1
|
Arends T, Hamm DC, van der Maarel S, Tapscott SJ. Facioscapulohumeral Dystrophy: Molecular Basis and Therapeutic Opportunities. Cold Spring Harb Perspect Biol 2025; 17:a041492. [PMID: 39009417 PMCID: PMC11733064 DOI: 10.1101/cshperspect.a041492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Facioscapulohumeral dystrophy (FSHD) is caused by misexpression of the early embryonic transcription factor Double Homeobox Protein 4 (DUX4) in skeletal muscle. DUX4 is normally expressed at the 4-cell stage of the human embryo and initiates a portion of the first wave of embryonic gene expression that establishes the totipotent cells of the embryo. Following brief expression, the DUX4 locus is suppressed by epigenetic silencing and remains silenced in nearly all somatic cells. Mutations that cause FSHD decrease the efficiency of epigenetic silencing of the DUX4 locus and result in aberrant expression of this transcription factor in skeletal muscles. DUX4 expression in these skeletal muscles reactivates part of the early totipotent program and suppresses the muscle program-resulting in a progressive muscular dystrophy that affects some muscles earlier than others. These advances in understanding the cause of FSHD have led to multiple therapeutic strategies that are now entering clinical trials.
Collapse
Affiliation(s)
- Tessa Arends
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Danielle C Hamm
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Silvère van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
2
|
Rashnonejad A, Farea M, Amini-Chermahini G, Coulis G, Taylor N, Fowler A, Villalta A, King OD, Harper SQ. Sustained efficacy of CRISPR-Cas13b gene therapy for FSHD is challenged by immune response to Cas13b. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629250. [PMID: 39829765 PMCID: PMC11741234 DOI: 10.1101/2024.12.18.629250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating muscle disease caused by de-repression of the toxic DUX4 gene in skeletal muscle. FSHD patients may benefit from DUX4 inhibition therapies, and although several experimental strategies to reduce DUX4 levels in skeletal muscle are being developed, no approved disease modifying therapies currently exist. We developed a CRISPR-Cas13b system that cleaves DUX4 mRNA and reduces DUX4 protein level, protects cells from DUX4-mediated death, and reduces FSHD-associated biomarkers in vitro . In vivo delivery of the CRISPR-Cas13b system with adeno-associated viral vectors reduced acute damage caused by high DUX4 levels in a mouse model of severe FSHD. However, protection was not sustained over time, with decreases in Cas13b and guide RNA levels between 8 weeks and 6 months after injection. In addition, wild-type mice injected with AAV6.Cas13b showed muscle inflammation with infiltrates containing Cas13b-responsive CD8+ cytotoxic T cells. Our RNA-seq data confirmed that several immune response pathways were significantly increased in human FSHD myoblasts transfected with Cas13b. Overall, our findings suggest that CRISPR-Cas13b is highly effective for DUX4 silencing but successful implementation of CRISPR/Cas13-based gene therapies may require strategies to mitigate immune responses.
Collapse
|
3
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
4
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
5
|
Xie Q, Ma G, Song Y. Therapeutic Strategy and Clinical Path of Facioscapulohumeral Muscular Dystrophy: Review of the Current Literature. APPLIED SCIENCES 2024; 14:8222. [DOI: 10.3390/app14188222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper muscles, gradually accumulating in the lower limb muscles. The severity of patients is quite different, and most patients end up using wheelchairs and losing their self-care ability. At present, the exploration of treatment strategies for FSHD has shifted from relieving symptoms to gene therapy, which brings hope to the future of patients, but the current gene therapy is only in the clinical trial stage. Here, we conducted a comprehensive search of the relevant literature using the keywords FSHD, DUX4, and gene therapy methods including ASOs, CRISPR, and RNAi in the PubMed and Web of Science databases. We discussed the current advancements in treatment strategies for FSHD, as well as ongoing preclinical and clinical trials related to FSHD. Additionally, we evaluated the advantages and limitations of various gene therapy approaches targeting DUX4 aimed at correcting the underlying genetic defect.
Collapse
Affiliation(s)
- Qi Xie
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Guangmei Ma
- Department of Physical Education Teaching and Research, Xinjiang University, Wulumuqi 830046, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
6
|
Beck SL, Yokota T. Oligonucleotide Therapies for Facioscapulohumeral Muscular Dystrophy: Current Preclinical Landscape. Int J Mol Sci 2024; 25:9065. [PMID: 39201751 PMCID: PMC11354670 DOI: 10.3390/ijms25169065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy, characterized by progressive and asymmetric muscle atrophy, primarily affecting muscles of the face, shoulder girdle, and upper arms before affecting muscles of the lower extremities with age and greater disease severity. FSHD is a disabling condition, and patients may also present with various extramuscular symptoms. FSHD is caused by the aberrant expression of double homeobox 4 (DUX4) in skeletal muscle, arising from compromised epigenetic repression of the D4Z4 array. DUX4 encodes the DUX4 protein, a transcription factor that activates myotoxic gene programs to produce the FSHD pathology. Therefore, sequence-specific oligonucleotides aimed at reducing DUX4 levels in patients is a compelling therapeutic approach, and one that has received considerable research interest over the last decade. This review aims to describe the current preclinical landscape of oligonucleotide therapies for FSHD. This includes outlining the mechanism of action of each therapy and summarizing the preclinical results obtained regarding their efficacy in cellular and/or murine disease models. The scope of this review is limited to oligonucleotide-based therapies that inhibit the DUX4 gene, mRNA, or protein in a way that does not involve gene editing.
Collapse
Affiliation(s)
- Samuel L. Beck
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
7
|
Lu-Nguyen N, Snowden S, Popplewell L, Malerba A. Systemic Pharmacotherapeutic Treatment of the ACTA1-MCM/FLExDUX4 Preclinical Mouse Model of FSHD. Int J Mol Sci 2024; 25:6994. [PMID: 39000102 PMCID: PMC11241187 DOI: 10.3390/ijms25136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine-quadruplex structures, effectively downregulates DUX4 expression in FSHD patient-derived myoblasts and in mice overexpressing exogenous DUX4 after viral vector-based treatment. Here, we sought to confirm berberine's inhibitory efficacy on DUX4 in the widely used FSHD-like transgenic mouse model, ACTA1-MCM/FLExDUX4, where DUX4 is induced at pathogenic levels using tamoxifen. Animals repeatedly treated with berberine via intraperitoneal injections for 4 weeks exhibited significant reductions in both mRNA and protein levels of DUX4, and in mRNA expression of murine DUX4-related genes. This inhibition translated into improved forelimb muscle strength and positive alterations in important FSHD-relevant cellular pathways, although its impact on muscle mass and histopathology was less pronounced. Collectively, our data confirm the efficacy of berberine in downregulating DUX4 expression in the most relevant FSHD mouse model. However, further optimization of dosing regimens and new studies to enhance the bioavailability of berberine in skeletal muscle are warranted to fully leverage its therapeutic potential for FSHD treatment.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
| | - Stuart Snowden
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
| |
Collapse
|
8
|
Poukalov KK, Valero MC, Muscato DR, Adams LM, Chun H, Lee YI, Andrade NS, Zeier Z, Sweeney HL, Wang ET. Myospreader improves gene editing in skeletal muscle by myonuclear propagation. Proc Natl Acad Sci U S A 2024; 121:e2321438121. [PMID: 38687782 PMCID: PMC11087771 DOI: 10.1073/pnas.2321438121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader," a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.
Collapse
Affiliation(s)
- Kiril K. Poukalov
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - M. Carmen Valero
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Derek R. Muscato
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Leanne M. Adams
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Heejae Chun
- Department of Pharmacology, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| | - Young il Lee
- Department of Pharmacology, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| | - Nadja S. Andrade
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL33136
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL33136
| | - H. Lee Sweeney
- Department of Pharmacology, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| |
Collapse
|
9
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
10
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
11
|
Hubregtse L, Bouman K, Lama C, Lassche S, de Graaf N, Taglietti V, Küsters B, Periou B, Relaix F, van Engelen B, Authier FJ, Voermans NC, Malfatti E. An up-to-date myopathologic characterisation of facioscapulohumeral muscular dystrophy type 1 muscle biopsies shows sarcolemmal complement membrane attack complex deposits and increased skeletal muscle regeneration. Neuromuscul Disord 2024; 36:6-15. [PMID: 38306719 DOI: 10.1016/j.nmd.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The aim of this study was to identify key routinely used myopathologic biomarkers of FSHD1. Needle muscle biopsies were taken in 34 affected muscles (m. quadriceps femoris (QF), n = 20, m. tibialis anterior (TA), n = 13, m. biceps brachii, n = 1) from 22 patients (age, 53.5 (10) years; M = 12, F = 10). Eleven patients had more than one biopsy (2xQF, n = 1; QF+TA, n = 9; 2xQF+TA, n = 1). Histochemistry, immunoperoxidase, and immunofluorescence stainings were performed and compared to age and muscle type matched muscle specimens of 11 healthy controls. Myopathologic features observed in our FSHD1 cohort were internalized nuclei, type 1 fibre hypertrophy and NADH central clearances/cores. We observed a prominent inflammatory response with MAC deposits, MHC I expression, and muscle regeneration that correlated with the inflammatory score. Our up-to-date characterization of FSHD1 points towards MHC I, MAC, and embryonic Myosin Heavy Chain/muscle regeneration as useful myopathologic readouts of FSHD1.
Collapse
Affiliation(s)
- Lisanne Hubregtse
- Université Paris Est Créteil, INSERM, U955, IMRB, Créteil F-94010, France; The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Karlijn Bouman
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Chéryane Lama
- Université Paris Est Créteil, INSERM, U955, IMRB, Créteil F-94010, France
| | - Saskia Lassche
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicolas de Graaf
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Benno Küsters
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Baptiste Periou
- Université Paris Est Créteil, INSERM, U955, IMRB, Créteil F-94010, France
| | - Frédéric Relaix
- Université Paris Est Créteil, INSERM, U955, IMRB, Créteil F-94010, France
| | - Baziel van Engelen
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - François-Jerôme Authier
- Université Paris Est Créteil, INSERM, U955, IMRB, Créteil F-94010, France; Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, France
| | - Nicol C Voermans
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Edoardo Malfatti
- Université Paris Est Créteil, INSERM, U955, IMRB, Créteil F-94010, France; Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, France.
| |
Collapse
|
12
|
Rots MG, Jeltsch A. Development of Locus-Directed Editing of the Epigenome from Basic Mechanistic Engineering to First Clinical Applications. Methods Mol Biol 2024; 2842:3-20. [PMID: 39012588 DOI: 10.1007/978-1-0716-4051-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The introduction of CRISPR/Cas systems has resulted in a strong impulse for the field of gene-targeted epigenome/epigenetic reprogramming (EpiEditing), where EpiEditors consisting of a DNA binding part for targeting and an enzymatic part for rewriting of chromatin modifications are applied in cells to alter chromatin modifications at targeted genome loci in a directed manner. Pioneering studies preceding this era indicated causal relationships of chromatin marks instructing gene expression. The accumulating evidence of chromatin reprogramming of a given genomic locus resulting in gene expression changes opened the field for mainstream applications of this technology in basic and clinical research. The growing knowledge on chromatin biology and application of EpiEditing tools, however, also revealed a lack of predictability of the efficiency of EpiEditing in some cases. In this perspective, the dependence of critical parameters such as specificity, effectivity, and sustainability of EpiEditing on experimental settings and conditions including the expression levels and expression times of the EpiEditors, their chromatin binding affinity and specificity, and the crosstalk between EpiEditors and cellular epigenome modifiers are discussed. These considerations highlight the intimate connection between the outcome of epigenome reprogramming and the details of the technical approaches toward EpiEditing, which are the main topic of this volume of Methods in Molecular Biology. Once established in a fully functional "plug-and-play" mode, EpiEditing will allow to better understand gene expression control and to translate such knowledge into therapeutic tools. These expectations are beginning to be met as shown by various in vivo EpiEditing applications published in recent years, several companies aiming to exploit the therapeutic power of EpiEditing and the first clinical trial initiated.
Collapse
Affiliation(s)
- Marianne G Rots
- Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
13
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|
14
|
Sasaki-Honda M, Akatsuka K, Sawai T. Is epigenome editing non-inheritable? Implications for ethics and the regulation of human applications. Stem Cell Reports 2023; 18:2005-2009. [PMID: 37922912 PMCID: PMC10679648 DOI: 10.1016/j.stemcr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Epigenome editing offers ethical advantages with non-inheritable gene expression control. However, concerns arise regarding potential transgenerational effects in humans. Ethical and regulatory evaluation is crucial, considering recent advancements and enhanced understanding of transgenerational epigenetics in both mammals and humans.
Collapse
Affiliation(s)
- Mitsuru Sasaki-Honda
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Institute of Biomedicine and Biotechnology of Cantabria, CSIC/Universidad de Cantabria, Santander, Spain.
| | - Kyoko Akatsuka
- Uehiro Research Division for iPS Cell Ethics, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tsutomu Sawai
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan; Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Griazeva ED, Fedoseeva DM, Radion EI, Ershov PV, Meshkov IO, Semyanihina AV, Makarova AS, Makarov VV, Yudin VS, Keskinov AA, Kraevoy SA. Current Approaches to Epigenetic Therapy. EPIGENOMES 2023; 7:23. [PMID: 37873808 PMCID: PMC10594535 DOI: 10.3390/epigenomes7040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
Epigenetic therapy is a promising tool for the treatment of a wide range of diseases. Several fundamental epigenetic approaches have been proposed. Firstly, the use of small molecules as epigenetic effectors, as the most developed pharmacological method, has contributed to the introduction of a number of drugs into clinical practice. Secondly, various innovative epigenetic approaches based on dCas9 and the use of small non-coding RNAs as therapeutic agents are also under extensive research. In this review, we present the current state of research in the field of epigenetic therapy, considering the prospects for its application and possible limitations.
Collapse
Affiliation(s)
- Ekaterina D. Griazeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Daria M. Fedoseeva
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Elizaveta I. Radion
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Pavel V. Ershov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Ivan O. Meshkov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Alexandra V. Semyanihina
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 24, Moscow 115478, Russia
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moskvorechye, 1, Moscow 115522, Russia
| | - Anna S. Makarova
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Valentin V. Makarov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Vladimir S. Yudin
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Anton A. Keskinov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| | - Sergey A. Kraevoy
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Pogodinskaya Str., 10, Building 1, Moscow 119121, Russia
| |
Collapse
|
16
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res 2023; 33:1439-1454. [PMID: 37798116 PMCID: PMC10620044 DOI: 10.1101/gr.277871.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the Chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult because of the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA;
- Department of Neurology, University of Utah, Salt Lake City, Utah 84132, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brett Duval
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
17
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528868. [PMID: 36824722 PMCID: PMC9949141 DOI: 10.1101/2023.02.17.528868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, UT
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Diane M Dunn
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Brett Duval
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Robert B Weiss
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| |
Collapse
|
18
|
Cohen J, Huang S, Koczwara K, Ho V, Woodman K, Lek A, Arbiser J, Lek M, DeSimone A. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. RESEARCH SQUARE 2023:rs.3.rs-2452222. [PMID: 36778471 PMCID: PMC9915774 DOI: 10.21203/rs.3.rs-2452222/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
|
19
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 PMCID: PMC11578282 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
20
|
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023; 8:36. [PMID: 36646687 PMCID: PMC9841506 DOI: 10.1038/s41392-023-01309-7] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research. Pathological and physiological changes resulting from disease onset are expected to serve as identifying factors for targeted delivery or targets for gene editing. Diseases are both varied and complex, and the choice of appropriate gene-editing methods and delivery vectors for different diseases is important. Meanwhile, there are still many potential challenges identified when targeting delivery of CRISPR/Cas9 technology for disease treatment. This paper reviews the current developments in three aspects, namely, gene-editing type, delivery vector, and disease characteristics. Additionally, this paper summarizes successful examples of clinical trials and finally describes possible problems associated with current CRISPR applications.
Collapse
Affiliation(s)
- Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, 266021, Qingdao, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, 276827, Rizhao, People's Republic of China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, 276000, Linyi, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China
| | - Meixin Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China.
| |
Collapse
|
21
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR-Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul B Finn
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
22
|
Laufer BI, Hasegawa Y, Zhang Z, Hogrefe CE, Del Rosso LA, Haapanen L, Hwang H, Bauman MD, Van de Water J, Taha AY, Slupsky CM, Golub MS, Capitanio JP, VandeVoort CA, Walker CK, LaSalle JM. Multi-omic brain and behavioral correlates of cell-free fetal DNA methylation in macaque maternal obesity models. Nat Commun 2022; 13:5538. [PMID: 36130949 PMCID: PMC9492781 DOI: 10.1038/s41467-022-33162-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Lori Haapanen
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Mari S Golub
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - John P Capitanio
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychology, University of California Davis, Davis, CA, 95616, USA
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Cheryl K Walker
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Mariot V, Dumonceaux J. Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy. Front Genome Ed 2022; 4:937879. [PMID: 35910413 PMCID: PMC9334676 DOI: 10.3389/fgeed.2022.937879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is a skeletal muscle disease caused by the aberrant expression of the DUX4 gene in the muscle tissue. To date, different therapeutic approaches have been proposed, targeting DUX4 at the DNA, RNA or protein levels. The recent development of the clustered regularly interspaced short-palindromic repeat (CRISPR) based technology opened new avenues of research, and FSHD is no exception. For the first time, a cure for genetic muscular diseases can be considered. Here, we describe CRISPR-based strategies that are currently being investigated for FSHD. The different approaches include the epigenome editing targeting the DUX4 gene and its promoter, gene editing targeting the polyadenylation of DUX4 using TALEN, CRISPR/cas9 or adenine base editing and the CRISPR-Cas9 genome editing for SMCHD1. We also discuss challenges facing the development of these gene editing based therapeutics.
Collapse
Affiliation(s)
- Virginie Mariot
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, University College London, London, United Kingdom
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, University College London, London, United Kingdom
| |
Collapse
|
24
|
Lu-Nguyen N, Dickson G, Malerba A, Popplewell L. Long-Term Systemic Treatment of a Mouse Model Displaying Chronic FSHD-like Pathology with Antisense Therapeutics That Inhibit DUX4 Expression. Biomedicines 2022; 10:biomedicines10071623. [PMID: 35884928 PMCID: PMC9313434 DOI: 10.3390/biomedicines10071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Silencing the expression of the double homeobox 4 (DUX4) gene offers great potential for the treatment of facioscapulohumeral muscular dystrophy (FSHD). Several research groups have recently reported promising results using systemic antisense therapy in a transgenic small animal model of FSHD, the ACTA1-MCM/FLExDUX4 mouse model. However, the treatment was applied in non-DUX4-induced mice or shortly after DUX4 activation, which resulted in conditions that do not correctly represent the situation in a clinic. Here, we generated progressive FSHD-like pathology in ACTA1-MCM/FLExDUX4 mice and then treated the animals with vivoPMO-PACS4, an antisense compound that efficiently downregulates DUX4. To best mimic the translation of this treatment in clinical settings, the systemic antisense oligonucleotide administration was delayed to 3 weeks after the DUX4 activation so that the pathology was established at the time of the treatment. The chronic administration of vivoPMO-PACS4 for 8 weeks downregulated the DUX4 expression by 60%. Consequently, the treated mice showed an increase by 18% in body-wide muscle mass and 32% in muscle strength, and a reduction in both myofiber central nucleation and muscle fibrosis by up to 29% and 37%, respectively. Our results in a more suitable model of FSHD pathology confirm the efficacy of vivoPMO-PACS4 administration, and highlight the significant benefit provided by the long-term treatment of the disease.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- Correspondence: (A.M.); (L.P.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Correspondence: (A.M.); (L.P.)
| |
Collapse
|
25
|
Kanafi MM, Tavallaei M. Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene 2022; 830:146518. [PMID: 35447246 DOI: 10.1016/j.gene.2022.146518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
Prokaryotes possess an adaptive immune system using various CRISPR associated (Cas) genes to make an archive of records from invading phages and eliminate them upon re-exposure when specialized Cas proteins cut foreign DNA into small pieces. On the basis of the different types of Cas proteins, CRISPR systems seen in some prokaryotic genomes, are different to each other. It has been proved that CRISPR has a great potential for genome engineering. Studies have also demonstrated that in comparison to the preceding genome engineering tools CRISPR/Cas systems can be harnessed as a flexible tool with easy multiplexing and scaling ability. Recent studies suggest that CRISPR/Cas systems can also be used for non-genome engineering roles. Isolation and identification of new Cas proteins or modification of existing ones are effectively increasing the number of CRISPR applications and helps its development. D10A and H840A mutations at RuvC and HNH endonuclease domains of wild type Streptococcus pyogenes Cas9 (SpCas9) respectively creates a nuclease, dead Cas9 (dCas9) molecule, that does not cut target DNA but still retains its capability for binding to target DNA based on the gRNA targeting sequence. In this article we review the potentials of this enzyme, dCas9, toward development of the applications of CRISPR/dCas9 technology in fields such as; visualization of genomic loci, disease diagnosis and transcriptional repression and activation.
Collapse
Affiliation(s)
| | - Mahmood Tavallaei
- Human Genetic Research Centre, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
26
|
Himeda CL, Jones PL. FSHD Therapeutic Strategies: What Will It Take to Get to Clinic? J Pers Med 2022; 12:jpm12060865. [PMID: 35743650 PMCID: PMC9225474 DOI: 10.3390/jpm12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of DUX4 in skeletal muscle. The complex nature of the locus and the fact that FSHD is a toxic, gain-of-function disease present unique challenges for the design of therapeutic strategies. There are three major DUX4-targeting avenues of therapy for FSHD: small molecules, oligonucleotide therapeutics, and CRISPR-based approaches. Here, we evaluate the preclinical progress of each avenue, and discuss efforts being made to overcome major hurdles to translation.
Collapse
|
27
|
Masteika IF, Sathya A, Homma S, Miller BM, Boyce FM, Miller JB. Downstream events initiated by expression of FSHD-associated DUX4: Studies of nucleocytoplasmic transport, γH2AX accumulation, and Bax/Bak-dependence. Biol Open 2022; 11:274475. [PMID: 35191484 PMCID: PMC8890089 DOI: 10.1242/bio.059145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormal expression in skeletal muscle of the double homeobox transcription factor DUX4 underlies pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Though multiple changes are known to be initiated by aberrant DUX4 expression, the downstream events initiated by DUX4 remain incompletely understood. In this study, we examined plausible downstream events initiated by DUX4. First, we found that nucleocytoplasmic protein export appeared to be decreased upon DUX4 expression as indicated by nuclear accumulation of a shuttle-GFP reporter. Second, building on studies from other labs, we showed that phospho(Ser139)-H2AX (γH2AX), an indicator of double-strand DNA breaks, accumulated both in human FSHD1 myotube nuclei upon endogenous DUX4 expression and in Bax-/-;Bak-/- (double knockout), SV40-immortalized mouse embryonic fibroblasts upon exogenous DUX4 expression. In contrast, DUX4-induced caspase 3/7 activation was prevented in Bax-/-;Bak-/- double knockout SV40-MEFs, but not by single knockouts of Bax, Bak, or Bid. Thus, aberrant DUX4 expression appeared to alter nucleocytoplasmic protein transport and generate double-strand DNA breaks in FSHD1 myotube nuclei, and the Bax/Bak pathway is required for DUX4-induced caspase activation but not γH2AX accumulation. These results add to our knowledge of downstream events induced by aberrant DUX4 expression and suggest possibilities for further mechanistic investigation.
Collapse
Affiliation(s)
- Isabel F Masteika
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Anvitha Sathya
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Sachiko Homma
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bess M Miller
- Biological & Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick M Boyce
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jeffrey Boone Miller
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
28
|
Lu-Nguyen N, Malerba A, Antoni Pineda M, Dickson G, Popplewell LJ. Improving molecular and histopathology in diaphragm muscle of the double transgenic ACTA1-MCM/FLExDUX4 mouse model of FSHD with systemic antisense therapy. Hum Gene Ther 2022; 33:923-935. [PMID: 35078334 DOI: 10.1089/hum.2021.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a rare muscle dystrophy causing muscle weakness initially in the face, shoulders and upper arms, and extended to lower body muscles as the disease progresses. Respiratory restriction in FSHD is increasingly reported to be more common and severe than previously thought, with the involvement of diaphragm weakness in pulmonary insufficiency being under debate. As aberrant expression of the double homeobox 4 (DUX4) gene is the prime cause of FSHD, we and others have developed numerous strategies and reported promising results on downregulating DUX4 expression in both cellular and animal models of FSHD. However, the effect of DUX4 and anti-DUX4 approaches on diaphragm muscle has not been elucidated. Here we show that toxic DUX4 expression causes pathology that affects the diaphragm of ACTA1-MCM/FLExDUX4 mouse model of FSHD at both molecular and histological levels. Of importance, a systemic antisense treatment that suppresses DUX4 and target genes expression by 50% significantly improves muscle regeneration and muscle fibrosis, and prevents modification in myofiber type composition, supporting its development as a treatment for FSHD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Alberto Malerba
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Marina Antoni Pineda
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - George Dickson
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Linda J Popplewell
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
29
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
30
|
Kühn R. Genome engineering in rodents - status quo and perspectives. Lab Anim 2021; 56:83-87. [PMID: 34674587 DOI: 10.1177/00236772211051842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The introduction of the CRISPR-Cas9 system in 2013 has revolutionized experimental genetics in mice and rats. This commentary gives an overview on the use of CRISPR either for gene editing in the germline or for editing and beyond editing in somatic cells. Future perspectives are opened by emerging CRISPR technologies that could enable genome engineering at larger scale.
Collapse
Affiliation(s)
- Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Germany
| |
Collapse
|
31
|
Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:342-354. [PMID: 34484861 PMCID: PMC8399085 DOI: 10.1016/j.omtn.2021.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation of the D4Z4 repeat resulting in misexpression of the D4Z4-encoded DUX4 gene in skeletal muscle. One of the key genetic requirements for the stable production of full-length DUX4 mRNA in skeletal muscle is a functional polyadenylation signal (ATTAAA) in exon three of DUX4 that is used in somatic cells. Base editors hold great promise to treat DNA lesions underlying genetic diseases through their ability to carry out specific and rapid nucleotide mutagenesis even in postmitotic cells such as skeletal muscle. In this study, we present a simple and straightforward strategy for mutagenesis of the somatic DUX4 polyadenylation signal by adenine base editing in immortalized myoblasts derived from independent FSHD-affected individuals. We show that mutating this critical cis-regulatory element results in downregulation of DUX4 mRNA and its direct transcriptional target genes. Our findings identify the somatic DUX4 polyadenylation signal as a therapeutic target and represent the first step toward clinical application of the CRISPR-Cas9 base editing platform for FSHD gene therapy.
Collapse
|
32
|
Lu-Nguyen N, Malerba A, Herath S, Dickson G, Popplewell L. Systemic antisense therapeutics inhibiting DUX4 expression ameliorates FSHD-like pathology in an FSHD mouse model. Hum Mol Genet 2021; 30:1398-1412. [PMID: 33987655 PMCID: PMC8283208 DOI: 10.1093/hmg/ddab136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle causes muscle deterioration and weakness in Facioscapulohumeral muscular dystrophy (FSHD). Since the presence of a permissive pLAM1 polyadenylation signal is essential for stabilization of DUX4 mRNA and translation of DUX4 protein, disrupting the function of this structure can prevent expression of DUX4. We and others have shown promising results using antisense approaches to reduce DUX4 expression in vitro and in vivo following local intramuscular administration. Here we demonstrate that further development of the antisense chemistries enhances in vitro antisense efficacy. The optimal chemistry was conjugated to a cell-penetrating moiety and was systemically administered into the tamoxifen-inducible Cre-driver FLExDUX4 double-transgenic mouse model of FSHD. After four weekly treatments, mRNA quantities of DUX4 and target genes were reduced by 50% that led to 12% amelioration in muscle atrophy, 52% improvement in in situ muscle strength, 17% reduction in muscle fibrosis and prevention of shift in the myofiber type profile. Systemic DUX4 inhibition also significantly improved the locomotor activity and reduced the fatigue level by 22%. Our data demonstrate that the optimized antisense approach has potential of being further developed as a therapeutic strategy for FSHD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Shan Herath
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|