1
|
Abdellatif A, Bou Jaoudeh M, Zwiers A, Breda G. Advancing Potency Assay Development for Advanced Therapy Medicinal Products: A Comprehensive Approach and Regulatory Insights. Hum Gene Ther 2025. [PMID: 40257954 DOI: 10.1089/hum.2024.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
The development of potency assays for Advanced Therapy Medicinal Products (ATMPs) presents significant challenges due to the variability of starting materials and the complex mechanisms of action involved. This article aims to address the following key question: How can we design robust and reliable potency assays for ATMPs that accommodate product-specific challenges and align with evolving regulatory standards? To answer this, we employed a mixed-methods approach, synthesizing data from scientific literature, industry reports, and regulatory guidelines to identify current limitations and innovative solutions for potency assay development. Our methodology integrates a systematic review of academic publications (2018-2024) to capture recent advancements in biotechnology and their applicability to potency testing. We complemented this with an analysis of industry perspectives, drawn from webinars and white papers, as well as a detailed comparison of global regulatory frameworks, including the FDA's new guidance on potency assurance for Cellular and Gene Therapy Products (CGTs/ATMPs). Additionally, we developed a comprehensive database to analyze potency assays used in approved, rejected, and withdrawn CGT/ATMP products, focusing on technical and regulatory challenges. Based on this multilevel analysis, we propose a product-specific framework for designing, developing, and validating potency assays for different ATMP categories, taking into account their unique technical and regulatory constraints. We also highlight emerging technologies, such as droplet digital polymerase chain reaction and reporter gene assays, as innovative tools for improving the precision and reliability of potency testing. Our findings underscore the need for flexible, risk-based strategies in potency assay development that evolve throughout product development and clinical trial phases. Future recommendations emphasize assay standardization, the definition of acceptable variability, and stronger correlations between in vitro potency data and clinical outcomes.
Collapse
Affiliation(s)
| | | | - Alex Zwiers
- ProductLife Group, Courbevoie, France
- Zwiers Regulatory Consultancy, Oss, The Netherlands
| | | |
Collapse
|
2
|
Zengel J, Esterman ES, Ponnuswami A, Wall NR, Carette JE. Development of cell lines with increased susceptibility to diverse adeno-associated viral vectors to enable in vitro potency assays. Mol Ther Methods Clin Dev 2025; 33:101416. [PMID: 40008089 PMCID: PMC11851225 DOI: 10.1016/j.omtm.2025.101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Vectors based on adeno-associated viruses (AAVs) are promising therapeutic modalities used in gene therapy. Robust cell-based assays that demonstrate and quantify the potency of AAV vectors in expressing their transgene are needed for clinical development. However, many AAV clinical serotypes poorly transduce cells in vitro and often contain cell-type-specific promoters inactive in commonly used cell lines. Here, we enhance the efficiency of in vitro AAV transduction by overexpressing the AAV receptor (AAVR/KIAA0319L), preventing transcriptional silencing by the HUSH complex, and using CRISPR activation (CRISPRa) to drive transgene expression. For the latter, we utilized guide RNAs targeting the conserved AAV2 inverted terminal repeat (ITR) sequence present in most AAV transfer vectors. Using this strategy, we engineered cell lines that showed marked increases in transduction by AAV vectors across a wide range of clinically relevant serotypes and containing cell-type-specific promoters. These improvements enabled the efficient determination of AAV functional titers (also referred to as transducing titers), which can be used to robustly monitor potency across diverse AAV preparations. The strongly enhanced susceptibility of these cell lines to transduction by a variety of divergent AAV vectors could facilitate the development of standardized in vitro quantitative assays for AAV-based gene therapy products.
Collapse
Affiliation(s)
- James Zengel
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Emma S. Esterman
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Anitha Ponnuswami
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Nicholas R. Wall
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
High KA, Le Blond D, Doucette K, Liu D, Farjo R, Ignatova I, Buchlis G, Chung D, Couto LB. Validation of a quantitative cell-based relative potency assay for LUXTURNA. Mol Ther Methods Clin Dev 2025; 33:101423. [PMID: 40104153 PMCID: PMC11914788 DOI: 10.1016/j.omtm.2025.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/22/2025] [Indexed: 03/20/2025]
Abstract
Voretigene neparvovec-rzyl (Luxturna) is an AAV2 vector (AAV2-hRPE65v2) that expresses a cDNA encoding the human retinal pigment epithelium-specific 65 kDa protein (RPE65). It has been approved for the treatment of visual deficits associated with biallelic mutations in human RPE65 in the US, European Union (EU), and multiple other countries. To achieve regulatory approval, it was necessary to validate an assay demonstrating its biological activity or potency. The assay measures AAV2-hRPE65v2 transduction in HEK293 cells and the subsequent biological activity of the vector-encoded RPE65 protein in cell lysates. RPE65 converts all-trans-retinol to 11-cis-retinol, which is quantified using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The assay was validated for seven characteristics, namely system and sample suitability, specificity, linearity, precision, relative accuracy, range, and robustness. The validated assay can be used to confirm the relative potency levels of different lots of Luxturna in the range of 50%-150% of a reference standard (defined as 100% potent). This represents the first report of validation studies supporting an in vitro cell-based relative potency assay for an AAV vector, which was used to evaluate lot-to-lot consistency, stability, and comparability following manufacturing changes and to successfully launch Luxturna, the first gene therapy approved in the US for a genetic disease.
Collapse
|
4
|
Mata-Molanes JJ, Alserawan L, España C, Guijarro C, López-Pecino A, Calderón H, Altuna A, Pérez-Amill L, Klein-González N, Fernández de Larrea C, González-Navarro EA, Delgado J, Juan M, Castella M. A Quantitative Approach to Potency Testing for Chimeric Antigen Receptor-Encoding Lentiviral Vectors and Autologous CAR-T Cell Products, Using Flow Cytometry. Pharmaceutics 2025; 17:303. [PMID: 40142967 PMCID: PMC11944512 DOI: 10.3390/pharmaceutics17030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Potency testing of clinical-grade lentiviral vectors (LVVs) is critical to support a drug's commercial approval. Careful consideration should be paid to the development of a suitable potency test during the drug's clinical development. We aimed to develop an affordable, quantitative test for our CAR19-LVV, based on a measure of transgene's functional activity. Methods: Several indicators of functional activity of CAR19-LVV were explored in a co-culture setting of CAR-transduced Jurkat cells and CD19-expressing target cells. The selected assay was further developed and subjected to validation. Assay's adaptability to other CAR-encoding LVV and autologous CAR-T cell products was also investigated. Results: Measure of CD69 expression on the membrane of Jurkat-CAR-expressing cells is a specific indicator of CAR functionality. Quantification of CD69 in terms of mean fluorescence intensity (MFI), coupled with an intra-assay standard curve calibration, allows for a quantitative assay with high precision, specificity, robustness, linearity and accuracy. The assay has also shown optimal performance for a CARBCMA-LVV product. Importantly, we show that in primary T cells, CD69 expression reflects CAR-T cell cytotoxicity. After adaptation, we have applied a CD69-based potency test, with simultaneous measurement of CAR-T cell cytotoxicity, to autologous CAR-T cell products, demonstrating the assay's specificity also in this context. Conclusions: We developed a validated, in vitro cell-based potency test, using a quantitative flow-cytometry method, for our CAR19-LVV. The assay is based on the detection of T-cell activation upon CAR binding to antigen, which is a measure of transgene functionality. The assay was easily adapted to another CAR-encoding LVV, targeting a different molecule. Furthermore, the same assay principle can be applied in the context of autologous CAR-T cell products. The quantitative CD69 potency assay shows reduced variability among autologous products compared to the IFNγ assay and allows for simultaneous evaluation of traditional semi-quantitative cytotoxicity, thereby directly evaluating the drug's mechanism of action (MoA) in the same assay.
Collapse
Affiliation(s)
- Juan José Mata-Molanes
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
| | - Leticia Alserawan
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
| | - Carolina España
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
| | - Carla Guijarro
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
| | - Ana López-Pecino
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
- School of Medicine, Universitat de Barcelona (UB), 08036 Barcelona, Spain; (C.F.d.L.); (J.D.)
| | - Hugo Calderón
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
| | - Ane Altuna
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
- School of Medicine, Universitat de Barcelona (UB), 08036 Barcelona, Spain; (C.F.d.L.); (J.D.)
| | - Lorena Pérez-Amill
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
| | - Nela Klein-González
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
| | - Carlos Fernández de Larrea
- School of Medicine, Universitat de Barcelona (UB), 08036 Barcelona, Spain; (C.F.d.L.); (J.D.)
- Department of Hematology, Institute of Cancer and Blood Diseases, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain
- Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
| | - Julio Delgado
- School of Medicine, Universitat de Barcelona (UB), 08036 Barcelona, Spain; (C.F.d.L.); (J.D.)
- Department of Hematology, Institute of Cancer and Blood Diseases, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain
- Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain
| | - Manel Juan
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
- School of Medicine, Universitat de Barcelona (UB), 08036 Barcelona, Spain; (C.F.d.L.); (J.D.)
| | - Maria Castella
- Department of Immunology, CDB, Hospital Clinic de Barcelona (HCB), 08036 Barcelona, Spain; (J.J.M.-M.); (L.A.); (C.E.); (C.G.); (H.C.); (E.A.G.-N.); (M.J.)
- Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses Group, Fundació Clínic-IDIBAPS, 08036 Barcelona, Spain; (A.L.-P.); (A.A.); (L.P.-A.); (N.K.-G.)
| |
Collapse
|
5
|
Yang QE, Lee N, Johnson N, Hong J, Zhao J(Q, Sun X, Zhang J. Quality assessment strategy development and analytical method selection of GMP grade biological drugs for gene and cell therapy. BBA ADVANCES 2025; 7:100151. [PMID: 40094061 PMCID: PMC11909464 DOI: 10.1016/j.bbadva.2025.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/10/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Biological drugs with gene and cell therapy potentials, including natural or rationally created biomacromolecules, recombinant proteins/enzymes, gene-carrying DNA/RNA fragments, oncolytic viruses, plasmid and viral vectors or other gene delivering vehicles with specific therapeutic genes and gene manipulation tools, and genetically modified and reprogrammed human cells comprise a large fraction of drug development candidates in modern precision and regeneration medicine. These drugs have displayed unique capabilities in treating patients with previously incurable diseases. However, most of the drug preparations have complex multimolecular structures and require specific biomanufacturing systems and many other additional biological active materials for drug synthesis, cell expansion, and production enhancement. Thus, the final products would have to be subjected to sequential extensive purification processes to exclude impurities and to concentrate the drug products after manufacturing. The quality evaluation for each drug product is an individualized process and must be specifically designed and performed according to the characteristics of the drug and its manufacturing and purification methods. Some of the Quality Control (QC) assays may be very costly and time-consuming, frequently with inconsistent test results from batch-to-batch. This review focuses on QC assessment strategy development for common gene and cell therapy drugs which use prokaryotic or eukaryotic cells for manufacturing or cell factories for in vitro expansions, especially for drug identification and concentration determination, impurity detection and quantification, drug potency, stability, and safety evaluations; and discusses some key issues for drug quality assessments in different categories and emphasizes the importance of individualized QC strategy design.
Collapse
Affiliation(s)
- Quan-en Yang
- uBriGene Biosciences, Inc., Germantown, MD, USA
- Forecyte Biosciences, Inc., Frederick, MD, USA
| | | | | | | | - Jenny (Qinghua) Zhao
- uBriGene Biosciences, Inc., Germantown, MD, USA
- Forecyte Biosciences, Inc., Frederick, MD, USA
| | - Xiulian Sun
- uBriGene Biosciences, Inc., Germantown, MD, USA
| | | |
Collapse
|
6
|
Lengler J, Gavrila M, Brandis J, Palavra K, Dieringer F, Unterthurner S, Fuchsberger F, Kraus B, Bort JAH. Crucial aspects for maintaining rAAV stability. Sci Rep 2024; 14:27685. [PMID: 39533000 PMCID: PMC11557909 DOI: 10.1038/s41598-024-79369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The storage of rAAV vectors for gene therapy applications is critical for ensuring a constant product quality and defined amount of medication at the time of administration. Therefore, we determined the influence of different storage conditions on the physicochemical and biological properties of rAAV8 and rAAV9 preparations. Particular attention was paid to short-term storage, which plays a crucial role in both the manufacturing process and in clinical applications. Additionally, we addressed the question, of viability of rAAV8 and rAAV9 when subjected to very low-temperature storage conditions (below -65 °C) or lyophilization. To determine the impact on rAAV vectors, various analyses were used, including the quantification of capsid and genome titers, as well as biopotency assessments, which are pivotal determinants in characterizing vector behavior and efficacy. Our data showed that freeze/thaw cycles hardly affected the functionality of rAAV9-aGAL vectors. In contrast, prolonged storage at room temperature for several days, resulted in a discernible decrease in biopotency despite consistent capsid and genome titers. When the storage temperature was further increased, the rAAV8-aGAL decay accelerated. For example, a short-term exposure of + 40 °C and more, led to a reduction in the physical viral titer and to an even faster decline in efficacy determined by biopotency. However, the addition of sucrose and sorbitol to the rAAV9-aGAL and rAAV9-GAA preparations reduced the temperature sensitivity of rAAV and improved its stability. Furthermore, exposure of rAAV9-aGAL to highly acidic conditions (pH 2.5) dramatically reduced its biopotency by 70% or more. Most interestingly, a long-term storage of rAAV9-aGAL and rAAV8-FVIII vectors over 12 and 36 months, respectively, demonstrated exceptional stability at storage temperatures below -65 °C. Also, lyophilization conserved functionality for at least 10 months. Our data showed how to maintain rAAV biopotency levels over the time without substantial loss. Storage at very low temperatures (below -65 °C) preserved its effectiveness over years. Overall, pH and temperature conditions during the manufacturing process, storage and clinical application are worth considering. Consistency in the rAAV capsid titer determination did not necessarily indicate the preservation of biopotency. In conclusion, our approach determined several options for maximizing rAAV stability.
Collapse
Affiliation(s)
- Johannes Lengler
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Mia Gavrila
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Janina Brandis
- Drug Product Development EU, Baxalta Innovations GmbH, a Part of Takeda Companies, Industriestraße 72, 1221, Vienna, Austria
| | - Kristina Palavra
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Felix Dieringer
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Sabine Unterthurner
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Felix Fuchsberger
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Barbara Kraus
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria
| | - Juan A Hernandez Bort
- Gene Therapy Process Development, Baxalta Innovations GmbH, a Part of Takeda Companies, Uferstraße 15, 2304, Orth an Der Donau, Austria.
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, 1100, Vienna, Austria.
| |
Collapse
|
7
|
Yu L, Zhou Y, Wang G, Fu J, Fu Z, Liang C, Wang J. An In Vitro RNA Editing-Based Reporter Assay for Transcriptional Activity of Therapeutic Gene in Gene Therapy Products. Molecules 2024; 29:5312. [PMID: 39598701 PMCID: PMC11596761 DOI: 10.3390/molecules29225312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The expression of therapeutic genes is critical for the efficacy of gene therapy products. However, existing methods such as immunological analysis at the protein level or reverse-transcription PCR at the RNA level are unable to accurately quantify the expression activity of the target gene. Herein, an in vitro RNA editing-based reporter assay was developed to detect specific mRNA. The designed sensor RNA could specifically identify the target mRNA, and the reporter gene was activated in a dose-dependent manner because of RNA editing mediated by endogenous adenosine deaminases acting on RNA. Of note, all sensors that targeted different regions, including the gene of interest, tag sequence, and 3' untranslated region, showed a dose-dependent response pattern. The sensor reporter assay, which was used for quantifying the transcriptional activity of recombinant adeno-associated virus-based gene therapy products, revealed excellent performance in terms of assay specificity, precision (inter-assay relative standard deviation < 15%), accuracy (90-115% recovery), and linearity (R2 > 0.99). The reporter assay could also be employed for other gene therapy vectors, including mRNA and recombinant lentivirus. Thus, a robust and reliable platform was developed for assessing the transcriptional activity of therapeutic genes, thereby offering a powerful tool for the quality control of gene therapy products.
Collapse
Affiliation(s)
- Lei Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China; (L.Y.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing 100050, China; (Y.Z.); (G.W.); (Z.F.)
| | - Yong Zhou
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing 100050, China; (Y.Z.); (G.W.); (Z.F.)
| | - Guangyu Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing 100050, China; (Y.Z.); (G.W.); (Z.F.)
| | - Jianning Fu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China; (L.Y.)
| | - Zhihao Fu
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing 100050, China; (Y.Z.); (G.W.); (Z.F.)
| | - Chenggang Liang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing 100050, China; (Y.Z.); (G.W.); (Z.F.)
| | - Junzhi Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing 100050, China; (Y.Z.); (G.W.); (Z.F.)
| |
Collapse
|
8
|
Pathak S, Singh V, Kumar N, Jayandharan GR. Inducible caspase 9-mediated suicide gene therapy using AAV6 vectors in a murine model of breast cancer. Mol Ther Methods Clin Dev 2023; 31:101166. [PMID: 38149057 PMCID: PMC10750187 DOI: 10.1016/j.omtm.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Breast carcinoma has one of the highest incidence rates (11.7%), with significant clinical heterogeneity. Although conventional chemotherapy and surgical resection are the current standard of care, the resistance and recurrence, after these interventions, necessitate alternate therapeutic approaches. Cancer gene therapy for breast cancer with the suicide gene is an attractive option due to their directed delivery into the tumor. In this study, we have developed a novel treatment strategy against breast cancer with recombinant adeno-associated virus (AAV) serotype 6 vectors carrying a suicide gene, inducible Caspase 9 (iCasp9). Upon treatment with AAV6-iCasp9 vectors and the chemical inducer of dimerizer, AP20187, the viability of murine breast cancer cells (4T1) was significantly reduced to ∼40%-60% (mock control 100%). Following intratumoral delivery of AAV6-iCasp9 vectors in an orthotopic breast cancer mouse model, we observed a significant increase in iCasp9 transgene expression and a significant reduction in tumor growth rate. At the molecular level, immunohistochemical analysis demonstrated subsequent activation of the effector caspase 3 and cellular death. These data highlight the potential of AAV6-iCasp9-based suicide gene therapy for aggressive breast cancer in patients.
Collapse
Affiliation(s)
- Subhajit Pathak
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Vijayata Singh
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Giridhara R. Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
9
|
Geoffroy M, Pili L, Buffa V, Caroff M, Bigot A, Gicquel E, Rouby G, Richard I, Fragnoud R. CRISPR-Cas9 KO Cell Line Generation and Development of a Cell-Based Potency Assay for rAAV-FKRP Gene Therapy. Cells 2023; 12:2444. [PMID: 37887288 PMCID: PMC10604961 DOI: 10.3390/cells12202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Limb-Girdle Muscular Dystrophy R9 (LGMDR9) is a dystroglycanopathy caused by Fukutin-related protein (FKRP) defects leading to the deficiency of α-DG glycosylation, essential to membrane integrity. Recombinant adeno-associated viral vector (rAAV) gene therapy offers great therapeutic promise for such neuromuscular disorders. Pre-clinical studies have paved the way for a phase 1/2 clinical trial aiming to evaluate the safety and efficacy of FKRP gene therapy in LGMDR9 patients. To demonstrate product activity, quality, and consistency throughout product and clinical development, regulatory authorities request several quality controls, including a potency assay aiming to demonstrate and quantify the intended biological effect of the gene therapy product. In the present study, we generated FKRP knock-out (KO) cells fully depleted of α-DG glycosylation using CRISPR-Cas9 to assess the functional activity of a rAAV-FKRP gene therapy. We then developed a high-throughput On-Cell-Western methodology to evaluate the restoration of α-DG glycosylation in KO-FKRP cells and determine the biological activity of the FKRP transgene. The determination of the half maximal effective concentration (EC50) provides a method to compare the rAAV-FKRP batch using a reference standard. The generation of KO-FKRP muscle cells associated with the high-throughput On-Cell-Western technique may serve as a cell-based potency assay to assess rAAV-FKRP gene therapy products.
Collapse
Affiliation(s)
- Marine Geoffroy
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Louna Pili
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Valentina Buffa
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Maëlle Caroff
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Anne Bigot
- Institut de Myologie, Université Pierre et Marie Curie Paris 6, UM76 Univ. Paris 6/U974 UMR7215, CNRS Pitié-Salpétrière-INSERM, UMRS 974, 75000 Paris, France
| | - Evelyne Gicquel
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Grégory Rouby
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Isabelle Richard
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
- Atamyo Therapeutics, 91000 Evry, France
| | - Romain Fragnoud
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| |
Collapse
|
10
|
Grossen P, Skaripa Koukelli I, van Haasteren J, H E Machado A, Dürr C. The ice age - A review on formulation of Adeno-associated virus therapeutics. Eur J Pharm Biopharm 2023; 190:1-23. [PMID: 37423416 DOI: 10.1016/j.ejpb.2023.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Gene therapies offer promising therapeutic alternatives for many disorders that currently lack efficient treatment options. Due to their chemical nature and physico-chemical properties, delivery of polynucleic acids into target cells and subcellular compartments remains a significant challenge. Adeno-associated viruses (AAV) have gained a lot of interest for the efficient delivery of therapeutic single-stranded DNA (ssDNA) genomes over the past decades. More than a hundred products have been tested in clinical settings and three products have received market authorization by the US FDA in recent years. A lot of effort is being made to generate potent recombinant AAV (rAAV) vectors that show favorable safety and immunogenicity profiles for either local or systemic administration. Manufacturing processes are gradually being optimized to deliver a consistently high product quality and to serve potential market needs beyond rare indications. In contrast to protein therapeutics, most rAAV products are still supplied as frozen liquids within rather simple formulation buffers to enable sufficient product shelf life, significantly hampering global distribution and access. In this review, we aim to outline the hurdles of rAAV drug product development and discuss critical formulation and composition aspects of rAAV products under clinical evaluation. Further, we highlight recent development efforts in order to achieve stable liquid or lyophilized products. This review therefore provides a comprehensive overview on current state-of-the-art rAAV formulations and can further serve as a map for rational formulation development activities in the future.
Collapse
Affiliation(s)
- Philip Grossen
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Irini Skaripa Koukelli
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Joost van Haasteren
- F.Hoffmann-La Roche AG, Cell and Gene Therapy Unit, Gene Therapy Development Clinical Manufacturing, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexandra H E Machado
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Dürr
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
11
|
Salmikangas P, Carlsson B, Klumb C, Reimer T, Thirstrup S. Potency testing of cell and gene therapy products. Front Med (Lausanne) 2023; 10:1190016. [PMID: 37215709 PMCID: PMC10196484 DOI: 10.3389/fmed.2023.1190016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Potency is one of the critical quality attributes of biological medicinal products, defining their biological activity. Potency testing is expected to reflect the Mechanism of Action (MoA) of the medicinal product and ideally the results should correlate with the clinical response. Multiple assay formats may be used, both in vitro assays and in vivo models, however, for timely release of the products for clinical studies or for commercial use, quantitative, validated in vitro assays are necessary. Robust potency assays are fundamental also for comparability studies, process validation and for stability testing. Cell and Gene Therapy Products (CGTs, also called Advanced Therapy Medicinal Products, ATMPs) are part of biological medicines, having nucleic acids, viral vectors, viable cells and tissues as starting material. For such complex products potency testing is often challenging and may require a combination of methods to address multiple functional mechanisms of the product. For cells, viability and cell phenotype are important attributes but alone will not be sufficient to address potency. Furthermore, if the cells are transduced with a viral vector, potency probably is related to the expression of the transgene but will also be dependent on the target cells and transduction efficiency/copy number of the transgene in the cells. Genome Editing (GE) together with other cell manipulations can result into multiple changes in the characteristics and activity of the cells, which should be all somehow captured by the potency testing. Non-clinical studies/models may provide valuable support for potency testing, especially for comparability testing. However, sometimes lack of suitable potency data may lead to situations where bridging clinical efficacy data are required to solve the problems of the potency testing, for example where comparability of different clinical batches is unclear. In this article the challenges of potency testing are discussed together with examples of assays used for different CGTs/ATMPs and the available guidance addressing differences between the European Union and the United States.
Collapse
|
12
|
Overview of analytics needed to support a robust gene therapy manufacturing process. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Green EA, Lee KH. Analytical methods to characterize recombinant adeno-associated virus vectors and the benefit of standardization and reference materials. Curr Opin Biotechnol 2021; 71:65-76. [PMID: 34273809 PMCID: PMC8530916 DOI: 10.1016/j.copbio.2021.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated virus (rAAV) is an increasingly important gene therapy vector, but its properties present unique challenges to critical quality attribute (CQA) identification and analytics development. Advances in, and ongoing hurdles to, characterizing rAAV proteins, nucleic acids, and vector potency are discussed in this review. For nucleic acids and vector potency, current analytical techniques for defined CQAs would benefit from further optimization, while for proteins, more complete characterization and mapping of properties to safety and efficacy is needed to finalize CQAs. The benefits of leveraging reference vectors to validate analytics and CQA ranges are also proposed. Once defined, CQA specifications can be used to establish target parameters for and inform the development of next generation rAAV processes.
Collapse
Affiliation(s)
- Erica A Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
14
|
Meade O, Clark J, McCutchen M, Kerwin J. Exploring the design space of AAV transient-transfection in suspension cell lines. Methods Enzymol 2021; 660:341-360. [PMID: 34742397 DOI: 10.1016/bs.mie.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The safety and utility of adeno-associated virus (AAV) to modulate target gene expression has been well demonstrated, and AAV vectors are a leading gene therapy platform. However, manufacturing presents challenges in terms of productivity and scalability as compared to incumbent therapeutic modalities. In particular, a pivot from adherent cell- to suspension culture-based AAV manufacturing processes requires enhanced study of the transfection step. For the method proposed herein, a Response Surface Design of Experiments is suggested to explore the role of five transfection factors-cell density at transfection, DNA concentration, ratio of complexing reagent to DNA, and molar ratios of the transfecting plasmids-influencing viral genome titer and biological potency. Additionally, an AAV categorical factor matrix is presented for developing a workflow to interrogate the impact of AAV permutations for different capsid serotypes, harbored genes of interest, and inverted terminal repeat configurations on transfection process parameters.
Collapse
Affiliation(s)
- Oliver Meade
- Gene Therapy Process Development, Resilience, Boston, MA, United States
| | - Jeffrey Clark
- Gene Therapy Process Development, Resilience, Boston, MA, United States
| | - Michael McCutchen
- Gene Therapy Process Development, Resilience, Boston, MA, United States
| | - John Kerwin
- Gene Therapy Process Development, Resilience, Boston, MA, United States.
| |
Collapse
|
15
|
Shi X, Bortolussi G, Bloemendaal LT, Duijst S, Muro AF, Bosma PJ. Low efficacy of recombinant SV40 in Ugt1a1-/- mice with severe inherited hyperbilirubinemia. PLoS One 2021; 16:e0250605. [PMID: 33891666 PMCID: PMC8064607 DOI: 10.1371/journal.pone.0250605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/10/2021] [Indexed: 11/25/2022] Open
Abstract
In contrast to AAV, Simian Virus 40 (rSV40) not inducing neutralizing antibodies (NAbs) allowing re-treatment seems a promising vector for neonatal treatment of inherited liver disorders. Several studies have reported efficacy of rSV40 in animal models for inherited liver diseases. In all studies the ubiquitous endogenous early promoter controlled transgene expression establishing expression in all transduced tissues. Restricting this expression to the target tissues reduces the risk of immune response to the therapeutic gene. In this study a liver specific rSV40 vector was generated by inserting a hepatocyte specific promoter. This increased the specificity of the expression of hUGT1A1 in vitro. However, in vivo the efficacy of rSV40 appeared too low to demonstrate tissue specificity while increasing the vector dose was not possible because of toxicity. In contrast to earlier studies, neutralizing antibodies were induced. Overall, the lack of a platform to produce high titered and pure rSV40 particles and the induction of NAbs, renders it a poor candidate for in vivo gene therapy.
Collapse
Affiliation(s)
- Xiaoxia Shi
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, AGEM, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lysbeth ten Bloemendaal
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Piter J. Bosma
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|