1
|
Andersson P, Burel SA, Estrella H, Foy J, Hagedorn PH, Harper TA, Henry SP, Hoflack JC, Holgersen EM, Levin AA, Morrison E, Pavlicek A, Penso-Dolfin L, Saxena U. Assessing Hybridization-Dependent Off-Target Risk for Therapeutic Oligonucleotides: Updated Industry Recommendations. Nucleic Acid Ther 2025; 35:16-33. [PMID: 39912803 DOI: 10.1089/nat.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through in silico complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) in vitro verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Christophe Hoflack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | | | | | - Utsav Saxena
- Dicerna Pharmaceuticals, a Novo Nordisk Company, Lexington, Massachusetts, USA
| |
Collapse
|
2
|
Bizot F, Tensorer T, Garcia L, Goyenvalle A. Impact of the Inhibition of Organic Anion Transporter on Tricyclo-DNA-Mediated Exon Skipping in the mdx Mouse Model. Nucleic Acid Ther 2023; 33:374-380. [PMID: 37967388 DOI: 10.1089/nat.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD) and some antisense oligonucleotide (ASO) drugs have already been approved by the U.S. FDA for DMD. The potential of this therapy is still limited by several challenges including the poor distribution of ASOs to target tissues. Indeed, most of them accumulate in the kidney and tend to be rapidly eliminated after systemic delivery. We hypothesized here that preventing renal clearance of ASO using organic anion transporter (OAT) inhibitor could increase the bioavailability of ASOs and thus their distribution to target tissues and ultimately their efficacy in muscles. Mdx mice were, therefore, treated with ASO with or without the OAT inhibitor named probenecid. Our findings indicate that OAT inhibition, or at least using probenecid, does not improve the therapeutic potential of ASO-mediated exon-skipping approaches for the treatment of DMD.
Collapse
Affiliation(s)
- Flavien Bizot
- Université de Versailles Saint Quentin en Yveline, Inserm, END-ICAP, Université Paris-Saclay, Versailles, France
| | | | - Luis Garcia
- Université de Versailles Saint Quentin en Yveline, Inserm, END-ICAP, Université Paris-Saclay, Versailles, France
| | - Aurélie Goyenvalle
- Université de Versailles Saint Quentin en Yveline, Inserm, END-ICAP, Université Paris-Saclay, Versailles, France
| |
Collapse
|
3
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
4
|
Lu K, Fan Q, Zou X. Antisense oligonucleotide is a promising intervention for liver diseases. Front Pharmacol 2022; 13:1061842. [PMID: 36569303 PMCID: PMC9780395 DOI: 10.3389/fphar.2022.1061842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
As the body's critical metabolic organ, the liver plays an essential role in maintaining proper body homeostasis. However, as people's living standards have improved and the number of unhealthy lifestyles has increased, the liver has become overburdened. These have made liver disease one of the leading causes of death worldwide. Under the influence of adverse factors, liver disease progresses from simple steatosis to hepatitis, to liver fibrosis, and finally to cirrhosis and cancer, followed by increased mortality. Until now, there has been a lack of accepted effective treatments for liver disease. Based on current research, antisense oligonucleotide (ASO), as an alternative intervention for liver diseases, is expected to be an effective treatment due to its high efficiency, low toxicity, low dosage, strong specificity, and additional positive characteristics. In this review, we will first introduce the design, modification, delivery, and the mechanisms of ASO, and then summarize the application of ASO in liver disease treatment, including in non-alcoholic fatty liver disease (NAFLD), hepatitis, liver fibrosis, and liver cancer. Finally, we discuss challenges and perspectives on the transfer of ASO drugs into clinical use. This review provides a current and comprehensive understanding of the integrative and systematic functions of ASO for its use in liver disease.
Collapse
Affiliation(s)
- Kailing Lu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qijing Fan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China,*Correspondence: Xiaoju Zou,
| |
Collapse
|
5
|
Wu H, Wahane A, Alhamadani F, Zhang K, Parikh R, Lee S, McCabe EM, Rasmussen TP, Bahal R, Zhong XB, Manautou JE. Nephrotoxicity of marketed antisense oligonucleotide drugs. CURRENT OPINION IN TOXICOLOGY 2022; 32:100373. [PMID: 37193356 PMCID: PMC10174585 DOI: 10.1016/j.cotox.2022.100373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of antisense oligonucleotide (ASO)-based therapies have been making strides in precision medicine due to their potent therapeutic application. Early successes in treating some genetic diseases are now attributed to an emerging class of antisense drugs. After two decades, the US Food and Drug Administration (FDA) has approved a considerable number of ASO drugs, primarily to treat rare diseases with optimal therapeutic outcomes. However, safety is one of the biggest challenges to the therapeutic utility of ASO drugs. Due to patients' and health care practitioners' urgent demands for medicines for untreatable conditions, many ASO drugs have been approved. However, a complete understanding of the mechanisms of adverse drug reactions (ADRs) and toxicities of ASOs still need to be resolved. The range of ADRs is unique to a specific drug, while few ADRs are common to a section of drugs as a whole. Nephrotoxicity is an important concern that needs to be addressed considering the clinical translation of any drug candidates ranging from small molecules to ASO-based drugs. This article encompasses what is known about the nephrotoxicity of ASO drugs, the potential mechanisms of action(s), and recommendations for future investigations on the safety of ASO drugs.
Collapse
Affiliation(s)
- Hangyu Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Feryal Alhamadani
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Kristy Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Rajvi Parikh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - SooWan Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
6
|
Keating MF, Drew BG, Calkin AC. Antisense Oligonucleotide Technologies to Combat Obesity and Fatty Liver Disease. Front Physiol 2022; 13:839471. [PMID: 35295579 PMCID: PMC8918623 DOI: 10.3389/fphys.2022.839471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Synthetic oligonucleotide technologies are DNA or RNA based molecular compounds that are utilized to disrupt gene transcription or translation in target tissues or cells. Optimally, oligonucleotides are 10–30 base pairs in length, and mediate target gene suppression through directed sequence homology with messenger RNA (mRNA), leading to mRNA degradation. Examples of specific oligonucleotide technologies include antisense oligonucleotides (ASO), short hairpin RNAs (shRNA), and small interfering RNAs (siRNA). In vitro and in vivo studies that model obesity related disorders have demonstrated that oligonucleotide technologies can be implemented to improve the metabolism of cells and tissues, exemplified by improvements in fat utilization and hepatic insulin signaling, respectively. Oligonucleotide therapy has also been associated with reductions in lipid accumulation in both the liver and adipose tissue in models of diet-induced obesity. Recent advances in oligonucleotide technologies include the addition of chemical modifications such as N-acetylgalactosamine (GalNAc) conjugates that have been successful at achieving affinity for the liver, in turn improving specificity, and thus reducing off target effects. However, some challenges are still yet to be overcome relating to hepatic injury and off-target effects that have been reported with some compounds, including ASOs. In summary, oligonucleotide-based therapies are an effective tool to elucidate mechanistic insights into metabolic pathways and provide an attractive avenue for translational research into the clinic.
Collapse
Affiliation(s)
- Michael F Keating
- Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Molecular Metabolism and Ageing Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Disease, University of Melbourne, Parkville, VIC, Australia
| | - Brian G Drew
- Molecular Metabolism and Ageing Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Disease, University of Melbourne, Parkville, VIC, Australia.,Central Clinical School, Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Anna C Calkin
- Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Disease, University of Melbourne, Parkville, VIC, Australia.,Central Clinical School, Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Preclinical Evaluation of the Renal Toxicity of Oligonucleotide Therapeutics in Mice. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:371-384. [PMID: 35213032 DOI: 10.1007/978-1-0716-2010-6_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antisense oligonucleotides (ASO) therapeutics hold great promise for the treatment of numerous diseases, and several ASO drugs have now reached market approval, confirming the potential of this approach. However, some candidates have also failed, due to limited biodistribution/uptake and poor safety profile. In pursuit of better delivery and higher cellular uptake, ASO are being optimized, and new chemistries are developed or conjugated with various ligands. While these developments may lead to candidates with higher potency, it is important to keep the safety aspects in sight and screen for potential toxicity in early phases of preclinical development to avoid subsequent failure in clinical development. Our understanding of ASO-mediated toxicity keeps improving with increased preclinical and clinical data available. In this chapter, we will focus on the assessment of renal toxicity in mice and describe methods to measure the levels of general urinary biomarkers as well as acute kidney injury biomarkers following ASO treatment.
Collapse
|
8
|
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:355-370. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last decade, therapeutic oligonucleotide drugs (OND) have witnessed a tremendous development in chemistry and mechanistic understanding that have translated into successful clinical applications. Depending on the specific OND mechanism, chemistry, and design, the DMPK and toxicity properties can vary significantly between different OND classes and delivery approaches, the latter including lipid formulations or conjugation approaches to enhance productive OND uptake. At the same time, with the only difference between compounds being the nucleobase sequence, ONDs with same mechanism of action, chemistry, and design show relatively consistent behavior, allowing certain extrapolations between compounds within an OND class. This chapter provides a summary of the most common toxicities, the improved mechanistic understanding and the safety assessment activities performed for therapeutic oligonucleotides during the drug discovery and development process. Several of the considerations described for therapeutic applications should also be of value for the scientists mainly using oligonucleotides as research tools to explore various biological processes.
Collapse
Affiliation(s)
- Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
9
|
Sturm G, List M, Zhang JD. Tissue heterogeneity is prevalent in gene expression studies. NAR Genom Bioinform 2021; 3:lqab077. [PMID: 34514392 PMCID: PMC8415427 DOI: 10.1093/nargab/lqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/01/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Lack of reproducibility in gene expression studies is a serious issue being actively addressed by the biomedical research community. Besides established factors such as batch effects and incorrect sample annotations, we recently reported tissue heterogeneity, a consequence of unintended profiling of cells of other origins than the tissue of interest, as a source of variance. Although tissue heterogeneity exacerbates irreproducibility, its prevalence in gene expression data remains unknown. Here, we systematically analyse 2 667 publicly available gene expression datasets covering 76 576 samples. Using two independent data compendia and a reproducible, open-source software pipeline, we find a prevalence of tissue heterogeneity in gene expression data that affects between 1 and 40% of the samples, depending on the tissue type. We discover both cases of severe heterogeneity, which may be caused by mistakes in annotation or sample handling, and cases of moderate heterogeneity, which are likely caused by tissue infiltration or sample contamination. Our analysis establishes tissue heterogeneity as a widespread phenomenon in publicly available gene expression datasets, which constitutes an important source of variance that should not be ignored. Consequently, we advocate the application of quality-control methods such as BioQC to detect tissue heterogeneity prior to mining or analysing gene expression data.
Collapse
Affiliation(s)
- Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Jitao David Zhang
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
10
|
Schmidt S, Gallego SF, Zelnik ID, Kovalchuk S, Albæk N, Sprenger RR, Øverup C, Pewzner-Jung Y, Futerman AH, Lindholm MW, Jensen ON, Ejsing CS. Silencing of ceramide synthase 2 in hepatocytes modulates plasma ceramide biomarkers predictive of cardiovascular death. Mol Ther 2021; 30:1661-1674. [PMID: 34400330 PMCID: PMC9077316 DOI: 10.1016/j.ymthe.2021.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging clinical data show that three ceramide molecules, Cer d18:1/16:0, Cer d18:1/24:1, and Cer d18:1/24:0, are biomarkers of a fatal outcome in patients with cardiovascular disease. This finding raises basic questions about their metabolic origin, their contribution to disease pathogenesis, and the utility of targeting the underlying enzymatic machinery for treatment of cardiometabolic disorders. Here, we outline the development of a potent N-acetylgalactosamine-conjugated antisense oligonucleotide engineered to silence ceramide synthase 2 specifically in hepatocytes in vivo. We demonstrate that this compound reduces the ceramide synthase 2 mRNA level and that this translates into efficient lowering of protein expression and activity as well as Cer d18:1/24:1 and Cer d18:1/24:0 levels in liver. Intriguingly, we discover that the hepatocyte-specific antisense oligonucleotide also triggers a parallel modulation of blood plasma ceramides, revealing that the biomarkers predictive of cardiovascular death are governed by ceramide biosynthesis in hepatocytes. Our work showcases a generic therapeutic framework for targeting components of the ceramide enzymatic machinery to disentangle their roles in disease causality and to explore their utility for treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Steffen Schmidt
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Sandra F Gallego
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Iris Daphne Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Kovalchuk
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nanna Albæk
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Charlotte Øverup
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marie W Lindholm
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
11
|
Romero-Palomo F, Festag M, Lenz B, Schadt S, Brink A, Kipar A, Steinhuber B, Husser C, Koller E, Sewing S, Tessier Y, Dzygiel P, Fischer G, Winter M, Hetzel U, Mihatsch MJ, Braendli-Baiocco A. Safety, Tissue Distribution, and Metabolism of LNA-Containing Antisense Oligonucleotides in Rats. Toxicol Pathol 2021; 49:1174-1192. [PMID: 34060347 DOI: 10.1177/01926233211011615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antisense oligonucleotides (ASOs) are chemically modified nucleic acids with therapeutic potential, some of which have been approved for marketing. We performed a study in rats to investigate mechanisms of toxicity after administration of 3 tool locked nucleic acid (LNA)-containing ASOs with differing established safety profiles. Four male rats per group were dosed once, 3, or 6 times subcutaneously, with 7 days between dosing, and sacrificed 3 days after the last dose. These ASOs were either unconjugated (naked) or conjugated with N-acetylgalactosamine for hepatocyte-targeted delivery. The main readouts were in-life monitoring, clinical and anatomic pathology, exposure assessment and metabolite identification in liver and kidney by liquid chromatography coupled to tandem mass spectrometry, ASO detection in liver and kidney by immunohistochemistry, in situ hybridization, immune electron microscopy, and matrix-assisted laser desorption/ionization mass spectrometry imaging. The highly toxic compounds showed the greatest amount of metabolites and a low degree of tissue accumulation. This study reveals different patterns of cell death associated with toxicity in liver (apoptosis and necrosis) and kidney (necrosis only) and provides new ultrastructural insights on the tissue accumulation of ASOs. We observed that the immunostimulatory properties of ASOs can be either primary from sequence-dependent properties or secondary to cell necrosis.
Collapse
Affiliation(s)
- Fernando Romero-Palomo
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Matthias Festag
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Barbara Lenz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Andreas Brink
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, 30843Vetsuisse Faculty, University of Zürich, Switzerland
| | - Bernd Steinhuber
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Christophe Husser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Erich Koller
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Sabine Sewing
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Yann Tessier
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Pawel Dzygiel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Guy Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Michael Winter
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Udo Hetzel
- Electron Microscopy Unit, Institute of Veterinary Pathology, 27217Vetsuisse Faculty, University of Zürich, Switzerland
| | - Michael J Mihatsch
- 361703Institute for Pathology, University Hospital of Basel, Switzerland
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| |
Collapse
|
12
|
Nieskens TTG, Magnusson O, Andersson P, Söderberg M, Persson M, Sjögren AK. Nephrotoxic antisense oligonucleotide SPC5001 induces kidney injury biomarkers in a proximal tubule-on-a-chip. Arch Toxicol 2021; 95:2123-2136. [PMID: 33961089 DOI: 10.1007/s00204-021-03062-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023]
Abstract
Antisense oligonucleotides (ASOs) are a promising therapeutic modality. However, failure to predict acute kidney injury induced by SPC5001 ASO observed in a clinical trial suggests the need for additional preclinical models to complement the preceding animal toxicity studies. To explore the utility of in vitro systems in this space, we evaluated the induction of nephrotoxicity and kidney injury biomarkers by SPC5001 in human renal proximal tubule epithelial cells (HRPTEC), cultured in 2D, and in a recently developed kidney proximal tubule-on-a-chip. 2D HRPTEC cultures were exposed to the nephrotoxic ASO SPC5001 or the safe control ASO 556089 (0.16-40 µM) for up to 72 h, targeting PCSK9 and MALAT1, respectively. Both ASOs induced a concentration-dependent downregulation of their respective mRNA targets but cytotoxicity (determined by LDH activity) was not observed at any concentration. Next, chip-cultured HRPTEC were exposed to SPC5001 (0.5 and 5 µM) and 556089 (1 and 10 µM) for 48 h to confirm downregulation of their respective target transcripts, with 74.1 ± 5.2% for SPC5001 (5 µM) and 79.4 ± 0.8% for 556089 (10 µM). During extended exposure for up to 20 consecutive days, only SPC5001 induced cytotoxicity (at the higher concentration; 5 µM), as evaluated by LDH in the perfusate medium. Moreover, perfusate levels of biomarkers KIM-1, NGAL, clusterin, osteopontin and VEGF increased 2.5 ± 0.2-fold, 3.9 ± 0.9-fold, 2.3 ± 0.6-fold, 3.9 ± 1.7-fold and 1.9 ± 0.4-fold respectively, in response to SPC5001, generating distinct time-dependent profiles. In conclusion, target downregulation, cytotoxicity and kidney injury biomarkers were induced by the clinically nephrotoxic ASO SPC5001, demonstrating the translational potential of this kidney on-a-chip.
Collapse
Affiliation(s)
- Tom T G Nieskens
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Otto Magnusson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Patrik Andersson
- R&I Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Söderberg
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Mikael Persson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Anna-Karin Sjögren
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden.
| |
Collapse
|
13
|
Hammond SM, Aartsma‐Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon‐Mom W, Arechavala‐Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021; 13:e13243. [PMID: 33821570 PMCID: PMC8033518 DOI: 10.15252/emmm.202013243] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Sandra Alves
- Department of Human Genetics, Research and Development UnitNational Health Institute Doutor Ricardo JorgePortoPortugal
| | - Sven E Borgos
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Ronald A M Buijsen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Giuseppina Covello
- Department of BiologyUniversity of PadovaPadovaItaly
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICCIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | | | - Camilla Foged
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ØDenmark
| | - Gisela Gaina
- Victor Babes National Institute of PathologyBucharestRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Magdalena Guzowska
- Department of Physiological SciencesFaculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Irina Holodnuka
- Institute of Microbiology and VirologyRiga Stradins UniversityRigaLatvia
| | | | - Sabine Krause
- Department of NeurologyFriedrich‐Baur‐InstituteLudwig‐Maximilians‐University of MunichMunichGermany
| | - Taavi Lehto
- Institute of TechnologyUniversity of TartuTartuEstonia
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Marisol Montolio
- Duchenne Parent Project EspañaMadridSpain
- Department of Cell Biology, Fisiology and ImmunologyFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Willeke Van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Virginia Arechavala‐Gomeza
- Neuromuscular Disorders GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
14
|
Lidberg KA, Annalora AJ, Jozic M, Elson DJ, Wang L, Bammler TK, Ramm S, Monteiro MB, Himmelfarb J, Marcus CB, Iversen PL, Kelly EJ. Antisense oligonucleotide development for the selective modulation of CYP3A5 in renal disease. Sci Rep 2021; 11:4722. [PMID: 33633318 PMCID: PMC7907328 DOI: 10.1038/s41598-021-84194-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/10/2021] [Indexed: 11/09/2022] Open
Abstract
CYP3A5 is the primary CYP3A subfamily enzyme expressed in the human kidney and its aberrant expression may contribute to a broad spectrum of renal disorders. Pharmacogenetic studies have reported inconsistent linkages between CYP3A5 expression and hypertension, however, most investigators have considered CYP3A5*1 as active and CYP3A5*3 as an inactive allele. Observations of gender specific differences in CYP3A5*3/*3 protein expression suggest additional complexity in gene regulation that may underpin an environmentally responsive role for CYP3A5 in renal function. Reconciliation of the molecular mechanism driving conditional restoration of functional CYP3A5*3 expression from alternatively spliced transcripts, and validation of a morpholino-based approach for selectively suppressing renal CYP3A5 expression, is the focus of this work. Morpholinos targeting a cryptic splice acceptor created by the CYP3A5*3 mutation in intron 3 rescued functional CYP3A5 expression in vitro, and salt-sensitive cellular mechanisms regulating splicing and conditional expression of CYP3A5*3 transcripts are reported. The potential for a G-quadruplex (G4) in intron 3 to mediate restored splicing to exon 4 in CYP3A5*3 transcripts was also investigated. Finally, a proximal tubule microphysiological system (PT-MPS) was used to evaluate the safety profile of morpholinos in proximal tubule epithelial cells, highlighting their potential as a therapeutic platform for the treatment of renal disease.
Collapse
Affiliation(s)
- Kevin A Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| | - Marija Jozic
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Daniel J Elson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Susanne Ramm
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Maria Beatriz Monteiro
- Depto Clinica Medica, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | | | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Bajaj P, Chung G, Pye K, Yukawa T, Imanishi A, Takai Y, Brown C, Wagoner MP. Freshly isolated primary human proximal tubule cells as an in vitro model for the detection of renal tubular toxicity. Toxicology 2020; 442:152535. [PMID: 32622972 DOI: 10.1016/j.tox.2020.152535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
Drug induced kidney injury (DIKI) is a common reason for compound attrition in drug development pipelines with proximal tubule epithelial cells (PTECs) most commonly associated with DIKI. Here, we investigated freshly isolated human (hPTECs) as an in vitro model for assessing renal tubular toxicity. The freshly isolated hPTECs were first characterized to confirm gene expression of important renal transporters involved in drug handling which was further corroborated by confirming the functional activity of organic cation transporter 2 and organic anion transporter 1 by using transporter specific inhibitors. Additionally, functionality of megalin/cubilin endocytic receptors was also confirmed. A training set of 36 compounds was used to test the ability of the model to classify them using six different endpoints which included three biomarkers (Kidney Injury Molecule-1, Neutrophil gelatinase-associated lipocalin, and Clusterin) and three non-specific injury endpoints (ATP depletion, LDH leakage, and barrier permeability via transepithelial electrical resistance) in a dose-dependent manner across two independent kidney donors. In general, biomarkers showed higher predictivity than non-specific endpoints, with Clusterin showing the highest predictivity (Sensitivity/Specificity - 65.0/93.8 %). By using the thresholds generated from the training set, nine candidate internal Takeda compounds were screened where PTEC toxicity was identified as one of the findings in preclinical animal studies. The model correctly classified four of six true positives and two of three true negatives, showing validation of the in vitro model for detection of tubular toxicants. This work thus shows the potential application of freshly isolated primary hPTECs using translational biomarkers in assessment of tubular toxicity within the drug discovery pipeline.
Collapse
Affiliation(s)
- Piyush Bajaj
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Cambridge, MA USA
| | | | | | - Tomoya Yukawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Cambridge, MA USA
| | - Akio Imanishi
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Kanagawa, Japan
| | - Yuichi Takai
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Kanagawa, Japan
| | | | - Matthew P Wagoner
- Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Cambridge, MA USA.
| |
Collapse
|
16
|
Funder ED, Albæk N, Moisan A, Sewing S, Koch T. Refining LNA safety profile by controlling phosphorothioate stereochemistry. PLoS One 2020; 15:e0232603. [PMID: 32530964 PMCID: PMC7292364 DOI: 10.1371/journal.pone.0232603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/17/2020] [Indexed: 01/01/2023] Open
Abstract
Drug discovery with phosphorothioate oligonucleotides is an area of intensive research. In this study we have controlled the stereochemistry of the phosphorothioate backbone of LNA oligonucleotides to investigate the differences in safety profile, target mRNA knock down, and cellular uptake in vitro. The study reveals that controlling only four stereocenters in an isomeric phosphorothioate mixture can improve the therapeutic index significantly by improving safety without compromising activity.
Collapse
Affiliation(s)
| | - Nanna Albæk
- Roche Innovation Center Copenhagen A/S, Hørsholm, Denmark
| | - Annie Moisan
- Roche Innovation Center Basel, Basel, Switzerland
| | | | - Troels Koch
- Roche Innovation Center Copenhagen A/S, Hørsholm, Denmark
| |
Collapse
|
17
|
Zhang JD, Sach-Peltason L, Kramer C, Wang K, Ebeling M. Multiscale modelling of drug mechanism and safety. Drug Discov Today 2020; 25:519-534. [DOI: 10.1016/j.drudis.2019.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/06/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
|
18
|
Sewing S, Gubler M, Gérard R, Avignon B, Mueller Y, Braendli-Baiocco A, Odin M, Moisan A. GalNAc Conjugation Attenuates the Cytotoxicity of Antisense Oligonucleotide Drugs in Renal Tubular Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:67-79. [PMID: 30583097 PMCID: PMC6305803 DOI: 10.1016/j.omtn.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 12/30/2022]
Abstract
Targeted delivery of antisense oligonucleotide (AON) drugs is a promising strategy to increase their concentration in the desired tissues and cell types while reducing access to other organs. Conjugation of AONs to N-acetylgalactosamine (GalNAc) has been shown to efficiently shift their biodistribution toward the liver via high-affinity binding to the asialoglycoprotein receptor (ASGPR) expressed at the surface of hepatocytes. Nevertheless, GalNAc conjugation does not prevent accumulation of AONs in the kidney cortex, and GalNAc-conjugated AONs might cause kidney toxicities, for example, under conditions of ASGPR saturation. Here, we investigated the nephrotoxicity potential of GalNAc-conjugated AONs by in vitro profiling of AON libraries in renal proximal tubule epithelial cells (PTECs) and in vivo testing of selected candidates. Whereas GalNAc-conjugated AONs appeared generally innocuous to PTECs, some caused mild-to-moderate nephrotoxicity in rats. Interestingly, the in vivo kidney liabilities could be recapitulated in vitro by treating PTECs with the unconjugated (or naked) parental AONs. An in vitro mechanistic study revealed that GalNAc conjugation attenuated AON-induced renal cell toxicity despite intracellular accumulation similar to that of naked AONs and independent of target knockdown. Overall, our in vitro findings reveal ASGPR-independent properties of GalNAc AONs that confer a favorable safety profile at the cellular level, which may variably translate in vivo due to catabolic transformation of circulating AONs.
Collapse
Affiliation(s)
- Sabine Sewing
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Marcel Gubler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Régine Gérard
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Blandine Avignon
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Yasmin Mueller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland
| | | | - Marielle Odin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Annie Moisan
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland.
| |
Collapse
|
19
|
Mogi A, Yomoda R, Kimura S, Tsushima C, Takouda J, Sawauchi M, Maekawa T, Ohta H, Nishino S, Kurita M, Mano N, Osumi N, Moriya T. Entrainment of the Circadian Clock in Neural Stem Cells by Epidermal Growth Factor is Closely Associated with ERK1/2-mediated Induction of Multiple Clock-related Genes. Neuroscience 2018. [DOI: 10.1016/j.neuroscience.2018.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Liver-Targeted Anti-HBV Single-Stranded Oligonucleotides with Locked Nucleic Acid Potently Reduce HBV Gene Expression In Vivo. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:441-454. [PMID: 29858079 PMCID: PMC5992345 DOI: 10.1016/j.omtn.2018.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 12/24/2022]
Abstract
Chronic hepatitis B infection (CHB) is an area of high unmet medical need. Current standard-of-care therapies only rarely lead to a functional cure, defined as durable hepatitis B surface antigen (HBsAg) loss following treatment. The goal for next generation CHB therapies is to achieve a higher rate of functional cure with finite treatment duration. To address this urgent need, we are developing liver-targeted single-stranded oligonucleotide (SSO) therapeutics for CHB based on the locked nucleic acid (LNA) platform. These LNA-SSOs target hepatitis B virus (HBV) transcripts for RNase-H-mediated degradation. Here, we describe a HBV-specific LNA-SSO that effectively reduces intracellular viral mRNAs and viral antigens (HBsAg and HBeAg) over an extended time period in cultured human hepatoma cell lines that were infected with HBV with mean 50% effective concentration (EC50) values ranging from 1.19 to 1.66 μM. To achieve liver-specific targeting and minimize kidney exposure, this LNA-SSO was conjugated to a cluster of three N-acetylgalactosamine (GalNAc) moieties that direct specific binding to the asialoglycoprotein receptor (ASGPR) expressed specifically on the surface of hepatocytes. The GalNAc-conjugated LNA-SSO showed a strikingly higher level of potency when tested in the AAV-HBV mouse model as compared with its non-conjugated counterpart. Remarkably, higher doses of GalNAc-conjugated LNA-SSO resulted in a rapid and long-lasting reduction of HBsAg to below the detection limit for quantification, i.e., by 3 log10 (p < 0.0003). This antiviral effect depended on a close match between the sequences of the LNA-SSO and its HBV target, indicating that the antiviral effect is not due to non-specific oligonucleotide-driven immune activation. These data support the development of LNA-SSO therapeutics for the treatment of CHB infection.
Collapse
|
21
|
Dieckmann A, Hagedorn PH, Burki Y, Brügmann C, Berrera M, Ebeling M, Singer T, Schuler F. A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:45-54. [PMID: 29499955 PMCID: PMC5725219 DOI: 10.1016/j.omtn.2017.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 10/29/2022]
Abstract
The successful development of high-affinity gapmer antisense oligonucleotide (ASO) therapeutics containing locked nucleic acid (LNA) or constrained ethyl (cEt) substitutions has been hampered by the risk of hepatotoxicity. Here, we present an in vitro approach using transfected mouse fibroblasts to predict the potential hepatic liabilities of LNA-modified ASOs (LNA-ASOs), validated by assessing 236 different LNA-ASOs with known hepatotoxic potential. This in vitro assay accurately reflects in vivo findings and relates hepatotoxicity to RNase H1 activity, off-target RNA downregulation, and LNA-ASO-binding affinity. We further demonstrate that the hybridization-dependent toxic potential of LNA-ASOs is also evident in different cell types from different species, which indicates probable translatability of the in vitro results to humans. Additionally, we show that the melting temperature (Tm) of LNA-ASOs maintained below a threshold level of about 55°C greatly diminished the hepatotoxic potential. In summary, we have established a sensitive in vitro screening approach for assessing the hybridization-dependent toxic potential of LNA-ASOs, enabling prioritization of candidate molecules in drug discovery and early development.
Collapse
Affiliation(s)
- Andreas Dieckmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
| | - Peter H Hagedorn
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Yvonne Burki
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Christine Brügmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Marco Berrera
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Thomas Singer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| |
Collapse
|
22
|
Schraml E, Hackl M, Grillari J. MicroRNAs and toxicology: A love marriage. Toxicol Rep 2017; 4:634-636. [PMID: 29214146 PMCID: PMC5695539 DOI: 10.1016/j.toxrep.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/16/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
Circulating microRNAs can serve as novel toxicological biomarkers. MicroRNAs are non-invasive biomarkers for early detection of tissue injury. MicroRNAs regulate gene activity in tissues exposed to toxic substances. They are novel tools for identifying and monitoring safety risks in drug development. MicroRNA are highly-conserved and potentially useful in preclinical animal studies.
With the dawn of personalized medicine, secreted microRNAs (miRNAs) have come into the very focus of biomarker development for various diseases. MiRNAs fulfil key requirements of diagnostic tools such as i) non or minimally invasive accessibility, ii) robust, standardized and non-expensive quantitative analysis, iii) rapid turnaround of the test result and iv) most importantly because they provide a comprehensive snapshot of the ongoing physiologic processes in cells and tissues that package and release miRNAs into cell-free space. These characteristics have also established circulating miRNAs as promising biomarker candidates for toxicological studies, where they are used as biomarkers of drug-, or chemical-induced tissue injury for safety assessment. The tissue-specificity and early release of circulating miRNAs upon tissue injury, when damage is still reversible, are main factors for their clinical utility in toxicology. Here we summarize in brief, current knowledge of this field.
Collapse
Affiliation(s)
| | | | - Johannes Grillari
- TAmiRNA GmbH, Muthgasse 18, 1190, Wien, Austria.,Christian Doppler Labor für Biotechnologie der Hautalterung, Department für Biotechnologie, BOKU Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
23
|
Sewing S, Roth AB, Winter M, Dieckmann A, Bertinetti-Lapatki C, Tessier Y, McGinnis C, Huber S, Koller E, Ploix C, Reed JC, Singer T, Rothfuss A. Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors for thrombocytopenia. PLoS One 2017; 12:e0187574. [PMID: 29107969 PMCID: PMC5673186 DOI: 10.1371/journal.pone.0187574] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
Single-stranded oligonucleotides (ON) comprise a promising therapeutic platform that enables selective modulation of currently undruggable targets. The development of novel ON drug candidates has demonstrated excellent efficacy, but in certain cases also some safety liabilities were reported. Among them are events of thrombocytopenia, which have recently been evident in late stage trials with ON drugs. The underlying mechanisms are poorly understood and the risk for ON candidates causing such events cannot be sufficiently assessed pre-clinically. We investigated potential thrombocytopenia risk factors of ONs and implemented a set of in vitro assays to assess these risks. Our findings support previous observations that phosphorothioate (PS)-ONs can bind to platelet proteins such as platelet collagen receptor glycoprotein VI (GPVI) and activate human platelets in vitro to various extents. We also show that these PS-ONs can bind to platelet factor 4 (PF4). Binding to platelet proteins and subsequent activation correlates with ON length and connected to this, the number of PS in the backbone of the molecule. Moreover, we demonstrate that locked nucleic acid (LNA) ribosyl modifications in the wings of the PS-ONs strongly suppress binding to GPVI and PF4, paralleled by markedly reduced platelet activation. In addition, we provide evidence that PS-ONs do not directly affect hematopoietic cell differentiation in culture but at higher concentrations show a pro-inflammatory potential, which might contribute to platelet activation. Overall, our data confirm that certain molecular attributes of ONs are associated with a higher risk for thrombocytopenia. We propose that applying the in vitro assays discussed here during the lead optimization phase may aid in deprioritizing ONs with a potential to induce thrombocytopenia.
Collapse
Affiliation(s)
- Sabine Sewing
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- * E-mail:
| | - Adrian B. Roth
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael Winter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Dieckmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Yann Tessier
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen A/S, Hørsholm, Denmark
| | - Claudia McGinnis
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Erich Koller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Corinne Ploix
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - John C. Reed
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Singer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Rothfuss
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
24
|
Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res 2017; 45:2262-2282. [PMID: 28426096 PMCID: PMC5389529 DOI: 10.1093/nar/gkx056] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/21/2017] [Indexed: 01/06/2023] Open
Abstract
All drugs perturb the expression of many genes in the cells that are exposed to them. These gene expression changes can be divided into effects resulting from engaging the intended target and effects resulting from engaging unintended targets. For antisense oligonucleotides, developments in bioinformatics algorithms, and the quality of sequence databases, allow oligonucleotide sequences to be analyzed computationally, in terms of the predictability of their interactions with intended and unintended RNA targets. Applying these tools enables selection of sequence-specific oligonucleotides where no- or only few unintended RNA targets are expected. To evaluate oligonucleotide sequence-specificity experimentally, we recommend a transcriptomics protocol where two or more oligonucleotides targeting the same RNA molecule, but with entirely different sequences, are evaluated together. This helps to clarify which changes in cellular RNA levels result from downstream processes of engaging the intended target, and which are likely to be related to engaging unintended targets. As required for all classes of drugs, the toxic potential of oligonucleotides must be evaluated in cell- and animal models before clinical testing. Since potential adverse effects related to unintended targeting are sequence-dependent and therefore species-specific, in vitro toxicology assays in human cells are especially relevant in oligonucleotide drug discovery.
Collapse
Affiliation(s)
- Peter H Hagedorn
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark.,Center for Computational and Applied Transcriptomics, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Bo R Hansen
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark
| | - Troels Koch
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark
| | - Morten Lindow
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark.,Center for Computational and Applied Transcriptomics, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|