101113. [PMID: 37790244 PMCID: PMC10544093 DOI: 10.1016/j.omtm.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Genetic modification of cells using viral vectors has shown huge therapeutic benefit in multiple diseases. However, inefficient transduction contributes to the high cost of these therapies. Several transduction-enhancing small molecules have previously been identified; however, some may be toxic to the cells or patient, otherwise alter cellular characteristics, or further increase manufacturing complexity. In this study, we aimed to identify molecules capable of enhancing lentiviral transduction of T cells from available small-molecule libraries. We conducted a high-throughput flow-cytometry-based screen of 27,892 compounds, which subsequently was narrowed down to six transduction-enhancing small molecules for further testing with two therapeutic lentiviral vectors used to manufacture GSK's clinical T cell therapy products. We demonstrate enhanced transduction without a negative impact on other product attributes. Furthermore, we present results of transcriptomic analysis, suggesting alteration of ribosome biogenesis, resulting in reduced interferon response, as a potential mechanism of action for the transduction-enhancing activity of the lead compound. Finally, we demonstrate the ability of the lead transduction enhancer to produce a comparable T cell product using a 3-fold reduction in vector volume in our clinical manufacturing process, resulting in a predicted 15% reduction in the overall cost of goods.
Collapse
Affiliation(s)
- Paulina Malach
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Charlotte Kay
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Chris Tinworth
- Medicinal Chemistry, Medicine Design, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Florence Patel
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Bryan Joosse
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Jennifer Wade
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Marlene Rosa do Carmo
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Brian Donovan
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Martijn Brugman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Claudia Montiel-Equihua
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Natalie Francis
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
4
|
Ahmadi SE, Shabestari RM, kojabad AA, Safa M. A straightforward microfluidic-based approach toward optimizing transduction efficiency of HIV-1-derived lentiviral vectors in BCP-ALL cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00792. [PMID: 36950261 PMCID: PMC10025989 DOI: 10.1016/j.btre.2023.e00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Background HIV-1-derived lentiviral vectors (LVs) are capable of transducing human cells by integrating the transgene into the host genome. In order to do that, LVs should have enough time and space to interact with the surface of the target cells. Herein, we used a microfluidic system to facilitate the transduction of BCP-ALL cells. Methods and Results We used a SU-8 mold to fabricate a PDMS microfluidic chip containing three channels with a 50 μm height and a surface matching 96-well plates. In order to produce LVs, we used HEK293T cells to package the second generation of LVs. First, we evaluated the cell recovery from the microfluidic chip. Cell recovery assessment showcased that 3 h and 6 h of incubation in microfluidic channels containing 100,000 NALM-6 (BCP-ALL) cells with 2μL of culture media yielded 87±7.2% and 80.6 ± 10% of cell recovery, respectively. Afterward, the effects of LV-induced toxicity were evaluated using 10-30% LV concentrations in time frames ranging from 3 h to 24 h. In 96-well plates, it took 12-24 h for the viruses with 20% and 30% concentrations to affect the cell survival significantly. These effects were intensified in the microfluidic system implying that microfluidic is capable of enhancing LV transduction. Based on the evidence of cell recovery and cell survival we chose 6 h of incubation with 20% LV. Conclusion The results from EGFP expression showcased that a microfluidic system could increase the LV transduction in BCP-ALL cells by almost 9-folds. All in all, the microfluidic system seems to be a great armamentarium in optimizing LV-based transduction.
Collapse
|
5
|
Choi NR, Kim JN, Kim BJ. Trypsin Depolarizes Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal. APPLIED SCIENCES 2022; 12:4755. [DOI: 10.3390/app12094755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interstitial cells of Cajal (ICCs) generate pacemaker potentials in the gastrointestinal (GI) tract. In this study, the effects of trypsin on pacemaker potentials in murine small intestinal ICCs were examined. We used whole-cell patch-clamp analysis. The results of whole-cell patch-clamp analysis revealed that trypsin dose-dependently depolarized pacemaker potentials and decreased their amplitude. Treatments with the antagonists of neurokinin1 (NK1) and NK2 receptors (SR-140333 and SR-48968, respectively) slightly inhibited the trypsin-induced responses. However, treatment with the combination of SR-140333 and SR-48968 completely inhibited trypsin-induced responses. Trypsin slightly depolarized pacemaker potentials and increased their amplitude after the intracellular application of GDP-β-S. Additionally, incubation in external Ca2+-free solution inhibited trypsin-induced responses. In the presence of U-73122, staurosporine, Go6976, or xestospongin C, trypsin did not depolarize the pacemaker’s potentials. However, trypsin depolarized the pacemaker potentials in the presence of rottlerin. Finally, HC067047, a TRPV4 inhibitor, did not affect the trypsin-induced responses. These results suggest that trypsin depolarized pacemaker potentials through NK1 and NK2 receptors in the murine small intestinal ICCs, with this effect being dependent on the G protein, phospholipase C, protein kinase C, inositol triphosphate pathways, and extracellular Ca2+ but being independent of the TRPV4 pathway. Hence, trypsin-mediated GI motility regulation must be considered for prokinetic drug developments.
Collapse
Affiliation(s)
- Na Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
6
|
Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, Vakulskas CA, Frock RL, Kenrick J, Lee C, Talbott N, Skowronski J, Cromer MK, Charlesworth CT, Bak RO, Mantri S, Bao G, DiGiusto D, Tisdale J, Wright JF, Bhatia N, Roncarolo MG, Dever DP, Porteus MH. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 2021; 13:13/598/eabf2444. [PMID: 34135108 DOI: 10.1126/scitranslmed.abf2444] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.
Collapse
Affiliation(s)
- Annalisa Lattanzi
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Premanjali Lahiri
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Helen Segal
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Waracharee Srifa
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Richard L Frock
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Josefin Kenrick
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Narae Talbott
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Jason Skowronski
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77006, USA
| | - David DiGiusto
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - John Tisdale
- Molecular and Clinical Hematology Branch, NHLBI, Bethesda, MD 20814, USA
| | - J Fraser Wright
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Neehar Bhatia
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA.,Deceased
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA. .,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Sagoo P, Gaspar HB. The transformative potential of HSC gene therapy as a genetic medicine. Gene Ther 2021; 30:197-215. [PMID: 34040164 DOI: 10.1038/s41434-021-00261-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) are precursor cells that give rise to blood, immune and tissue-resident progeny in humans. Their position at the starting point of hematopoiesis offers a unique therapeutic opportunity to treat certain hematologic diseases by implementing corrective changes that are subsequently directed through to multiple cell lineages. Attempts to exploit HSCs clinically have evolved over recent decades, from initial approaches that focused on transplantation of healthy donor allogeneic HSCs to treat rare inherited monogenic hematologic disorders, to more contemporary genetic modification of autologous HSCs offering the promise of benefits to a wider range of diseases. We are on the cusp of an exciting new era as the transformative potential of HSC gene therapy to offer durable delivery of gene-corrected cells to a range of tissues and organs, including the central nervous system, is beginning to be realized. This article reviews the rationale for targeting HSCs, the approaches that have been used to date for delivering therapeutic genes to these cells, and the latest technological breakthroughs in manufacturing and vector design. The challenges faced by the biotechnology cell and gene therapy sector in the commercialization of HSC gene therapy are also discussed.
Collapse
|
8
|
Preclinical Development of Autologous Hematopoietic Stem Cell-Based Gene Therapy for Immune Deficiencies: A Journey from Mouse Cage to Bed Side. Pharmaceutics 2020; 12:pharmaceutics12060549. [PMID: 32545727 PMCID: PMC7357087 DOI: 10.3390/pharmaceutics12060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).
Collapse
|
9
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
10
|
Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes. Blood 2020; 134:1298-1311. [PMID: 31416800 DOI: 10.1182/blood.2019000040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.
Collapse
|
11
|
Radek C, Bernadin O, Drechsel K, Cordes N, Pfeifer R, Sträßer P, Mormin M, Gutierrez-Guerrero A, Cosset FL, Kaiser AD, Schaser T, Galy A, Verhoeyen E, Johnston IC. Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Hum Gene Ther 2019; 30:1477-1493. [PMID: 31578886 PMCID: PMC6919281 DOI: 10.1089/hum.2019.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/21/2019] [Indexed: 01/07/2023] Open
Abstract
Cell and gene therapies are finally becoming viable patient treatment options, with both T cell- and hematopoietic stem cell (HSC)-based therapies being approved to market in Europe. However, these therapies, which involve the use of viral vector to modify the target cells, are expensive and there is an urgent need to reduce manufacturing costs. One major cost factor is the viral vector production itself, therefore improving the gene modification efficiency could significantly reduce the amount of vector required per patient. This study describes the use of a transduction enhancing peptide, Vectofusin-1®, to improve the transduction efficiency of primary target cells using lentiviral and gammaretroviral vectors (LV and RV) pseudotyped with a variety of envelope proteins. Using Vectofusin-1 in combination with LV pseudotyped with viral glycoproteins derived from baboon endogenous retrovirus, feline endogenous virus (RD114), and measles virus (MV), a strongly improved transduction of HSCs, B cells and T cells, even when cultivated under low stimulation conditions, could be observed. The formation of Vectofusin-1 complexes with MV-LV retargeted to CD20 did not alter the selectivity in mixed cell culture populations, emphasizing the precision of this targeting technology. Functional, ErbB2-specific chimeric antigen receptor-expressing T cells could be generated using a gibbon ape leukemia virus (GALV)-pseudotyped RV. Using a variety of viral vectors and target cells, Vectofusin-1 performed in a comparable manner to the traditionally used surface-bound recombinant fibronectin. As Vectofusin-1 is a soluble peptide, it was possible to easily transfer the T cell transduction method to an automated closed manufacturing platform, where proof of concept studies demonstrated efficient genetic modification of T cells with GALV-RV and RD114-RV and the subsequent expansion of mainly central memory T cells to a clinically relevant dose.
Collapse
Affiliation(s)
| | - Ornellie Bernadin
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Nicole Cordes
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pia Sträßer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Mirella Mormin
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Alejandra Gutierrez-Guerrero
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - François-loïc Cosset
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Galy
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Els Verhoeyen
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | |
Collapse
|
12
|
Kohn DB. Gene therapy for blood diseases. Curr Opin Biotechnol 2019; 60:39-45. [DOI: 10.1016/j.copbio.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022]
|
13
|
Schott JW, León-Rico D, Ferreira CB, Buckland KF, Santilli G, Armant MA, Schambach A, Cavazza A, Thrasher AJ. Enhancing Lentiviral and Alpharetroviral Transduction of Human Hematopoietic Stem Cells for Clinical Application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:134-147. [PMID: 31338385 PMCID: PMC6629974 DOI: 10.1016/j.omtm.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023]
Abstract
Ex vivo retroviral gene transfer into CD34+ hematopoietic stem and progenitor cells (HSPCs) has demonstrated remarkable clinical success in gene therapy for monogenic hematopoietic disorders. However, little attention has been paid to enhancement of culture and transduction conditions to achieve reliable effects across patient and disease contexts and to maximize potential vector usage and reduce treatment cost. We systematically tested three HSPC culture media manufactured to cGMP and eight previously described transduction enhancers (TEs) to develop a state-of-the-art clinically applicable protocol. Six TEs enhanced lentiviral (LV) and five TEs facilitated alpharetroviral (ARV) CD34+ HSPC transduction when used alone. Combinatorial TE application tested with LV vectors yielded more potent effects, with up to a 5.6-fold increase in total expression of a reporter gene and up to a 3.8-fold increase in VCN. Application of one of the most promising combinations, the poloxamer LentiBOOST and protamine sulfate, for GMP-compliant manufacturing of a clinical-grade advanced therapy medicinal product (ATMP) increased total VCN by over 6-fold, with no major changes in global gene expression profiles or inadvertent loss of CD34+CD90+ HSPC populations. Application of these defined culture and transduction conditions is likely to significantly improve ex vivo gene therapy manufacturing protocols for HSPCs and downstream clinical efficacy.
Collapse
Affiliation(s)
- Juliane W Schott
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Diego León-Rico
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Carolina B Ferreira
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Karen F Buckland
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Myriam A Armant
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Axel Schambach
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.,Great Ormond Street Hospital NHS Foundation Trust, London WC1N 1EH, UK
| |
Collapse
|
14
|
Masiuk KE, Zhang R, Osborne K, Hollis RP, Campo-Fernandez B, Kohn DB. PGE2 and Poloxamer Synperonic F108 Enhance Transduction of Human HSPCs with a β-Globin Lentiviral Vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:390-398. [PMID: 31024981 PMCID: PMC6477655 DOI: 10.1016/j.omtm.2019.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022]
Abstract
Lentiviral vector (LV)-based hematopoietic stem and progenitor cell (HSPC) gene therapy is becoming a promising alternative to allogeneic stem cell transplantation for curing genetic diseases. Clinical trials are currently underway to treat sickle cell disease using LVs expressing designed anti-sickling globin genes. However, because of the large size and complexity of the human β-globin gene, LV products often have low titers and transduction efficiency, requiring large amounts to treat a single patient. Furthermore, transduction of patient HSPCs often fails to achieve a sufficiently high vector copy number (VCN) and transgene expression for clinical benefit. We therefore investigated the combination of two compounds (PGE2 and poloxamer synperonic F108) to enhance transduction of HSPCs with a clinical-scale preparation of Lenti/G-AS3-FB. Here, we found that transduction enhancers increased the in vitro VCN of bulk myeloid cultures ∼10-fold while using a 10-fold lower LV dose. This was accompanied by an increased percentage of transduced colony-forming units. Importantly, analysis of immune-deficient NSG xenografts revealed that the combination of PGE2/synperonic F108 increased LV gene transfer in a primitive HSC population, with no effects on lineage distribution or engraftment. The use of transduction enhancers may greatly improve efficacy for LV-based HSPC gene therapy.
Collapse
Affiliation(s)
- Katelyn E Masiuk
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruixue Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kyle Osborne
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Petrillo C, Thorne LG, Unali G, Schiroli G, Giordano AMS, Piras F, Cuccovillo I, Petit SJ, Ahsan F, Noursadeghi M, Clare S, Genovese P, Gentner B, Naldini L, Towers GJ, Kajaste-Rudnitski A. Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell 2018; 23:820-832.e9. [PMID: 30416070 PMCID: PMC6292841 DOI: 10.1016/j.stem.2018.10.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/09/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
Abstract
Innate immune factors may restrict hematopoietic stem cell (HSC) genetic engineering and contribute to broad individual variability in gene therapy outcomes. Here, we show that HSCs harbor an early, constitutively active innate immune block to lentiviral transduction that can be efficiently overcome by cyclosporine H (CsH). CsH potently enhances gene transfer and editing in human long-term repopulating HSCs by inhibiting interferon-induced transmembrane protein 3 (IFITM3), which potently restricts VSV glycoprotein-mediated vector entry. Importantly, individual variability in endogenous IFITM3 levels correlated with permissiveness of HSCs to lentiviral transduction, suggesting that CsH treatment will be useful for improving ex vivo gene therapy and standardizing HSC transduction across patients. Overall, our work unravels the involvement of innate pathogen recognition molecules in immune blocks to gene correction in primary human HSCs and highlights how these roadblocks can be overcome to develop innovative cell and gene therapies.
Collapse
Affiliation(s)
- Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Giulia Unali
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Giulia Schiroli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Anna M S Giordano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Sarah J Petit
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Fatima Ahsan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy.
| |
Collapse
|