1
|
Dan L, Kang-Zheng L. Optimizing viral transduction in immune cell therapy manufacturing: key process design considerations. J Transl Med 2025; 23:501. [PMID: 40316943 PMCID: PMC12046913 DOI: 10.1186/s12967-025-06524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
Immune cell therapies have revolutionized the treatment of cancers, autoimmune disorders, and infectious diseases. A critical step in their manufacturing is viral transduction, which enables the delivery of therapeutic genes into immune cells. However, the complexity of this process presents significant challenges for optimization and scalability. This review provides a comprehensive analysis of viral transduction process in immune cell therapy manufacturing, highlighting key design considerations to support the development of safe, effective, and scalable production methods. Additionally, it examines current technological challenges in immune cell transduction and explores future innovations poised to advance the field.
Collapse
Affiliation(s)
- Liu Dan
- Bioprocessing Technology Institute BTI, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore.
| | - Lee Kang-Zheng
- Bioprocessing Technology Institute BTI, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| |
Collapse
|
2
|
Wang J, Caimi PF. CAR assembly line: Taking CAR T-cell manufacturing to the next level. Best Pract Res Clin Haematol 2024; 37:101595. [PMID: 40074509 DOI: 10.1016/j.beha.2024.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
The widespread adoption of chimeric antigen receptor (CAR) T-cell therapy has been limited by complex, resource-intensive manufacturing processes. This review discusses the latest innovations aiming to improve and streamline CAR T-cell production across key steps like T-cell activation, genetic modification, expansion, and scaling. Promising techniques highlighted include generating CAR T cells from non-activated lymphocytes to retain a stem-like phenotype and function, non-viral gene transfer leveraging platforms like transposon and CRISPR, all-in-one fully automated bioreactors like the CliniMACS Prodigy and the Lonza Cocoon, rapid CAR T-cell manufacturing via abbreviating or eliminating ex vivo T-cell culture, implementing decentralized point-of-care automated manufacturing platforms, and optimizing centralized bioreactor infrastructure integrating end-to-end automation. Adoption of these emerging technologies can reduce production costs and timelines while enhancing product quality and accessibility. However, significant knowledge gaps persist regarding the feasibility, superiority, and optimal protocols for effectively incorporating many emerging techniques into widespread clinical practice. Further validation through clinical studies is still needed for many of these novel approaches.
Collapse
Affiliation(s)
- Jiasheng Wang
- Department of Hematology/Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA.
| | - Paolo F Caimi
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
3
|
Chang PS, Chen YC, Hua WK, Hsu JC, Tsai JC, Huang YW, Kao YH, Wu PH, Wang PN, Chang YF, Chang MC, Chang YC, Jian SL, Lai JS, Lai MT, Yang WC, Shen CN, Wen KLK, Wu SCY. Manufacturing CD20/CD19-targeted iCasp9 regulatable CAR-TSCM cells using a Quantum pBac-based CAR-T engineering system. PLoS One 2024; 19:e0309245. [PMID: 39190688 DOI: 10.1371/journal.pone.0309245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
CD19-targeted chimeric antigen receptor (CAR) T cell therapies have driven a paradigm shift in the treatment of relapsed/refractory B-cell malignancies. However, >50% of CD19-CAR-T-treated patients experience progressive disease mainly due to antigen escape and low persistence. Clinical prognosis is heavily influenced by CAR-T cell function and systemic cytokine toxicities. Furthermore, it remains a challenge to efficiently, cost-effectively, and consistently manufacture clinically relevant numbers of virally engineered CAR-T cells. Using a highly efficient piggyBac transposon-based vector, Quantum pBac™ (qPB), we developed a virus-free cell-engineering system for development and production of multiplex CAR-T therapies. Here, we demonstrate in vitro and in vivo that consistent, robust and functional CD20/CD19 dual-targeted CAR-T stem cell memory (CAR-TSCM) cells can be efficiently produced for clinical application using qPB™. In particular, we showed that qPB™-manufactured CAR-T cells from cancer patients expanded efficiently, rapidly eradicated tumors, and can be safely controlled via an iCasp9 suicide gene-inducing drug. Therefore, the simplicity of manufacturing multiplex CAR-T cells using the qPB™ system has the potential to improve efficacy and broaden the accessibility of CAR-T therapies.
Collapse
Affiliation(s)
- Peter S Chang
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Yi-Chun Chen
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Wei-Kai Hua
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Jeff C Hsu
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Jui-Cheng Tsai
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Yi-Wun Huang
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Yi-Hsin Kao
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Pei-Hua Wu
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Po-Nan Wang
- Division of Hematology, Chang Gung Medical Foundation, Linkou Branch, Taipei City, Taiwan (R.O.C.)
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan (R.O.C.)
- Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan (R.O.C.)
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (R.O.C.)
| | - Ming-Chih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan (R.O.C.)
| | - Yu-Cheng Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan (R.O.C.)
- Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan (R.O.C.)
| | | | | | | | | | - Chia-Ning Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan (R.O.C.)
- Genomics Research Center, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Kuo-Lan Karen Wen
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | | |
Collapse
|
4
|
Kfir-Erenfeld S, Asherie N, Lebel E, Vainstein V, Assayag M, Dubnikov Sharon T, Grisariu S, Avni B, Elias S, Alexander-Shani R, Bessig N, Shehadeh A, Ishtay A, Zelmanovich V, Zimran E, Pick M, Roziner I, Kenett RS, Cohen Y, Avivi I, Cohen CJ, Gatt ME, Stepensky P. Clinical evaluation and determinants of response to HBI0101 (BCMA CART) therapy in relapsed/refractory multiple myeloma. Blood Adv 2024; 8:4077-4088. [PMID: 38768428 PMCID: PMC11342176 DOI: 10.1182/bloodadvances.2024012967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
ABSTRACT HBI0101 is an academic chimeric antigen receptor T-cell (CART)-targeted to B-cell maturation antigen (BCMA) for the treatment of relapsed and refractory multiple myeloma (R/RMM) and light chain amyloidosis. Herein, we present the phase 1b/2 results of 50 heavily pretreated patients with R/RMM dosed with 800 × 106 CART cells. Inclusion criteria were relatively permissive (i.e., performance status and baseline organ function) and consequently, approximately half of the enrolled patients would have been ineligible for pivotal clinical trials. The median time elapsed from patient enrollment until CART delivery was 25 days (range, 14-65). HBI0101-related toxicities included grade 1 to 3 cytokine release syndrome, grade 3 to 4 hematologic toxicities, and grade 1 to 2 immune effector cell-associated neurotoxicity syndrome. Responses were achieved in 90% of the patients, 56% achieved stringent and complete response, and 70% reached a minimal residual disease negativity. Within a median follow-up of 12.3 months, the median progression-free survival (PFS) was 11.0 months (95% confidence interval [CI], 6.2-14.6), and the overall survival was not reached (95% CI, 13.3 to not reached). Multivariable analysis on patient/disease and CART-related characteristics revealed that high-risk cytogenetic, extramedullary disease, and increased number of effector-memory T cells in CART products were independently associated with inferior PFS. In conclusion, comprehensive analyses of the parameters affecting the response to CART therapy are essential for improving patients' outcome. This trial was registered at www.ClinicalTrials.gov as #NCT04720313.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Asherie
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Lebel
- Department of Hematology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vladimir Vainstein
- Department of Hematology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Assayag
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatyana Dubnikov Sharon
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Grisariu
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batia Avni
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomo Elias
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Alexander-Shani
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nomi Bessig
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alaa Shehadeh
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aseel Ishtay
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Veronica Zelmanovich
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Zimran
- Department of Hematology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marjorie Pick
- Department of Hematology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Roziner
- Department of Communication Disorders, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron S. Kenett
- Kenett-Preminger Associates Ltd, Samuel Neaman Institute, Technion, Haifa, Israel
| | - Yael Cohen
- Department of Hematology, Faculty of Medicine, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Irit Avivi
- Department of Hematology, Faculty of Medicine, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Cyrille J. Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Moshe E. Gatt
- Department of Hematology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Hu J, Liu X. Generation of CAR-T SCM: CAR-T with super clutch. Int Immunopharmacol 2024; 136:112379. [PMID: 38833844 DOI: 10.1016/j.intimp.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
CAR-T therapy has demonstrated effectiveness in hematological malignancies and is now striding into solid tumor areas. One of the main roadblocks of CAR-T therapy is T cell exhaustion normally aroused by T cell terminal differentiation due to persistent contact with antigen in vivo or in vitro manufacturing process. TSCM positions as the first, and pivotal step of naïve T cell differentiation to downstream memory and effector stages. Researchers highly seek to restrain CAR-T cells at the TSCM stage during manufacture as TSCM percentage in CAR-T products is strongly associated with better treatment response. We reviewed the recent strategies regarding CAR-TSCM generation from aspects of starting source, manufacturing process, CAR assembly, transcription factor and metabolism regulation, etc.
Collapse
Affiliation(s)
- Jinhui Hu
- Department of Laboratory Medicine, Gongli Hospital, No. 219, Miaopu Road, Pudong, Shanghai, 200135, China.
| | - Xiang Liu
- TriArm Therapeutics Inc, Building 5, Niudun Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
6
|
Dias J, Garcia J, Agliardi G, Roddie C. CAR-T cell manufacturing landscape-Lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev 2024; 32:101250. [PMID: 38737799 PMCID: PMC11088187 DOI: 10.1016/j.omtm.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
CAR-T cell therapies have consolidated their position over the last decade as an effective alternative to conventional chemotherapies for the treatment of a number of hematological malignancies. With an exponential increase in the number of commercial therapies and hundreds of phase 1 trials exploring CAR-T cell efficacy in different settings (including autoimmunity and solid tumors), demand for manufacturing capabilities in recent years has considerably increased. In this review, we explore the current landscape of CAR-T cell manufacturing and discuss some of the challenges limiting production capacity worldwide. We describe the latest technical developments in GMP production platform design to facilitate the delivery of a range of increasingly complex CAR-T cell products, and the challenges associated with translation of new scientific developments into clinical products for patients. We explore all aspects of the manufacturing process, namely early development, manufacturing technology, quality control, and the requirements for industrial scaling. Finally, we discuss the challenges faced as a small academic team, responsible for the delivery of a high number of innovative products to patients. We describe our experience in the setup of an effective bench-to-clinic pipeline, with a streamlined workflow, for implementation of a diverse portfolio of phase 1 trials.
Collapse
Affiliation(s)
- Juliana Dias
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - John Garcia
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Giulia Agliardi
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
7
|
Goto A, Moriya Y, Nakayama M, Iwasaki S, Yamamoto S. DMPK perspective on quantitative model analysis for chimeric antigen receptor cell therapy: Advances and challenges. Drug Metab Pharmacokinet 2024; 56:101003. [PMID: 38843652 DOI: 10.1016/j.dmpk.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 06/24/2024]
Abstract
Chimeric antigen receptor (CAR) cells are genetically engineered immune cells that specifically target tumor-associated antigens and have revolutionized cancer treatment, particularly in hematological malignancies, with ongoing investigations into their potential applications in solid tumors. This review provides a comprehensive overview of the current status and challenges in drug metabolism and pharmacokinetics (DMPK) for CAR cell therapy, specifically emphasizing on quantitative modeling and simulation (M&S). Furthermore, the recent advances in quantitative model analysis have been reviewed, ranging from clinical data characterization to mechanism-based modeling that connects in vitro and in vivo nonclinical and clinical study data. Additionally, the future perspectives and areas for improvement in CAR cell therapy translation have been reviewed. This includes using formulation quality considerations, characterization of appropriate animal models, refinement of in vitro models for bottom-up approaches, and enhancement of quantitative bioanalytical methodology. Addressing these challenges within a DMPK framework is pivotal in facilitating the translation of CAR cell therapy, ultimately enhancing the patients' lives through efficient CAR cell therapies.
Collapse
Affiliation(s)
- Akihiko Goto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuu Moriya
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shinji Iwasaki
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan.
| |
Collapse
|
8
|
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals (Basel) 2024; 17:415. [PMID: 38675377 PMCID: PMC11054630 DOI: 10.3390/ph17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-7 (IL-7) is a versatile cytokine that plays a crucial role in regulating the immune system's homeostasis. It is involved in the development, proliferation, and differentiation of B and T cells, as well as being essential for the differentiation and survival of naïve T cells and the production and maintenance of memory T cells. Given its potent biological functions, IL-7 is considered to have the potential to be widely used in the field of anti-tumour immunotherapy. Notably, IL-7 can improve the tumour microenvironment by promoting the development of Th17 cells, which can in turn promote the recruitment of effector T cells and NK cells. In addition, IL-7 can also down-regulate the expression of tumour growth factor-β and inhibit immunosuppression to promote anti-tumour efficacy, suggesting potential clinical applications for anti-tumour immunotherapy. This review aims to discuss the origin of IL-7 and its receptor IL-7R, its anti-tumour mechanism, and the recent advances in the application of IL-7 in tumour therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (C.F.); (X.Z.); (X.Z.); (D.W.); (S.H.)
| |
Collapse
|
9
|
Elsallab M, Maus MV. Expanding access to CAR T cell therapies through local manufacturing. Nat Biotechnol 2023; 41:1698-1708. [PMID: 37884746 DOI: 10.1038/s41587-023-01981-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are changing the therapeutic landscape for hematological malignancies. To date, all six CAR T cell products approved by the US Food and Drug Administration (FDA) are autologous and centrally manufactured. As the numbers of approved products and indications continue to grow, new strategies to increase cell-manufacturing capacity are urgently needed to ensure patient access. Distributed manufacturing at the point of care or at other local manufacturing sites would go a long way toward meeting the rising demand. To ensure successful implementation, it is imperative to harness novel technologies to achieve uniform product quality across geographically dispersed facilities. This includes the use of automated cell-production systems, in-line sensors and process simulation for enhanced quality control and efficient supply chain management. A comprehensive effort to understand the critical quality attributes of CAR T cells would enable better definition of widely attainable release criteria. To supplement oversight by national regulatory agencies, we recommend expansion of the role of accreditation bodies. Moreover, regulatory standards may need to be amended to accommodate the unique characteristics of distributed manufacturing models.
Collapse
Affiliation(s)
- Magdi Elsallab
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, USA
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Yang Z, Wang Y. Clinical development of chimeric antigen receptor-T cell therapy for hematological malignancies. Chin Med J (Engl) 2023; 136:2285-2296. [PMID: 37358555 PMCID: PMC10538902 DOI: 10.1097/cm9.0000000000002549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 06/27/2023] Open
Abstract
ABSTRACT Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development. Chimeric antigen receptor (CAR)-T cell therapy is the most widely applied cellular therapy. Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017, five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies. Moreover, clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing. Both China and the United States have contributed significantly to the development of clinical trials. However, CAR-T cell therapy has many limitations such as a high relapse rate, adverse side effects, and restricted availability. Various methods are being implemented in clinical trials to address these issues, some of which have demonstrated promising breakthroughs. This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhihuan Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Tianjin Key Laboratory of Cell Therapy for Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | | |
Collapse
|
11
|
Rothemejer FH, Lauritsen NP, Søgaard OS, Tolstrup M. Strategies for enhancing CAR T cell expansion and persistence in HIV infection. Front Immunol 2023; 14:1253395. [PMID: 37671164 PMCID: PMC10475529 DOI: 10.3389/fimmu.2023.1253395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapies are tremendously successful in hematological malignancies and show great promise as treatment and curative strategy for HIV. A major determinant for effective CAR T cell therapy is the persistence of CAR T cells. Particularly, antigen density and target cell abundance are crucial for the engagement, engraftment, and persistence of CAR T cells. The success of HIV-specific CAR T cells is challenged by limited antigen due to low cell surface expression of viral proteins and the scarcity of chronically infected cells during antiretroviral therapy. Several strategies have been explored to increase the efficacy of CAR T cells by enhancing expansion and persistence of the engineered cells. This review highlights the challenges of designing CAR T cells against HIV and other chronic viral infections. We also discuss potential strategies to enhance CAR T cell expansion and persistence in the setting of low antigen exposure.
Collapse
Affiliation(s)
- Frederik Holm Rothemejer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna Pi Lauritsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Hesari M, Attar Z, Soltani-Shirazi S, Keshavarzian O, Taheri R, Tabrizi R, Fouladseresht H. The Therapeutic Values of IL-7/IL-7R and the Recombinant Derivatives in Glioma: A Narrative Review. J Interferon Cytokine Res 2023; 43:319-334. [PMID: 37566474 DOI: 10.1089/jir.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Interleukin-7 (IL-7) is essential for maintaining the immune system's defense functions by regulating the development and homeostasis of lymphocytes. Findings have shown the high efficacy of IL-7/IL-7 receptor (IL-7R)-based immunotherapy on various malignancies, with confirmation in both animal models and humans. In recent years, the progression-free survival and overall survival of patients suffering from gliomas significantly increased by introducing C7R-expressing chimeric antigen receptor (CAR)-T cells and long-acting IL-7 agonists such as NT-I7 (rhIL-7-hyFc, Efineptakin alfa). However, the effect of IL-7-based immunotherapies on the resistance of tumor cells to chemotherapy (when used simultaneously with chemotherapy agents) is still ambiguous and requires further studies. This article first reviews the pathophysiological roles of IL-7/IL-7R in tumors, focusing on gliomas. Subsequently, it discusses the therapeutic values of IL-7/IL-7R and the recombinant derivatives in gliomas.
Collapse
Affiliation(s)
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shakiba Soltani-Shirazi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Taheri
- Department of Neurosurgery, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Hiltensperger M, Krackhardt AM. Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Front Immunol 2023; 14:1121030. [PMID: 36949949 PMCID: PMC10025359 DOI: 10.3389/fimmu.2023.1121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Adoptive cell therapy (ACT) has seen a steep rise of new therapeutic approaches in its immune-oncology pipeline over the last years. This is in great part due to the recent approvals of chimeric antigen receptor (CAR)-T cell therapies and their remarkable efficacy in certain soluble tumors. A big focus of ACT lies on T cells and how to genetically modify them to target and kill tumor cells. Genetically modified T cells that are currently utilized are either equipped with an engineered CAR or a T cell receptor (TCR) for this purpose. Both strategies have their advantages and limitations. While CAR-T cell therapies are already used in the clinic, these therapies face challenges when it comes to the treatment of solid tumors. New designs of next-generation CAR-T cells might be able to overcome these hurdles. Moreover, CARs are restricted to surface antigens. Genetically engineered TCR-T cells targeting intracellular antigens might provide necessary qualities for the treatment of solid tumors. In this review, we will summarize the major advancements of the CAR-T and TCR-T cell technology. Moreover, we will cover ongoing clinical trials, discuss current challenges, and provide an assessment of future directions within the field.
Collapse
Affiliation(s)
- Michael Hiltensperger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| | - Angela M. Krackhardt
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| |
Collapse
|
14
|
Fernandes MB, Barata JT. IL-7 and IL-7R in health and disease: An update through COVID times. Adv Biol Regul 2023; 87:100940. [PMID: 36503870 DOI: 10.1016/j.jbior.2022.100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The role of IL-7 and IL-7R for normal lymphoid development and an adequately functioning immune system has been recognized for long, with severe immune deficiency and lymphoid leukemia as extreme examples of the consequences of deregulation of the IL-7-IL-7R axis. In this review, we provide an update (focusing on the past couple of years) on IL-7 and IL-7R in health and disease. We highlight the findings on IL-7/IL-7R signaling mechanisms and the, sometimes controversial, impact of IL-7 and its receptor on leukocyte biology, COVID-19, acute lymphoblastic leukemia, and different solid tumors, as well as their relevance as therapeutic tools or targets.
Collapse
Affiliation(s)
- Marta B Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
15
|
Banerjee R, Lee SS, Cowan AJ. Innovation in BCMA CAR-T therapy: Building beyond the Model T. Front Oncol 2022; 12:1070353. [PMID: 36505779 PMCID: PMC9729952 DOI: 10.3389/fonc.2022.1070353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Autologous chimeric antigen receptor T-cell (CAR-T) therapies targeting B-cell maturation antigen (BCMA) have revolutionized the field of multiple myeloma in the same way that the Ford Model T revolutionized the original CAR world a century ago. However, we are only beginning to understand how to improve the efficacy and usability of these cellular therapies. In this review, we explore three automotive analogies for innovation with BCMA CAR-T therapies: stronger engines, better mileage, and hassle-free delivery. Firstly, we can build stronger engines in terms of BCMA targeting: improved antigen binding, tools to modulate antigen density, and armoring to better reach the antigen itself. Secondly, we can improve "mileage" in terms of response durability through ex vivo CAR design and in vivo immune manipulation. Thirdly, we can implement hassle-free delivery through rapid manufacturing protocols and off-the-shelf products. Just as the Model T set a benchmark for car manufacturing over 100 years ago, idecabtagene vicleucel and ciltacabtagene autoleucel have now set the starting point for BCMA CAR-T therapy with their approvals. As with any emerging technology, whether automotive or cellular, the best in innovation and optimization is yet to come.
Collapse
Affiliation(s)
- Rahul Banerjee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sarah S. Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Andrew J. Cowan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
16
|
Wang C, Kong L, Kim S, Lee S, Oh S, Jo S, Jang I, Kim TD. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int J Mol Sci 2022; 23:ijms231810412. [PMID: 36142322 PMCID: PMC9499417 DOI: 10.3390/ijms231810412] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-7 (IL-7) is a multipotent cytokine that maintains the homeostasis of the immune system. IL-7 plays a vital role in T-cell development, proliferation, and differentiation, as well as in B cell maturation through the activation of the IL-7 receptor (IL-7R). IL-7 is closely associated with tumor development and has been used in cancer clinical research and therapy. In this review, we first summarize the roles of IL-7 and IL-7Rα and their downstream signaling pathways in immunity and cancer. Furthermore, we summarize and discuss the recent advances in the use of IL-7 and IL-7Rα as cancer immunotherapy tools and highlight their potential for therapeutic applications. This review will help in the development of cancer immunotherapy regimens based on IL-7 and IL-7Rα, and will also advance their exploitation as more effective and safe immunotherapy tools.
Collapse
Affiliation(s)
- Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Lingzu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Seokmin Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Sechan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Inhwan Jang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
17
|
Cunningham AW, Jones M, Frank N, Sethi D, Miller MM. Stem-like memory T cells are generated during hollow fiber perfusion-based expansion and enriched after cryopreservation in an automated modular cell therapy manufacturing process. Cytotherapy 2022; 24:1148-1157. [PMID: 36031522 DOI: 10.1016/j.jcyt.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND AIMS Modular automation is a flexible and reliable option to build the foundation of a new or evolving process or to introduce automation to a process that is already established. Herein the authors demonstrate that modular automation provides both high-quality and high-yield T-cell products. METHODS Cells from three individual donors collected on an automated continuous flow centrifugation system were successfully expanded in a functionally closed, automated, perfusion-based hollow fiber bioreactor. These cells were then prepared for cryopreservation in an automated closed-system device that maintains temperature and aliquots a mixed cell product and cryoprotectant into product bags. Cell product bags were thawed and expanded in flasks. Samples taken throughout this manufacturing process were analyzed for cell phenotype, exhaustion markers and functionality. The proportion of CD4+ and CD8+ T cells was maintained through each step, from pre-expansion and post-expansion to immediately after thaw and 24 h after thaw. RESULTS Interestingly, phenotypic markers such as CD45RO, CD45RA and CCR7 evolved throughout the process and stem-like memory T cells emerged as the predominant phenotype in the clinically relevant 24-h post-thaw sample. CONCLUSIONS Modular automation supported the generation of stem-like memory T cells that were not terminally exhausted and were able to produce effector cytokines upon restimulation.
Collapse
Affiliation(s)
| | - Mark Jones
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA
| | - Nathan Frank
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA
| | - Dalip Sethi
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA.
| | - Mindy M Miller
- Terumo Blood and Cell Technologies, Lakewood, Colorado, USA.
| |
Collapse
|
18
|
Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine 2022; 156:155920. [DOI: 10.1016/j.cyto.2022.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
19
|
Bajwa G, Arber C. Rapid Generation of TCR and CD8αβ Transgenic Virus Specific T Cells for Immunotherapy of Leukemia. Front Immunol 2022; 13:830021. [PMID: 35572604 PMCID: PMC9100812 DOI: 10.3389/fimmu.2022.830021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Virus-specific T cells (VSTs) are an attractive cell therapy platform for the delivery of tumor-targeted transgenic receptors. However, manufacturing with conventional methods may require several weeks and intensive handling. Here we evaluated the feasibility and timelines when combining IFN-γ cytokine capture (CC) with retroviral transduction for the generation of T cell receptor (TCR) and CD8αβ (TCR8) transgenic VSTs to simultaneously target several viral and tumor antigens in a single product. Methods Healthy donor peripheral blood mononuclear cells were stimulated with cytomegalovirus (CMV) and Epstein-Barr-Virus (EBV) peptide mixtures derived from immunogenic viral proteins, followed by CC bead selection. After 3 days in culture, cells were transduced with a retroviral vector encoding four genes (a survivin-specific αβTCR and CD8αβ). TCR8-transgenic or control VSTs were expanded and characterized for their phenotype, specificity and anti-viral and anti-tumor functions. Results CC selected cells were efficiently transduced with TCR8. Average fold expansion was 269-fold in 10 days, and cells contained a high proportion of CD8+ T central memory cells. TCR8+ VSTs simultaneously expressed native anti-viral and transgenic anti-survivin TCRs on their cell surface. Both control and TCR8+ VSTs produced cytokines to and killed viral targets, while tumor targets were only recognized and killed by TCR8+ VSTs. Conclusions IFN-γ cytokine capture selects and activates CMV and EBV-specific memory precursor CD8+ T cells that can be efficiently gene-modified by retroviral transduction and rapidly ex vivo expanded. Our multi-specific T cells are polyfunctional and recognize and kill viral and leukemic targets expressing the cognate antigens.
Collapse
Affiliation(s)
- Gagan Bajwa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, United States
| | - Caroline Arber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, United States
- Department of Oncology UNIL CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), and Ludwig Institute for Cancer Research Lausanne Branch, Lausanne, Switzerland
- *Correspondence: Caroline Arber,
| |
Collapse
|